File size: 5,161 Bytes
26827a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import random
import string

import numpy as np
import torch
from torch.utils.data import Dataset

class TokenClfDataset(Dataset):     # Hàm tạo custom dataset
    def __init__(
        self,
        texts,
        max_len=512,    # 256 (phobert)  512 (xlm-roberta)
        tokenizer=None,
        model_name="m_bert",
    ):
        self.len = len(texts)
        self.texts = texts
        self.tokenizer = tokenizer
        self.max_len = max_len
        self.model_name = model_name
        if "m_bert" in model_name:
            self.cls_token = "[CLS]"
            self.sep_token = "[SEP]"
            self.unk_token = "[UNK]"
            self.pad_token = "[PAD]"
            self.mask_token = "[MASK]"
        elif "xlm-roberta-large" in model_name:
            self.bos_token = "<s>"
            self.eos_token = "</s>"
            self.sep_token = "</s>"
            self.cls_token = "<s>"
            self.unk_token = "<unk>"
            self.pad_token = "<pad>"
            self.mask_token = "<mask>"
        elif "xlm-roberta" in model_name:
            self.bos_token = "<s>"
            self.eos_token = "</s>"
            self.sep_token = "</s>"
            self.cls_token = "<s>"
            self.unk_token = "<unk>"
            self.pad_token = "<pad>"
            self.mask_token = "<mask>"
        elif "phobert" in model_name:
            self.bos_token = "<s>"
            self.eos_token = "</s>"
            self.sep_token = "</s>"
            self.cls_token = "<s>"
            self.unk_token = "<unk>"
            self.pad_token = "<pad>"
            self.mask_token = "<mask>"
        #else: raise NotImplementedError()

    def __getitem__(self, index):
        text = self.texts[index]
        tokenized_text = self.tokenizer.tokenize(text)

        tokenized_text = (
            [self.cls_token] + tokenized_text + [self.sep_token]
        )  # add special tokens

        if len(tokenized_text) > self.max_len:
            tokenized_text = tokenized_text[: self.max_len]
        else:
            tokenized_text = tokenized_text + [
                self.pad_token for _ in range(self.max_len - len(tokenized_text))
            ]

        attn_mask = [1 if tok != self.pad_token else 0 for tok in tokenized_text]

        ids = self.tokenizer.convert_tokens_to_ids(tokenized_text)

        return {
            "ids": torch.tensor(ids, dtype=torch.long),
            "mask": torch.tensor(attn_mask, dtype=torch.long),
        }

    def __len__(self):
        return self.len


def seed_everything(seed: int):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def is_begin_of_new_word(token, model_name, force_tokens, token_map):   # Thêm kí tự bắt đầu vào từ mới
    if "m_bert" in model_name:
        if token.lstrip("##") in force_tokens or token.lstrip("##") in set(
            token_map.values()
        ):
            return True
        return not token.startswith("##")
    elif "xlm-roberta-large" in model_name:
        #print("xlm-roberta-large")
        if (
            token in string.punctuation
            or token in force_tokens
            or token in set(token_map.values())
        ):
            return True
        return token.startswith("▁")    # check xem token có bắt đầu bằng kí tự "_" hay ko  -> Trả về False
    elif "xlm-roberta" in model_name:
        #print("xlm-roberta-large")
        if (
            token in string.punctuation
            or token in force_tokens
            or token in set(token_map.values())
        ):
            return True
        return token.startswith("▁")  
    elif "phobert" in model_name:
        #print("minh phobert")
        #print("xlm-roberta-large")
        if (
            token in string.punctuation     # điều kiện hoặc
            or token in force_tokens
            or token in set(token_map.values())
        ):
            return True
        #return token.startswith("▁") # 
        #return not token.startswith("▁") 
        #return not token.startswith("@@")
        return not token.endswith("@@")
        #return token.startswith("@@")
    #else: raise NotImplementedError()

def replace_added_token(token, token_map):
    for ori_token, new_token in token_map.items():
        token = token.replace(new_token, ori_token)
    return token

def get_pure_token(token, model_name):  # hàm get pure token trả về token gốc (sau khi loại bỏ kí tự đặc biệt subword)
    if "m_bert" in model_name:
        return token.lstrip("##")
    elif "xlm-roberta-large" in model_name:
        return token.lstrip("▁")        # bỏ kí tự "_" ở phía bên trái của từ
    elif "xlm-roberta" in model_name:
        return token.lstrip("▁")        # bỏ kí tự "_" ở phía bên trái của từ
    elif "phobert" in model_name:
        #return token.lstrip("▁")
        #return token.lstrip("@@")
        return token.rstrip("@@")
    # else: raise NotImplementedError()