#!/usr/bin/python3 # -*- coding: utf-8 -*- """ https://github.com/yxlu-0102/MP-SENet/blob/main/inference.py """ import argparse import logging import os from pathlib import Path import sys import uuid pwd = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(pwd, "../../")) import librosa import numpy as np import pandas as pd from scipy.io import wavfile import torch import torch.nn as nn import torchaudio from tqdm import tqdm from toolbox.torchaudio.models.mpnet.configuration_mpnet import MPNetConfig from toolbox.torchaudio.models.mpnet.modeling_mpnet import MPNetPretrainedModel from toolbox.torchaudio.models.mpnet.utils import mag_pha_stft, mag_pha_istft def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--valid_dataset", default="valid.xlsx", type=str) parser.add_argument("--model_dir", default="serialization_dir/best", type=str) parser.add_argument("--evaluation_audio_dir", default="evaluation_audio_dir", type=str) parser.add_argument("--limit", default=10, type=int) args = parser.parse_args() return args def logging_config(): fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s" logging.basicConfig(format=fmt, datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) stream_handler = logging.StreamHandler() stream_handler.setLevel(logging.INFO) stream_handler.setFormatter(logging.Formatter(fmt)) logger = logging.getLogger(__name__) return logger def mix_speech_and_noise(speech: np.ndarray, noise: np.ndarray, snr_db: float): l1 = len(speech) l2 = len(noise) l = min(l1, l2) speech = speech[:l] noise = noise[:l] # np.float32, value between (-1, 1). speech_power = np.mean(np.square(speech)) noise_power = speech_power / (10 ** (snr_db / 10)) noise_adjusted = np.sqrt(noise_power) * noise / np.sqrt(np.mean(noise ** 2)) noisy_signal = speech + noise_adjusted return noisy_signal def save_audios(noise_audio: torch.Tensor, clean_audio: torch.Tensor, noisy_audio: torch.Tensor, enhanced_audio: torch.Tensor, output_dir: str, sample_rate: int = 8000, ): basename = uuid.uuid4().__str__() output_dir = Path(output_dir) / basename output_dir.mkdir(parents=True, exist_ok=True) filename = output_dir / "noise_audio.wav" torchaudio.save(filename, noise_audio.detach().cpu(), sample_rate, bits_per_sample=16) filename = output_dir / "clean_audio.wav" torchaudio.save(filename, clean_audio.detach().cpu(), sample_rate, bits_per_sample=16) filename = output_dir / "noisy_audio.wav" torchaudio.save(filename, noisy_audio.detach().cpu(), sample_rate, bits_per_sample=16) filename = output_dir / "enhanced_audio.wav" torchaudio.save(filename, enhanced_audio.detach().cpu(), sample_rate, bits_per_sample=16) return output_dir.as_posix() def main(): args = get_args() logger = logging_config() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() logger.info("GPU available count: {}; device: {}".format(n_gpu, device)) logger.info("prepare model") config = MPNetConfig.from_pretrained( pretrained_model_name_or_path=args.model_dir, ) generator = MPNetPretrainedModel.from_pretrained( pretrained_model_name_or_path=args.model_dir, ) generator.to(device) generator.eval() logger.info("read excel") df = pd.read_excel(args.valid_dataset) progress_bar = tqdm(total=len(df), desc="Evaluation") for idx, row in df.iterrows(): noise_filename = row["noise_filename"] noise_offset = row["noise_offset"] noise_duration = row["noise_duration"] speech_filename = row["speech_filename"] speech_offset = row["speech_offset"] speech_duration = row["speech_duration"] snr_db = row["snr_db"] noise_audio, _ = librosa.load( noise_filename, sr=8000, offset=noise_offset, duration=noise_duration, ) clean_audio, _ = librosa.load( speech_filename, sr=8000, offset=speech_offset, duration=speech_duration, ) noisy_audio: np.ndarray = mix_speech_and_noise( speech=clean_audio, noise=noise_audio, snr_db=snr_db, ) noise_audio = torch.tensor(noise_audio, dtype=torch.float32) clean_audio = torch.tensor(clean_audio, dtype=torch.float32) noisy_audio: torch.Tensor = torch.tensor(noisy_audio, dtype=torch.float32) noise_audio = noise_audio.unsqueeze(dim=0) clean_audio = clean_audio.unsqueeze(dim=0) noisy_audio: torch.Tensor = noisy_audio.unsqueeze(dim=0) # inference clean_audio = clean_audio.to(device) noisy_audio = noisy_audio.to(device) with torch.no_grad(): noisy_mag, noisy_pha, noisy_com = mag_pha_stft( noisy_audio, config.n_fft, config.hop_size, config.win_size, config.compress_factor ) mag_g, pha_g, com_g = generator.forward(noisy_mag, noisy_pha) audio_g = mag_pha_istft( mag_g, pha_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor ) enhanced_audio = audio_g.detach() save_audios( noise_audio, clean_audio, noisy_audio, enhanced_audio, args.evaluation_audio_dir ) progress_bar.update(1) if idx > args.limit: break return if __name__ == '__main__': main()