Spaces:
Running
Running
update
Browse files- examples/clean_unet_aishell/step_2_train_model.py +4 -4
- examples/nx_clean_unet/run.sh +166 -0
- examples/nx_clean_unet/step_1_prepare_data.py +201 -0
- examples/nx_clean_unet/step_2_train_model.py +438 -0
- examples/nx_clean_unet/step_3_evaluation.py +6 -0
- examples/nx_clean_unet/yaml/config.yaml +23 -0
- toolbox/torchaudio/models/clean_unet/configuration_clean_unet.py +2 -2
- toolbox/torchaudio/models/clean_unet/inference_clean_unet.py +104 -0
- toolbox/torchaudio/models/clean_unet/modeling_clean_unet.py +5 -5
- toolbox/torchaudio/models/nx_clean_unet/__init__.py +6 -0
- toolbox/torchaudio/models/nx_clean_unet/configuration_nx_clean_unet.py +56 -0
- toolbox/torchaudio/models/nx_clean_unet/discriminator.py +126 -0
- toolbox/torchaudio/models/nx_clean_unet/loss.py +22 -0
- toolbox/torchaudio/models/nx_clean_unet/metrics.py +80 -0
- toolbox/torchaudio/models/nx_clean_unet/modeling_nx_clean_unet.py +326 -0
- toolbox/torchaudio/models/nx_clean_unet/transformer/__init__.py +6 -0
- toolbox/torchaudio/models/nx_clean_unet/transformer/mask.py +66 -0
- toolbox/torchaudio/models/nx_clean_unet/transformer/transformer.py +577 -0
- toolbox/torchaudio/models/nx_clean_unet/utils.py +45 -0
- toolbox/torchaudio/models/nx_clean_unet/yaml/config.yaml +23 -0
examples/clean_unet_aishell/step_2_train_model.py
CHANGED
@@ -28,7 +28,7 @@ from torch.utils.data.dataloader import DataLoader
|
|
28 |
from tqdm import tqdm
|
29 |
|
30 |
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
31 |
-
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import
|
32 |
from toolbox.torchaudio.models.clean_unet.modeling_clean_unet import CleanUNetPretrainedModel
|
33 |
from toolbox.torchaudio.models.clean_unet.training import LinearWarmupCosineDecay
|
34 |
from toolbox.torchaudio.models.clean_unet.loss import MultiResolutionSTFTLoss
|
@@ -112,7 +112,7 @@ collate_fn = CollateFunction()
|
|
112 |
def main():
|
113 |
args = get_args()
|
114 |
|
115 |
-
config =
|
116 |
pretrained_model_name_or_path=args.config_file,
|
117 |
)
|
118 |
|
@@ -186,7 +186,7 @@ def main():
|
|
186 |
model_pt = serialization_dir / f"epoch-{last_epoch}/model.pt"
|
187 |
optimizer_pth = serialization_dir / f"epoch-{last_epoch}/optimizer.pth"
|
188 |
|
189 |
-
logger.info(f"load state dict for
|
190 |
with open(model_pt.as_posix(), "rb") as f:
|
191 |
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
192 |
model.load_state_dict(state_dict, strict=True)
|
@@ -317,7 +317,7 @@ def main():
|
|
317 |
enhanced_audios = model.forward(noisy_audios)
|
318 |
enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
|
319 |
|
320 |
-
ae_loss = ae_loss_fn(enhanced_audios,
|
321 |
sc_loss, mag_loss = mr_stft_loss_fn(enhanced_audios, clean_audios)
|
322 |
|
323 |
loss = ae_loss + sc_loss + mag_loss
|
|
|
28 |
from tqdm import tqdm
|
29 |
|
30 |
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
31 |
+
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import CleanUNetConfig
|
32 |
from toolbox.torchaudio.models.clean_unet.modeling_clean_unet import CleanUNetPretrainedModel
|
33 |
from toolbox.torchaudio.models.clean_unet.training import LinearWarmupCosineDecay
|
34 |
from toolbox.torchaudio.models.clean_unet.loss import MultiResolutionSTFTLoss
|
|
|
112 |
def main():
|
113 |
args = get_args()
|
114 |
|
115 |
+
config = CleanUNetConfig.from_pretrained(
|
116 |
pretrained_model_name_or_path=args.config_file,
|
117 |
)
|
118 |
|
|
|
186 |
model_pt = serialization_dir / f"epoch-{last_epoch}/model.pt"
|
187 |
optimizer_pth = serialization_dir / f"epoch-{last_epoch}/optimizer.pth"
|
188 |
|
189 |
+
logger.info(f"load state dict for model.")
