Spaces:
Running
Running
File size: 11,243 Bytes
212fcfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import cv2
import inspect
import numpy as np
import albumentations as A
import gradio as gr
from typing import get_type_hints
from PIL import Image, ImageDraw
import base64
import io
from PIL import Image
from functools import wraps
DEFAULT_TRANSFORM = "Rotate"
DEFAULT_IMAGE = "images/doctor.webp"
DEFAULT_IMAGE_HEIGHT = 400
DEFAULT_IMAGE_WIDTH = 600
DEFAULT_BOXES = [[265, 121, 326, 177], [192, 169, 401, 395]]
DEFAULT_KEYPOINTS = [
[(x_min + x_max) // 2, (y_min + y_max) // 2]
for x_min, y_min, x_max, y_max in DEFAULT_BOXES
]
CORENERS = [[[x_min, y_min], [x_max, y_max], [x_min, y_max], [x_max, y_min]] for x_min, y_min, x_max, y_max in DEFAULT_BOXES]
for bbox_corners in CORENERS:
DEFAULT_KEYPOINTS += bbox_corners
BASE64_DEFAULT_MASKS = [
{
"label": "Coverall",
# light green color
"color": (144, 238, 144),
"mask": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAAAAABXXkFEAAAF+ElEQVR4nO3dwXLjNhBFUSg1///LziLj1Iwt26KkFhuvz9kkWVhFAJcAqXGStQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACe5+3sCyCUsq745+wLSKCsz4T1DMr6RFiUENZT2LI+EhYlhPWnt7t3nvt/MtSvsy+gkcfaeFuXJ11HBJPx7r+s7piPP3o0m/9zFP729tdfjv/gnT8dy1G41npeEc7Dd3astR7q6uOP2rT+4wb7mMLBGfkckildyyw8HMa1HWr8pK7pz1hF55YnrdE315dVHZmTb9IcPLVr7Oi/36oOTMpPe97Q+R16FL7wzW3sqThw2DdkdfOs3JTowDmeN+gbN6tbp+XJHxdk1pAPnIE3TczNnzdrmteaNeJjj1Y3zMyRD5w00WuNGu/RR/afpubZn5dlymjvexH8Znbu+cApk73WlLE+8v3C1Rm69wNnTPdaM0ba6hcOJkz4WhPG2SqrtSZM+Vr5o2yX1Vr5k75W+hhbZrVW+rSvlT3Ctlmt7Hlfa0X/anLnrnpf3DPkhtV86Zpf3sNyw+ouvKzYsPqvW/8rfERsWJxLWOeJ3rKERQlhnSh5y0oNK3nNtpAa1h6C8w8NK3jFNpEZlq5OlxnWNnLvgMiwcpdrH5FhbST2HkgMK3axdpIY1lZS7wJhUSIwrM32gM0u91aBYdFBXlihO8Bu4sLSVQ9xYe0n81ZICytzlTaUFtaOIm8GYVEiLKzIm39LYWHRhbAoIawGEg9wYVEiK6zEW39TWWHtKvCGEBYlhEUJYbWQdxYKixLCokRUWHkHyr6iwqIPYVEiKSwnYSNJYdGIsCghLEoIixLCokRQWF4KOwkKa2txd4WwmkgrS1iUEFYXYVuWsCiRE1bYHb+7nLBoRViUEBYlhEUJYVFCWG1kvdYKixIxYWXd7/tLCUtXzaSEFeBy9gU8VUhYNqxuMsLSVTsZYdFORFgZG1bGKN5FhEU/wqJEQlhZZ0iIhLBoSFiUEBYlhEUJYVEiIaysP70NkRAWDQmLEsLqI+qLXmFRQliUEBYlhEWJX2dfwK4ua4U9bj+XsA66/P0P0vqCo/CQy8dv+X3r/wVhHXElI2VdJ6wDiiOKalRYlBDWo6L2mecRVhtZhQrrUb5wuEpYlBBWF1knYUZYYWsSISKsM8vyiHVdRlivYWM8ICQsa95NSFinleUk/EJKWDQjrCbSDvOYsM5ZGCfhV2LCohdhPcKG9SVh3e5TRk/sKu0RKyis1y+N/eobOWG9nK6+ExTWa7esN119y79XeBdV/URYd5DVz4R1wNtlqepGUa+5+6551DKstaIe3ulEWJQQFiWERQlhUSIqrLx3q31FhUUfwqJEVljOwjaywqINYXUQuNOGhRW4QpsKC4su0sKyZTWRFtaWZe14zT+JCytylTYUuQyb/cJf5Brk7Vhrt5Xa62pvFRnWVmu107UekBlW6mptJDQsZZ0tNaxtpN4BqeN6fzW8/PH3LaUuQOq4PuqaVuz8OwopEXvHfNRyywqe/eCh/aVjV9Fz7z8KcpborIR1jvCo1hLWGQZk5a3wBCO6EtbLzehKWNQQFiWERQlhUUJYlBAWJYRFCWG9Wsc/Di8gLEoMCWvINtHIkLB4NWFRQliUENbLzXjeExYlhEUJYVFiRlgzHmtamREWLycsSgjr9UYczMKihLAoISxKCIsSwqKEsCghLEoI6wQTvsgSFiWERQlhUUJYZxjwkCUsSgiLEiPCGnDytDMirH7yU58QVv4qNjQhLE4gLEoIixLCooSwzhH/QjEhrMuQ/31NKxPCktYJBs14s9MnfOZn7FhrLdvWaw0KS1qvNG+qu5yI4TMfPryrmqSVPfWjjsLfnIgvMHWOO+xa0XM/ccdaK3xRO5gaFsWERQlhUWJqWB0e3qNNDauD6LiFRYmhYUVvFi3MDEtX5UaGpat6I8Oi3r8KSpCuwVpGmQAAAABJRU5ErkJggg==",
