File size: 6,899 Bytes
91609d6
 
 
34b767d
91609d6
 
6aba339
91609d6
b0409b9
 
6aba339
 
 
 
 
 
 
b0409b9
 
 
6aba339
34b767d
6aba339
b0409b9
 
 
 
 
 
 
 
 
6aba339
 
91609d6
6aba339
b3e5cdb
b0409b9
 
8a5e8bc
 
 
 
 
 
 
 
 
6aba339
 
 
8a5e8bc
6aba339
8a5e8bc
6aba339
8a5e8bc
6aba339
 
 
 
 
b0409b9
 
 
 
 
6aba339
b3e5cdb
6aba339
b3e5cdb
6aba339
 
 
b3e5cdb
 
 
 
6aba339
84fc864
 
b3e5cdb
6aba339
91609d6
6aba339
b3e5cdb
34b767d
6aba339
 
 
 
 
 
 
34b767d
6aba339
 
 
 
7778502
91609d6
6aba339
91609d6
 
6aba339
 
 
7778502
b0409b9
 
 
 
91609d6
 
 
ce1fc3a
91609d6
 
 
 
 
6aba339
7778502
91609d6
 
 
 
 
 
6aba339
91609d6
 
6aba339
91609d6
 
 
6aba339
 
 
 
b0409b9
91609d6
b0409b9
 
 
91609d6
 
8a5e8bc
 
91609d6
b3e5cdb
91609d6
ce1fc3a
91609d6
 
 
b3e5cdb
34b767d
6aba339
91609d6
ce1fc3a
 
b3e5cdb
34b767d
 
ce1fc3a
b3e5cdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe

load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"

#################################################################################
class GetGLMHandle(Process):
    def __init__(self):
        super().__init__(daemon=True)
        self.parent, self.child = Pipe()
        self.chatglm_model = None
        self.chatglm_tokenizer = None
        self.info = ""
        self.success = True
        self.check_dependency()
        self.start()
        self.threadLock = threading.Lock()
        
    def check_dependency(self):
        try:
            import sentencepiece
            self.info = "依赖检测通过"
            self.success = True
        except:
            self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
            self.success = False

    def ready(self):
        return self.chatglm_model is not None

    def run(self):
        # 子进程执行
        # 第一次运行,加载参数
        retry = 0
        LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')

        if LOCAL_MODEL_QUANT == "INT4":         # INT4
            _model_name_ = "THUDM/chatglm2-6b-int4"
        elif LOCAL_MODEL_QUANT == "INT8":       # INT8
            _model_name_ = "THUDM/chatglm2-6b-int8"
        else:
            _model_name_ = "THUDM/chatglm2-6b"  # FP16

        while True:
            try:
                if self.chatglm_model is None:
                    self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
                    if device=='cpu':
                        self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
                    else:
                        self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
                    self.chatglm_model = self.chatglm_model.eval()
                    break
                else:
                    break
            except:
                retry += 1
                if retry > 3: 
                    self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。')
                    raise RuntimeError("不能正常加载ChatGLM的参数!")

        while True:
            # 进入任务等待状态
            kwargs = self.child.recv()
            # 收到消息,开始请求
            try:
                for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
                    self.child.send(response)
                    # # 中途接收可能的终止指令(如果有的话)
                    # if self.child.poll(): 
                    #     command = self.child.recv()
                    #     if command == '[Terminate]': break
            except:
                from toolbox import trimmed_format_exc
                self.child.send('[Local Message] Call ChatGLM fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
            # 请求处理结束,开始下一个循环
            self.child.send('[Finish]')

    def stream_chat(self, **kwargs):
        # 主进程执行
        self.threadLock.acquire()
        self.parent.send(kwargs)
        while True:
            res = self.parent.recv()
            if res != '[Finish]':
                yield res
            else:
                break
        self.threadLock.release()
    
global glm_handle
glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
    """
        多线程方法
        函数的说明请见 request_llm/bridge_all.py
    """
    global glm_handle
    if glm_handle is None:
        glm_handle = GetGLMHandle()
        if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
        if not glm_handle.success: 
            error = glm_handle.info
            glm_handle = None
            raise RuntimeError(error)

    # chatglm 没有 sys_prompt 接口,因此把prompt加入 history
    history_feedin = []
    history_feedin.append(["What can I do?", sys_prompt])
    for i in range(len(history)//2):
        history_feedin.append([history[2*i], history[2*i+1]] )

    watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
    response = ""
    for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
        if len(observe_window) >= 1:  observe_window[0] = response
        if len(observe_window) >= 2:  
            if (time.time()-observe_window[1]) > watch_dog_patience:
                raise RuntimeError("程序终止。")
    return response



def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
    """
        单线程方法
        函数的说明请见 request_llm/bridge_all.py
    """
    chatbot.append((inputs, ""))

    global glm_handle
    if glm_handle is None:
        glm_handle = GetGLMHandle()
        chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
        yield from update_ui(chatbot=chatbot, history=[])
        if not glm_handle.success: 
            glm_handle = None
            return

    if additional_fn is not None:
        from core_functional import handle_core_functionality
        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)

    # 处理历史信息
    history_feedin = []
    history_feedin.append(["What can I do?", system_prompt] )
    for i in range(len(history)//2):
        history_feedin.append([history[2*i], history[2*i+1]] )

    # 开始接收chatglm的回复
    response = "[Local Message]: 等待ChatGLM响应中 ..."
    for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
        chatbot[-1] = (inputs, response)
        yield from update_ui(chatbot=chatbot, history=history)

    # 总结输出
    if response == "[Local Message]: 等待ChatGLM响应中 ...":
        response = "[Local Message]: ChatGLM响应异常 ..."
    history.extend([inputs, response])
    yield from update_ui(chatbot=chatbot, history=history)