|
190 |
with open(model_pt.as_posix(), "rb") as f:
|
191 |
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
192 |
model.load_state_dict(state_dict, strict=True)
|
|
|
317 |
enhanced_audios = model.forward(noisy_audios)
|
318 |
enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
|
319 |
|
320 |
+
ae_loss = ae_loss_fn(enhanced_audios, clean_audios)
|
321 |
sc_loss, mag_loss = mr_stft_loss_fn(enhanced_audios, clean_audios)
|
322 |
|
323 |
loss = ae_loss + sc_loss + mag_loss
|
examples/nx_clean_unet/run.sh
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
: <<'END'
|
4 |
+
|
5 |
+
|
6 |
+
sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name file_dir --final_model_name mpnet-aishell-20250224 \
|
7 |
+
--noise_dir "E:/Users/tianx/HuggingDatasets/nx_noise/data/noise" \
|
8 |
+
--speech_dir "E:/programmer/asr_datasets/aishell/data_aishell/wav/train"
|
9 |
+
|
10 |
+
|
11 |
+
sh run.sh --stage 3 --stop_stage 3 --system_version centos --file_folder_name file_dir --final_model_name mpnet-aishell-20250224 \
|
12 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
13 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
14 |
+
|
15 |
+
sh run.sh --stage 5 --stop_stage 5 --system_version centos --file_folder_name file_dir --final_model_name mpnet-aishell-20250224 \
|
16 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
17 |
+
--speech_dir "/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train"
|
18 |
+
|
19 |
+
|
20 |
+
sh run.sh --stage 1 --stop_stage 2 --system_version centos --file_folder_name file_dir --final_model_name mpnet-nx-speech-20250224 \
|
21 |
+
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise" \
|
22 |
+
--speech_dir "/data/tianxing/HuggingDatasets/nx_noise/data/speech" \
|
23 |
+
--max_epochs 1
|
24 |
+
|
25 |
+
|
26 |
+
END
|
27 |
+
|
28 |
+
|
29 |
+
# params
|
30 |
+
system_version="windows";
|
31 |
+
verbose=true;
|
32 |
+
stage=0 # start from 0 if you need to start from data preparation
|
33 |
+
stop_stage=9
|
34 |
+
|
35 |
+
work_dir="$(pwd)"
|
36 |
+
file_folder_name=file_folder_name
|
37 |
+
final_model_name=final_model_name
|
38 |
+
config_file="yaml/config.yaml"
|
39 |
+
limit=10
|
40 |
+
|
41 |
+
noise_dir=/data/tianxing/HuggingDatasets/nx_noise/data/noise
|
42 |
+
speech_dir=/data/tianxing/HuggingDatasets/aishell/data_aishell/wav/train
|
43 |
+
|
44 |
+
nohup_name=nohup.out
|
45 |
+
|
46 |
+
# model params
|
47 |
+
batch_size=64
|
48 |
+
max_epochs=200
|
49 |
+
save_top_k=10
|
50 |
+
patience=5
|
51 |
+
|
52 |
+
|
53 |
+
# parse options
|
54 |
+
while true; do
|
55 |
+
[ -z "${1:-}" ] && break; # break if there are no arguments
|
56 |
+
case "$1" in
|
57 |
+
--*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
|
58 |
+
eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
|
59 |
+
old_value="(eval echo \\$$name)";
|
60 |
+
if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
|
61 |
+
was_bool=true;
|
62 |
+
else
|
63 |
+
was_bool=false;
|
64 |
+
fi
|
65 |
+
|
66 |
+
# Set the variable to the right value-- the escaped quotes make it work if
|
67 |
+
# the option had spaces, like --cmd "queue.pl -sync y"
|
68 |
+
eval "${name}=\"$2\"";
|
69 |
+
|
70 |
+
# Check that Boolean-valued arguments are really Boolean.
|
71 |
+
if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
|
72 |
+
echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
|
73 |
+
exit 1;
|
74 |
+
fi
|
75 |
+
shift 2;
|
76 |
+
;;
|
77 |
+
|
78 |
+
*) break;
|
79 |
+
esac
|
80 |
+
done
|
81 |
+
|
82 |
+
file_dir="${work_dir}/${file_folder_name}"
|
83 |
+
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
|
84 |
+
evaluation_audio_dir="${file_dir}/evaluation_audio"
|
85 |
+
|
86 |
+
dataset="${file_dir}/dataset.xlsx"
|
87 |
+
train_dataset="${file_dir}/train.xlsx"
|
88 |
+
valid_dataset="${file_dir}/valid.xlsx"
|
89 |
+
|
90 |
+
$verbose && echo "system_version: ${system_version}"
|
91 |
+
$verbose && echo "file_folder_name: ${file_folder_name}"
|
92 |
+
|
93 |
+
if [ $system_version == "windows" ]; then
|
94 |
+
alias python3='D:/Users/tianx/PycharmProjects/virtualenv/nx_denoise/Scripts/python.exe'
|
95 |
+
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
|
96 |
+
#source /data/local/bin/nx_denoise/bin/activate
|
97 |
+
alias python3='/data/local/bin/nx_denoise/bin/python3'
|
98 |
+
fi
|
99 |
+
|
100 |
+
|
101 |
+
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
102 |
+
$verbose && echo "stage 1: prepare data"
|
103 |
+
cd "${work_dir}" || exit 1
|
104 |
+
python3 step_1_prepare_data.py \
|
105 |
+
--file_dir "${file_dir}" \
|
106 |
+
--noise_dir "${noise_dir}" \
|
107 |
+
--speech_dir "${speech_dir}" \
|
108 |
+
--train_dataset "${train_dataset}" \
|
109 |
+
--valid_dataset "${valid_dataset}" \
|
110 |
+
|
111 |
+
fi
|
112 |
+
|
113 |
+
|
114 |
+
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
115 |
+