},
{
"label": "Mask",
# light blue color
"color": (173, 216, 230),
"mask": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAAAAABXXkFEAAAB4ElEQVR4nO3csQ6CMBSG0avv/864OFhoobW9UeM5i4ML+fOFkmCMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbcPn0BX257ftppkMEqtuY35uplqYN2VhFhsU5m2rnIKsJmXYy00xFWRBjuin1KvV2F6c7dP30Bv2ugwT8krPcp64SwJmzSahJWYbQUZbUIqzD8QK6sBmEVdLKKsEghLFIIa5LDs05YpBAWKYQ1y1lYJSxSCIsUwiKFsF55XlpGWLP83q9KWKQQ1qt37j6OzyphkUJYpBBWwZP4KsIqKWsRYZFCWDtuWWsIixTC2nPLWkJYB8paQVhHY2XpsMosdV0vaozXZpsG/+s3x0BN9bQM1sdOJ45pmauXpU4VadlqgLEubRF2AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCZBwKLGEVAl/J/AAAAAElFTkSuQmCC",
},
]
# Get all the transforms from the albumentations library
transforms_map = {
name: cls
for name, cls in vars(A).items()
if inspect.isclass(cls) and issubclass(cls, (A.DualTransform, A.ImageOnlyTransform))
}
transforms_map.pop("DualTransform", None)
transforms_map.pop("ImageOnlyTransform", None)
transforms_keys = list(sorted(transforms_map.keys()))
# Decode the masks
for mask in BASE64_DEFAULT_MASKS:
mask["mask"] = np.array(Image.open(io.BytesIO(base64.b64decode(mask["mask"]))).convert("L"))
def run_with_retry(compose):
@wraps(compose)
def wrapper(*args, **kwargs):
for i in range(4):
try:
return compose(*args, **kwargs)
except NotImplementedError as e:
print(f"Caught NotImplementedError: {e}")
if "bbox" in str(e):
kwargs.pop("bboxes", None)
kwargs.pop("category_id", None)
if "keypoint" in str(e):
kwargs.pop("keypoints", None)
if "mask" in str(e):
kwargs.pop("mask", None)
return wrapper
def draw_boxes(image, boxes, color=(255, 0, 0), thickness=2) -> np.ndarray:
"""Draw boxes with PIL."""
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for box in boxes:
x_min, y_min, x_max, y_max = box
draw.rectangle([x_min, y_min, x_max, y_max], outline=color, width=thickness)
return np.array(pil_image)
def draw_keypoints(image, keypoints, color=(255, 0, 0), radius=2):
"""Draw keypoints with PIL."""
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for keypoint in keypoints:
x, y = keypoint
draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color)
return np.array(pil_image)
def get_rgb_mask(masks):
"""Get the RGB mask from the binary mask."""
rgb_mask = np.zeros((DEFAULT_IMAGE_HEIGHT, DEFAULT_IMAGE_WIDTH, 3), dtype=np.uint8)
for data in masks:
mask = data["mask"]
rgb_mask[mask > 0] = np.array(data["color"])
return rgb_mask
def draw_mask(image, mask):
"""Draw the mask on the image."""
image_with_mask = cv2.addWeighted(image, 0.5, mask, 0.5, 0)
return image_with_mask
def draw_not_implemented_image(image):
"""Draw the image with a text. In the middle."""
