Spaces:
Running
Running
from toolbox import update_ui | |
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down | |
import re | |
import unicodedata | |
fast_debug = False | |
def is_paragraph_break(match): | |
""" | |
根据给定的匹配结果来判断换行符是否表示段落分隔。 | |
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。 | |
也可以根据之前的内容长度来判断段落是否已经足够长。 | |
""" | |
prev_char, next_char = match.groups() | |
# 句子结束标志 | |
sentence_endings = ".!?" | |
# 设定一个最小段落长度阈值 | |
min_paragraph_length = 140 | |
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length: | |
return "\n\n" | |
else: | |
return " " | |
def normalize_text(text): | |
""" | |
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。 | |
例如,将连字 "fi" 转换为 "f" 和 "i"。 | |
""" | |
# 对文本进行归一化处理,分解连字 | |
normalized_text = unicodedata.normalize("NFKD", text) | |
# 替换其他特殊字符 | |
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text) | |
return cleaned_text | |
def clean_text(raw_text): | |
""" | |
对从 PDF 提取出的原始文本进行清洗和格式化处理。 | |
1. 对原始文本进行归一化处理。 | |
2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。 | |
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。 | |
""" | |
# 对文本进行归一化处理 | |
normalized_text = normalize_text(raw_text) | |
# 替换跨行的连词 | |
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text) | |
# 根据前后相邻字符的特点,找到原文本中的换行符 | |
newlines = re.compile(r'(\S)\n(\S)') | |
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符 | |
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text) | |
return final_text.strip() | |
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt): | |
import time, glob, os, fitz | |
print('begin analysis on:', file_name) | |
with fitz.open(file_name) as doc: | |
file_content = "" | |
for page in doc: | |
file_content += page.get_text() | |
file_content = clean_text(file_content) | |
# print(file_content) | |
split_number = 10000 | |
split_group = (len(file_content)//split_number)+1 | |
for i in range(0,split_group): | |
if i==0: | |
prefix = "接下来请你仔细分析下面的论文,学习里面的内容(专业术语、公式、数学概念).并且注意:由于论文内容较多,将分批次发送,每次发送完之后,你只需要回答“接受完成”" | |
i_say = prefix + f'文件名是{file_name},文章内容第{i+1}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```' | |
i_say_show_user = f'文件名是:\n{file_name},\n由于论文内容过长,将分批请求(共{len(file_content)}字符,将分为{split_group}批,每批{split_number}字符)。\n当前发送{i+1}/{split_group}部分' | |
elif i==split_group-1: | |
i_say = f'你只需要回答“所有论文接受完成,请进行下一步”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:]}```' | |
i_say_show_user = f'当前发送{i+1}/{split_group}部分' | |
else: | |
i_say = f'你只需要回答“接受完成”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```' | |
i_say_show_user = f'当前发送{i+1}/{split_group}部分' | |
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response.")) | |
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, llm_kwargs, plugin_kwargs, history=[]) # 带超时倒计时 | |
while "完成" not in gpt_say: | |
i_say = f'你只需要回答“接受完成”。文章内容第{i+1}/{split_group}部分是 ```{file_content[i*split_number:(i+1)*split_number]}```' | |
i_say_show_user = f'出现error,重新发送{i+1}/{split_group}部分' | |
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, llm_kwargs, plugin_kwargs, history=[]) # 带超时倒计时 | |
time.sleep(1) | |
chatbot[-1] = (i_say_show_user, gpt_say) | |
history.append(i_say_show_user); history.append(gpt_say) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
time.sleep(2) | |
i_say = f'接下来,请你扮演一名专业的学术教授,利用你的所有知识并且结合这篇文章,回答我的问题。(请牢记:1.直到我说“退出”,你才能结束任务;2.所有问题需要紧密围绕文章内容;3.如果有公式,请使用tex渲染)' | |
chatbot.append((i_say, "[Local Message] waiting gpt response.")) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
# ** gpt request ** | |
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, llm_kwargs, plugin_kwargs, history=history) # 带超时倒计时 | |
chatbot[-1] = (i_say, gpt_say) | |
history.append(i_say); history.append(gpt_say) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
def 理解PDF文档内容(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
import glob, os | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe。"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
import tkinter as tk | |
from tkinter import filedialog | |
root = tk.Tk() | |
root.withdraw() | |
txt = filedialog.askopenfilename() | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import fitz | |
except: | |
report_execption(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 清空历史,以免输入溢出 | |
history = [] | |
# 开始正式执行任务 | |
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt) | |
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
import glob, os | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe。"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import fitz | |
except: | |
report_execption(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 清空历史,以免输入溢出 | |
history = [] | |
# 检测输入参数,如没有给定输入参数,直接退出 | |
if os.path.exists(txt): | |
project_folder = txt | |
else: | |
if txt == "": | |
txt = '空空如也的输入栏' | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 搜索需要处理的文件清单 | |
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] | |
# 如果没找到任何文件 | |
if len(file_manifest) == 0: | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
txt = file_manifest[0] | |
# 开始正式执行任务 | |
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt) | |