$verbose && echo "stage 2: train model"
|
116 |
+
cd "${work_dir}" || exit 1
|
117 |
+
python3 step_2_train_model.py \
|
118 |
+
--train_dataset "${train_dataset}" \
|
119 |
+
--valid_dataset "${valid_dataset}" \
|
120 |
+
--serialization_dir "${file_dir}" \
|
121 |
+
--config_file "${config_file}" \
|
122 |
+
|
123 |
+
fi
|
124 |
+
|
125 |
+
|
126 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
127 |
+
$verbose && echo "stage 3: test model"
|
128 |
+
cd "${work_dir}" || exit 1
|
129 |
+
python3 step_3_evaluation.py \
|
130 |
+
--valid_dataset "${valid_dataset}" \
|
131 |
+
--model_dir "${file_dir}/best" \
|
132 |
+
--evaluation_audio_dir "${evaluation_audio_dir}" \
|
133 |
+
--limit "${limit}" \
|
134 |
+
|
135 |
+
fi
|
136 |
+
|
137 |
+
|
138 |
+
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
139 |
+
$verbose && echo "stage 4: collect files"
|
140 |
+
cd "${work_dir}" || exit 1
|
141 |
+
|
142 |
+
mkdir -p ${final_model_dir}
|
143 |
+
|
144 |
+
cp "${file_dir}/best"/* "${final_model_dir}"
|
145 |
+
cp -r "${file_dir}/evaluation_audio" "${final_model_dir}"
|
146 |
+
|
147 |
+
cd "${final_model_dir}/.." || exit 1;
|
148 |
+
|
149 |
+
if [ -e "${final_model_name}.zip" ]; then
|
150 |
+
rm -rf "${final_model_name}_backup.zip"
|
151 |
+
mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
|
152 |
+
fi
|
153 |
+
|
154 |
+
zip -r "${final_model_name}.zip" "${final_model_name}"
|
155 |
+
rm -rf "${final_model_name}"
|
156 |
+
|
157 |
+
fi
|
158 |
+
|
159 |
+
|
160 |
+
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
161 |
+
$verbose && echo "stage 5: clear file_dir"
|
162 |
+
cd "${work_dir}" || exit 1
|
163 |
+
|
164 |
+
rm -rf "${file_dir}";
|
165 |
+
|
166 |
+
fi
|
examples/nx_clean_unet/step_1_prepare_data.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import random
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from tqdm import tqdm
|
16 |
+
import librosa
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
def get_args():
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--file_dir", default="./", type=str)
|
24 |
+
|
25 |
+
parser.add_argument(
|
26 |
+
"--noise_dir",
|
27 |
+
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
28 |
+
type=str
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--speech_dir",
|
32 |
+
default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
|
33 |
+
type=str
|
34 |
+
)
|
35 |
+
|
36 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
37 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
38 |
+
|
39 |
+
parser.add_argument("--duration", default=2.0, type=float)
|
40 |
+
parser.add_argument("--min_snr_db", default=-10, type=float)
|
41 |
+
parser.add_argument("--max_snr_db", default=20, type=float)
|
42 |
+
|
43 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
44 |
+
|
45 |
+
parser.add_argument("--max_count", default=10000, type=int)
|
46 |
+
|
47 |
+
args = parser.parse_args()
|
48 |
+
return args
|
49 |
+
|
50 |
+
|
51 |
+
def filename_generator(data_dir: str):
|
52 |
+
data_dir = Path(data_dir)
|
53 |
+
for filename in data_dir.glob("**/*.wav"):
|
54 |
+
yield filename.as_posix()
|
55 |
+
|
56 |
+
|
57 |
+
def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000):
|
58 |
+
data_dir = Path(data_dir)
|
59 |
+
for filename in data_dir.glob("**/*.wav"):
|
60 |
+
signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
|
61 |
+
raw_duration = librosa.get_duration(y=signal, sr=sample_rate)
|
62 |
+
|
63 |
+
if raw_duration < duration:
|
64 |
+
# print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
|
65 |
+
continue
|
66 |
+
if signal.ndim != 1:
|
67 |
+
raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")
|
68 |
+
|
69 |
+
signal_length = len(signal)
|
70 |
+
win_size = int(duration * sample_rate)
|
71 |
+
for begin in range(0, signal_length - win_size, win_size):
|
72 |
+
row = {
|
73 |
+
"filename": filename.as_posix(),
|
74 |
+
"raw_duration": round(raw_duration, 4),
|
75 |
+
"offset": round(begin / sample_rate, 4),
|
76 |
+
"duration": round(duration, 4),
|
77 |
+
}
|
78 |
+
yield row
|
79 |
+
|
80 |
+
|
81 |
+
def get_dataset(args):
|
82 |
+
file_dir = Path(args.file_dir)
|
83 |
+
file_dir.mkdir(exist_ok=True)
|
84 |
+
|
85 |
+
noise_dir = Path(args.noise_dir)
|
86 |
+
speech_dir = Path(args.speech_dir)
|
87 |
+
|
88 |
+
noise_generator = target_second_signal_generator(
|
89 |
+
noise_dir.as_posix(),
|
90 |
+
duration=args.duration,
|
91 |
+
sample_rate=args.target_sample_rate
|
92 |
+
)
|
93 |
+
speech_generator = target_second_signal_generator(
|
94 |
+
speech_dir.as_posix(),
|
95 |
+
duration=args.duration,
|
96 |
+
sample_rate=args.target_sample_rate
|
97 |
+
)
|
98 |
+
|
99 |
+
dataset = list()
|
100 |
+
|
101 |
+
count = 0
|
102 |
+
process_bar = tqdm(desc="build dataset excel")
|
103 |
+
for noise, speech in zip(noise_generator, speech_generator):
|