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
draw.text((DEFAULT_IMAGE_WIDTH // 2, DEFAULT_IMAGE_HEIGHT // 2), "Not implemented", fill=(255, 0, 0))
return np.array(pil_image)
def get_formatted_signature(function_or_class, indentation=4):
signature = inspect.signature(function_or_class)
type_hints = get_type_hints(function_or_class)
args = []
for param in signature.parameters.values():
if param.default == inspect.Parameter.empty:
str_param = f"{param.name}=,"
else:
if isinstance(param.default, str):
str_param = f'{param.name}="{param.default}",'
else:
str_param = f"{param.name}={param.default},"
annotation = type_hints.get(param.name, param.annotation)
if isinstance(param.annotation, type):
str_param += f" # {param.annotation.__name__}"
else:
str_annotation = str(annotation).replace("typing.", "")
str_param += f" # {str_annotation}"
str_param = "\n" + " " * indentation + str_param
args.append(str_param)
result = "(" + "".join(args) + "\n" + " " * (indentation - 4) + ")"
return result
def update(image, code):
try:
augmentation = eval(code)
compose = A.Compose(
[augmentation],
bbox_params=A.BboxParams(format="pascal_voc", label_fields=["category_id"]),
keypoint_params=A.KeypointParams(format="xy"),
additional_targets={"not_implemented_image": "image"}
)
compose = run_with_retry(compose) # to prevent NotImplementedError
keypoints = DEFAULT_KEYPOINTS
bboxes = DEFAULT_BOXES
mask = get_rgb_mask(BASE64_DEFAULT_MASKS)
augmented = compose(
image=image,
not_implemented_image=draw_not_implemented_image(image),
mask=mask,
keypoints=keypoints,
bboxes=bboxes,
category_id=range(len(bboxes)),
)
image = augmented["image"]
not_implemented_image = augmented["not_implemented_image"]
mask = augmented.get("mask", None)
bboxes = augmented.get("bboxes", None)
keypoints = augmented.get("keypoints", None)
image_with_mask = draw_mask(image.copy(), mask) if mask is not None else not_implemented_image
image_with_bboxes = draw_boxes(image.copy(), bboxes) if bboxes is not None else not_implemented_image
image_with_keypoints = draw_keypoints(image.copy(), keypoints) if keypoints is not None else not_implemented_image
return [
(image_with_mask, "Mask"),
(image_with_bboxes, "Boxes"),
(image_with_keypoints, "Keypoints"),
]
except Exception as e:
raise e
def update_image_info(image):
h, w = image.shape[:2]
dtype = image.dtype
max_, min_ = image.max(), image.min()
return f"Image info:\n\t - shape: {h}x{w}\n\t - dtype: {dtype}\n\t - min/max: {min_}/{max_}"
def get_formatted_transform(transform_number):
transform_name = transforms_keys[transform_number]
transform = transforms_map[transform_name]
return f"A.{transform.__name__}{get_formatted_signature(transform)}"
def get_formatted_transform_docs(transform_number):
transform_name = transforms_keys[transform_number]
transform = transforms_map[transform_name]
return transform.__doc__.strip("\n")
with gr.Blocks() as demo:
with gr.Row():
with gr.Group():
select = gr.Dropdown(
label="Select a transformation",
choices=transforms_keys,
value=DEFAULT_TRANSFORM,
type="index",
interactive=True,
)
with gr.Accordion("Documentation", open=False):
docs = gr.TextArea(
get_formatted_transform_docs(
transforms_keys.index(DEFAULT_TRANSFORM)
),
show_label=False,
interactive=False,
)
code = gr.Code(
language="python",
value=get_formatted_transform(transforms_keys.index(DEFAULT_TRANSFORM)),
interactive=True,
lines=5,
)
#info = gr.Text(interactive=False, label="Image info", value="")
image = gr.Image(
value=DEFAULT_IMAGE,
type="numpy",
height=500,
width=300,
sources=[],
)
with gr.Row():
augmented_image = gr.Gallery(rows=1, columns=3)
# augmented_image = gr.Image(type="numpy", height=300, width=300)
#image.upload(fn=update_image_info, inputs=[image], outputs=[info])
select.change(fn=get_formatted_transform, inputs=[select], outputs=[code])
button = gr.Button("Run")
button.click(fn=update, inputs=[image, code], outputs=[augmented_image])
if __name__ == "__main__":
demo.launch()
|