104 |
+
if count >= args.max_count:
|
105 |
+
break
|
106 |
+
|
107 |
+
noise_filename = noise["filename"]
|
108 |
+
noise_raw_duration = noise["raw_duration"]
|
109 |
+
noise_offset = noise["offset"]
|
110 |
+
noise_duration = noise["duration"]
|
111 |
+
|
112 |
+
speech_filename = speech["filename"]
|
113 |
+
speech_raw_duration = speech["raw_duration"]
|
114 |
+
speech_offset = speech["offset"]
|
115 |
+
speech_duration = speech["duration"]
|
116 |
+
|
117 |
+
random1 = random.random()
|
118 |
+
random2 = random.random()
|
119 |
+
|
120 |
+
row = {
|
121 |
+
"noise_filename": noise_filename,
|
122 |
+
"noise_raw_duration": noise_raw_duration,
|
123 |
+
"noise_offset": noise_offset,
|
124 |
+
"noise_duration": noise_duration,
|
125 |
+
|
126 |
+
"speech_filename": speech_filename,
|
127 |
+
"speech_raw_duration": speech_raw_duration,
|
128 |
+
"speech_offset": speech_offset,
|
129 |
+
"speech_duration": speech_duration,
|
130 |
+
|
131 |
+
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
132 |
+
|
133 |
+
"random1": random1,
|
134 |
+
"random2": random2,
|
135 |
+
"flag": "TRAIN" if random2 < 0.8 else "TEST",
|
136 |
+
}
|
137 |
+
dataset.append(row)
|
138 |
+
count += 1
|
139 |
+
duration_seconds = count * args.duration
|
140 |
+
duration_hours = duration_seconds / 3600
|
141 |
+
|
142 |
+
process_bar.update(n=1)
|
143 |
+
process_bar.set_postfix({
|
144 |
+
# "duration_seconds": round(duration_seconds, 4),
|
145 |
+
"duration_hours": round(duration_hours, 4),
|
146 |
+
|
147 |
+
})
|
148 |
+
|
149 |
+
dataset = pd.DataFrame(dataset)
|
150 |
+
dataset = dataset.sort_values(by=["random1"], ascending=False)
|
151 |
+
dataset.to_excel(
|
152 |
+
file_dir / "dataset.xlsx",
|
153 |
+
index=False,
|
154 |
+
)
|
155 |
+
return
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
def split_dataset(args):
|
160 |
+
"""分割训练集, 测试集"""
|
161 |
+
file_dir = Path(args.file_dir)
|
162 |
+
file_dir.mkdir(exist_ok=True)
|
163 |
+
|
164 |
+
df = pd.read_excel(file_dir / "dataset.xlsx")
|
165 |
+
|
166 |
+
train = list()
|
167 |
+
test = list()
|
168 |
+
|
169 |
+
for i, row in df.iterrows():
|
170 |
+
flag = row["flag"]
|
171 |
+
if flag == "TRAIN":
|
172 |
+
train.append(row)
|
173 |
+
else:
|
174 |
+
test.append(row)
|
175 |
+
|
176 |
+
train = pd.DataFrame(train)
|
177 |
+
train.to_excel(
|
178 |
+
args.train_dataset,
|
179 |
+
index=False,
|
180 |
+
# encoding="utf_8_sig"
|
181 |
+
)
|
182 |
+
test = pd.DataFrame(test)
|
183 |
+
test.to_excel(
|
184 |
+
args.valid_dataset,
|
185 |
+
index=False,
|
186 |
+
# encoding="utf_8_sig"
|
187 |
+
)
|
188 |
+
|
189 |
+
return
|
190 |
+
|
191 |
+
|
192 |
+
def main():
|
193 |
+
args = get_args()
|
194 |
+
|
195 |
+
get_dataset(args)
|
196 |
+
split_dataset(args)
|
197 |
+
return
|
198 |
+
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|
examples/nx_clean_unet/step_2_train_model.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/yxlu-0102/MP-SENet/blob/main/train.py
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
from logging.handlers import TimedRotatingFileHandler
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
from pathlib import Path
|
13 |
+
import random
|
14 |
+
import sys
|
15 |
+
import shutil
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
19 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from torch.nn import functional as F
|
24 |
+
from torch.utils.data.dataloader import DataLoader
|
25 |
+
from tqdm import tqdm
|
26 |
+
|
27 |
+
from toolbox.torch.utils.data.dataset.denoise_excel_dataset import DenoiseExcelDataset
|
28 |
+
from toolbox.torchaudio.models.nx_clean_unet.configuration_nx_clean_unet import NXCleanUNetConfig
|
29 |
+
from toolbox.torchaudio.models.nx_clean_unet.discriminator import MetricDiscriminator, MetricDiscriminatorPretrainedModel
|
30 |
+
from toolbox.torchaudio.models.nx_clean_unet.modeling_nx_clean_unet import NXCleanUNet, NXCleanUNetPretrainedModel
|
31 |
+
from toolbox.torchaudio.models.nx_clean_unet.metrics import run_batch_pesq, run_pesq_score
|
32 |
+
from toolbox.torchaudio.models.nx_clean_unet.utils import mag_pha_stft, mag_pha_istft
|
33 |
+
from toolbox.torchaudio.models.nx_clean_unet.loss import phase_losses
|
34 |
+
|
35 |
+
|
36 |
+
def get_args():
|
37 |
+
parser = argparse.ArgumentParser()
|
38 |
+
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
|
39 |
+
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
|
40 |
+
|
41 |
+
parser.add_argument("--max_epochs", default=100, type=int)
|
42 |
+
|
43 |
+
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
|
44 |
+
parser.add_argument("--patience", default=5, type=int)
|
45 |
+
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
46 |
+
|
47 |
+
parser.add_argument("--config_file", default="config.yaml", type=str)
|
48 |
+
|
49 |
+
args = parser.parse_args()
|
50 |
+
return args
|
51 |
+
|
52 |
+
|
53 |
+
def logging_config(file_dir: str):
|
54 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
55 |
+
|
56 |
+
logging.basicConfig(format=fmt,
|
57 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
58 |
+
level=logging.INFO)
|
59 |
+
file_handler = TimedRotatingFileHandler(
|
60 |
+
filename=os.path.join(file_dir, "main.log"),
|
61 |
+
encoding="utf-8",
|
62 |
+
when="D",
|
63 |
+
interval=1,
|
64 |
+
backupCount=7
|
65 |
+
)
|
66 |
+
file_handler.setLevel(logging.INFO)
|
67 |
+
file_handler.setFormatter(logging.Formatter(fmt))
|
68 |
+
logger = logging.getLogger(__name__)
|
69 |
+
logger.addHandler(file_handler)
|
70 |
+
|
71 |
+
return logger
|
72 |
+
|
73 |
+
|
74 |
+
class CollateFunction(object):
|
75 |
+
def __init__(self):
|
76 |
+
pass
|
77 |
+
|
78 |
+
def __call__(self, batch: List[dict]):
|
79 |
+
clean_audios = list()
|
80 |
+
noisy_audios = list()
|
81 |
+
|
82 |
+
for sample in batch:
|
83 |
+
# noise_wave: torch.Tensor = sample["noise_wave"]
|
84 |
+
clean_audio: torch.Tensor = sample["speech_wave"]
|
85 |
+
noisy_audio: torch.Tensor = sample["mix_wave"]
|
86 |
+
# snr_db: float = sample["snr_db"]
|
87 |
+
|
88 |
+
clean_audios.append(clean_audio)
|
89 |
+
noisy_audios.append(noisy_audio)
|
90 |
+
|
91 |
+
clean_audios = torch.stack(clean_audios)
|
92 |
+
noisy_audios = torch.stack(noisy_audios)
|
93 |
+
|
94 |
+
# assert
|
95 |
+
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
|
96 |
+
raise AssertionError("nan or inf in clean_audios")
|
97 |
+
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
|
98 |
+
raise AssertionError("nan or inf in noisy_audios")
|
99 |
+
return clean_audios, noisy_audios
|
100 |
+
|
101 |
+
|
102 |
+
collate_fn = CollateFunction()
|
103 |
+
|
104 |
+
|
105 |
+
def main():
|
106 |
+
args = get_args()
|
107 |
+
|
108 |
+
config = NXCleanUNetConfig.from_pretrained(
|
109 |
+
pretrained_model_name_or_path=args.config_file,
|
110 |
+
)
|
111 |
+
|
112 |
+
serialization_dir = Path(args.serialization_dir)
|
113 |
+
serialization_dir.mkdir(parents=True, exist_ok=True)
|
114 |
+
|
115 |
+
logger = logging_config(serialization_dir)
|
116 |
+
|
117 |
+
random.seed(config.seed)
|
118 |
+
np.random.seed(config.seed)
|
119 |
+
torch.manual_seed(config.seed)
|
120 |
+
logger.info(f"set seed: {config.seed}")
|
121 |
+
|
122 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
123 |
+
n_gpu = torch.cuda.device_count()
|
124 |
+
logger.info(f"GPU available count: {n_gpu}; device: {device}")
|
125 |
+
|
126 |
+
# datasets
|
127 |
+
train_dataset = DenoiseExcelDataset(
|
128 |
+
excel_file=args.train_dataset,
|
129 |
+
expected_sample_rate=8000,
|
130 |
+
max_wave_value=32768.0,
|
131 |
+
)
|
132 |
+
valid_dataset = DenoiseExcelDataset(
|
133 |
+
excel_file=args.valid_dataset,
|
134 |
+
expected_sample_rate=8000,
|
135 |
+
max_wave_value=32768.0,
|
136 |
+
)
|
137 |
+
train_data_loader = DataLoader(
|
138 |
+
dataset=train_dataset,
|
139 |
+
batch_size=config.batch_size,
|
140 |
+
shuffle=True,
|
141 |
+
sampler=None,
|
142 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
143 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
144 |
+
collate_fn=collate_fn,
|
145 |
+
pin_memory=False,
|
146 |
+
# prefetch_factor=64,
|
147 |
+
)
|
148 |
+
valid_data_loader = DataLoader(
|
149 |
+
dataset=valid_dataset,
|
150 |
+
batch_size=config.batch_size,
|
151 |
+
shuffle=True,
|
152 |
+
sampler=None,
|
153 |
+
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
|
154 |
+
num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
|
155 |
+
collate_fn=collate_fn,
|
156 |
+
pin_memory=False,
|
157 |
+
# prefetch_factor=64,
|
158 |
+
)
|
159 |
+
|
160 |
+
# models
|
161 |
+
logger.info(f"prepare models. config_file: {args.config_file}")
|
162 |
+
generator = NXCleanUNetPretrainedModel(config).to(device)
|
163 |
+
discriminator = MetricDiscriminatorPretrainedModel(config).to(device)
|
164 |
+
|
165 |
+
# optimizer
|
166 |
+
logger.info("prepare optimizer, lr_scheduler")
|
167 |
+
num_params = 0
|
168 |
+
for p in generator.parameters():
|
169 |
+
num_params += p.numel()
|
170 |
+
logger.info("total parameters (generator): {:.3f}M".format(num_params/1e6))
|
171 |
+
|
172 |
+
optim_g = torch.optim.AdamW(generator.parameters(), config.learning_rate, betas=[config.adam_b1, config.adam_b2])
|
173 |
+
optim_d = torch.optim.AdamW(discriminator.parameters(), config.learning_rate, betas=[config.adam_b1, config.adam_b2])
|
174 |
+
|
175 |
+
# resume training
|
176 |
+
last_epoch = -1
|
177 |
+
for epoch_i in serialization_dir.glob("epoch-*"):
|
178 |
+
epoch_i = Path(epoch_i)
|
179 |
+
epoch_idx = epoch_i.stem.split("-")[1]
|
180 |
+
epoch_idx = int(epoch_idx)
|
181 |
+
if epoch_idx > last_epoch:
|
182 |
+
last_epoch = epoch_idx
|
183 |
+
|
184 |
+
if last_epoch != -1:
|
185 |
+
logger.info(f"resume from epoch-{last_epoch}.")
|
186 |
+
generator_pt = serialization_dir / f"epoch-{last_epoch}/generator.pt"
|
187 |
+
discriminator_pt = serialization_dir / f"epoch-{last_epoch}/discriminator.pt"
|
188 |
+
optim_g_pth = serialization_dir / f"epoch-{last_epoch}/optim_g.pth"
|
189 |
+
optim_d_pth = serialization_dir / f"epoch-{last_epoch}/optim_d.pth"
|
190 |
+
|
191 |
+
logger.info(f"load state dict for generator.")
|
192 |
+
with open(generator_pt.as_posix(), "rb") as f:
|
193 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
194 |
+
generator.load_state_dict(state_dict, strict=True)
|
195 |
+
logger.info(f"load state dict for discriminator.")
|
196 |
+
with open(discriminator_pt.as_posix(), "rb") as f:
|
197 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
198 |
+
discriminator.load_state_dict(state_dict, strict=True)
|
199 |
+
|
200 |
+
logger.info(f"load state dict for optim_g.")
|
201 |
+
with open(optim_g_pth.as_posix(), "rb") as f:
|
202 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
203 |
+
optim_g.load_state_dict(state_dict)
|
204 |
+
logger.info(f"load state dict for optim_d.")
|
205 |
+
with open(optim_d_pth.as_posix(), "rb") as f:
|
206 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
207 |
+
optim_d.load_state_dict(state_dict)
|
208 |
+
|
209 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.lr_decay, last_epoch=last_epoch)
|
210 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.lr_decay, last_epoch=last_epoch)
|
211 |
+
|
212 |
+
# training loop
|
213 |
+
|
214 |
+
# state
|
215 |
+
loss_d = 10000000000
|
216 |
+
loss_g = 10000000000
|
217 |
+
pesq_metric = 10000000000
|
218 |
+
mag_err = 10000000000
|
219 |
+
pha_err = 10000000000
|
220 |
+
com_err = 10000000000
|
221 |
+
|
222 |
+
model_list = list()
|
223 |
+
best_idx_epoch = None
|
224 |
+
best_metric = None
|
225 |
+
patience_count = 0
|
226 |
+
|
227 |
+
logger.info("training")
|
228 |
+
for idx_epoch in range(max(0, last_epoch+1), args.max_epochs):
|
229 |
+
# train
|
230 |
+
generator.train()
|
231 |
+
discriminator.train()
|
232 |
+
|
233 |
+
total_loss_d = 0.
|
234 |
+
total_loss_g = 0.
|
235 |
+
total_batches = 0.
|
236 |
+
progress_bar = tqdm(
|
237 |
+
total=len(train_data_loader),
|
238 |
+
desc="Training; epoch: {}".format(idx_epoch),
|
239 |
+
)
|
240 |
+
for batch in train_data_loader:
|
241 |
+
clean_audios, noisy_audios = batch
|
242 |
+
clean_audios = clean_audios.to(device)
|
243 |
+
noisy_audios = noisy_audios.to(device)
|
244 |
+
one_labels = torch.ones(clean_audios.shape[0]).to(device)
|
245 |
+
|
246 |
+
audio_g = generator.forward(noisy_audios)
|
247 |
+
|
248 |
+
clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audios, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
|
249 |
+
mag_g, pha_g, com_g = mag_pha_stft(audio_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
|
250 |
+
|
251 |
+
clean_audio_list = torch.split(clean_audios, 1, dim=0)
|
252 |
+
enhanced_audio_list = torch.split(audio_g, 1, dim=0)
|
253 |
+
clean_audio_list = [t.squeeze().cpu().numpy() for t in clean_audio_list]
|
254 |
+
enhanced_audio_list = [t.squeeze().cpu().numpy() for t in enhanced_audio_list]
|
255 |
+
|
256 |
+
pesq_score_list: List[float] = run_batch_pesq(clean_audio_list, enhanced_audio_list, sample_rate=config.sample_rate, mode="nb")
|
257 |
+
|
258 |
+
# Discriminator
|
259 |
+
optim_d.zero_grad()
|
260 |
+
metric_r = discriminator.forward(clean_audios, clean_audios)
|
261 |
+
metric_g = discriminator.forward(clean_audios, audio_g.detach())
|
262 |
+
loss_disc_r = F.mse_loss(one_labels, metric_r.flatten())
|
263 |
+
|
264 |
+
if -1 in pesq_score_list:
|
265 |
+
# print("-1 in batch_pesq_score!")
|
266 |
+
loss_disc_g = 0
|
267 |
+
else:
|
268 |
+
pesq_score_list: torch.FloatTensor = torch.tensor([(score - 1) / 3.5 for score in pesq_score_list], dtype=torch.float32)
|
269 |
+
loss_disc_g = F.mse_loss(pesq_score_list.to(device), metric_g.flatten())
|
270 |
+
|
271 |
+
loss_disc_all = loss_disc_r + loss_disc_g
|
272 |
+
loss_disc_all.backward()
|
273 |
+
optim_d.step()
|
274 |
+
|
275 |
+
# Generator
|
276 |
+
optim_g.zero_grad()
|
277 |
+
# L2 Magnitude Loss
|
278 |
+
loss_mag = F.mse_loss(clean_mag, mag_g)
|
279 |
+
# Anti-wrapping Phase Loss
|
280 |
+
loss_ip, loss_gd, loss_iaf = phase_losses(clean_pha, pha_g)
|
281 |
+
loss_pha = loss_ip + loss_gd + loss_iaf
|
282 |
+
# L2 Complex Loss
|
283 |
+
loss_com = F.mse_loss(clean_com, com_g) * 2
|
284 |
+
# L2 Consistency Loss
|
285 |
+
# Time Loss
|
286 |
+
loss_time = F.l1_loss(clean_audios, audio_g)
|
287 |
+
# Metric Loss
|
288 |
+
metric_g = discriminator.forward(clean_mag, mag_g)
|
289 |
+
loss_metric = F.mse_loss(metric_g.flatten(), one_labels)
|
290 |
+
|
291 |
+
loss_gen_all = loss_mag * 0.9 + loss_pha * 0.3 + loss_com * 0.1 + loss_metric * 0.05 + loss_time * 0.2
|
292 |
+
|
293 |
+
loss_gen_all.backward()
|
294 |
+
optim_g.step()
|
295 |
+
|
296 |
+
total_loss_d += loss_disc_all.item()
|
297 |
+
total_loss_g += loss_gen_all.item()
|
298 |
+
total_batches += 1
|
299 |
+
|
300 |
+
loss_d = round(total_loss_d / total_batches, 4)
|
301 |
+
loss_g = round(total_loss_g / total_batches, 4)
|
302 |
+
|
303 |
+
progress_bar.update(1)
|
304 |
+
progress_bar.set_postfix({
|
305 |
+
"loss_d": loss_d,
|
306 |
+
"loss_g": loss_g,
|
307 |
+
})
|
308 |
+
|
309 |
+
# evaluation
|
310 |
+
generator.eval()
|
311 |
+
discriminator.eval()
|
312 |
+
|
313 |
+
torch.cuda.empty_cache()
|
314 |
+
total_pesq_score = 0.
|
315 |
+
total_mag_err = 0.
|
316 |
+
total_pha_err = 0.
|
317 |
+
total_com_err = 0.
|
318 |
+
total_batches = 0.
|
319 |
+
|
320 |
+
progress_bar = tqdm(
|
321 |
+
total=len(valid_data_loader),
|
322 |
+
desc="Evaluation; epoch: {}".format(idx_epoch),
|
323 |
+
)
|
324 |
+
with torch.no_grad():
|
325 |
+
for batch in valid_data_loader:
|
326 |
+
clean_audios, noisy_audios = batch
|
327 |
+
clean_audios = clean_audios.to(device)
|
328 |
+
noisy_audios = noisy_audios.to(device)
|
329 |
+
|
330 |
+
audio_g = generator.forward(noisy_audios)
|
331 |
+
|
332 |
+
clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audios, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
|
333 |
+
mag_g, pha_g, com_g = mag_pha_stft(audio_g, config.n_fft, config.hop_size, config.win_size, config.compress_factor)
|
334 |
+
|
335 |
+
clean_audio_list = torch.split(clean_audios, 1, dim=0)
|
336 |
+
enhanced_audio_list = torch.split(audio_g, 1, dim=0)
|
337 |
+
clean_audio_list = [t.squeeze().cpu().numpy() for t in clean_audio_list]
|
338 |
+
enhanced_audio_list = [t.squeeze().cpu().numpy() for t in enhanced_audio_list]
|
339 |
+
pesq_score = run_pesq_score(
|
340 |
+
clean_audio_list,
|
341 |
+
enhanced_audio_list,
|
342 |
+
sample_rate = config.sample_rate,
|
343 |
+
mode = "nb",
|
344 |
+
)
|
345 |
+
total_pesq_score += pesq_score
|
346 |
+
total_mag_err += F.mse_loss(clean_mag, mag_g).item()
|
347 |
+
val_ip_err, val_gd_err, val_iaf_err = phase_losses(clean_pha, pha_g)
|
348 |
+
total_pha_err += (val_ip_err + val_gd_err + val_iaf_err).item()
|
349 |
+
total_com_err += F.mse_loss(clean_com, com_g).item()
|
350 |
+
|
351 |
+
total_batches += 1
|
352 |
+
|
353 |
+
pesq_metric = round(total_pesq_score / total_batches, 4)
|
354 |
+
mag_err = round(total_mag_err / total_batches, 4)
|
355 |
+
pha_err = round(total_pha_err / total_batches, 4)
|
356 |
+
com_err = round(total_com_err / total_batches, 4)
|
357 |
+
|
358 |
+
progress_bar.update(1)
|
359 |
+
progress_bar.set_postfix({
|
360 |
+
"pesq_metric": pesq_metric,
|
361 |
+
"mag_err": mag_err,
|
362 |
+
"pha_err": pha_err,
|
363 |
+
"com_err": com_err,
|
364 |
+
})
|
365 |
+
|
366 |
+
# scheduler
|
367 |
+
scheduler_g.step()
|
368 |
+
scheduler_d.step()
|
369 |
+
|
370 |
+
# save path
|
371 |
+
epoch_dir = serialization_dir / "epoch-{}".format(idx_epoch)
|
372 |
+
epoch_dir.mkdir(parents=True, exist_ok=False)
|
373 |
+
|
374 |
+
# save models
|
375 |
+
generator.save_pretrained(epoch_dir.as_posix())
|
376 |
+
discriminator.save_pretrained(epoch_dir.as_posix())
|
377 |
+
|
378 |
+
# save optim
|
379 |
+
torch.save(optim_d.state_dict(), (epoch_dir / "optim_d.pth").as_posix())
|
380 |
+
torch.save(optim_g.state_dict(), (epoch_dir / "optim_g.pth").as_posix())
|
381 |
+
|
382 |
+
model_list.append(epoch_dir)
|
383 |
+
if len(model_list) >= args.num_serialized_models_to_keep:
|
384 |
+
model_to_delete: Path = model_list.pop(0)
|
385 |
+
shutil.rmtree(model_to_delete.as_posix())
|
386 |
+
|
387 |
+
# save metric
|
388 |
+
if best_metric is None:
|
389 |
+
best_idx_epoch = idx_epoch
|
390 |
+
best_metric = pesq_metric
|
391 |
+
elif pesq_metric > best_metric:
|
392 |
+
# great is better.
|
393 |
+
best_idx_epoch = idx_epoch
|
394 |
+
best_metric = pesq_metric
|
395 |
+
else:
|
396 |
+
pass
|
397 |
+
|
398 |
+
metrics = {
|
399 |
+
"idx_epoch": idx_epoch,
|
400 |
+
"best_idx_epoch": best_idx_epoch,
|
401 |
+
"loss_d": loss_d,
|
402 |
+
"loss_g": loss_g,
|
403 |
+
|
404 |
+
"pesq_metric": pesq_metric,
|
405 |
+
"mag_err": mag_err,
|
406 |
+
"pha_err": pha_err,
|
407 |
+
"com_err": com_err,
|
408 |
+
|
409 |
+
}
|
410 |
+
metrics_filename = epoch_dir / "metrics_epoch.json"
|
411 |
+
with open(metrics_filename, "w", encoding="utf-8") as f:
|
412 |
+
json.dump(metrics, f, indent=4, ensure_ascii=False)
|
413 |
+
|
414 |
+
# save best
|
415 |
+
best_dir = serialization_dir / "best"
|
416 |
+
if best_idx_epoch == idx_epoch:
|
417 |
+
if best_dir.exists():
|
418 |
+
shutil.rmtree(best_dir)
|
419 |
+
shutil.copytree(epoch_dir, best_dir)
|
420 |
+
|
421 |
+
# early stop
|
422 |
+
early_stop_flag = False
|
423 |
+
if best_idx_epoch == idx_epoch:
|
424 |
+
patience_count = 0
|
425 |
+
else:
|
426 |
+
patience_count += 1
|
427 |
+
if patience_count >= args.patience:
|
428 |
+
early_stop_flag = True
|
429 |
+
|
430 |
+
# early stop
|
431 |
+
if early_stop_flag:
|
432 |
+
break
|
433 |
+
|
434 |
+
return
|
435 |
+
|
436 |
+
|
437 |
+
if __name__ == "__main__":
|
438 |
+
main()
|
examples/nx_clean_unet/step_3_evaluation.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
examples/nx_clean_unet/yaml/config.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "nx_clean_unet"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 16000
|
5 |
+
n_fft: 512
|
6 |
+
win_size: 200
|
7 |
+
hop_size: 80
|
8 |
+
|
9 |
+
down_sampling_num_layers: 5
|
10 |
+
down_sampling_in_channels: 1
|
11 |
+
down_sampling_hidden_channels: 64
|
12 |
+
down_sampling_kernel_size: 4
|
13 |
+
down_sampling_stride: 2
|
14 |
+
|
15 |
+
tsfm_hidden_size: 256
|
16 |
+
tsfm_attention_heads: 4
|
17 |
+
tsfm_num_blocks: 6
|
18 |
+
tsfm_dropout_rate: 0.1
|
19 |
+
|
20 |
+
discriminator_dim: 32
|
21 |
+
discriminator_in_channel: 2
|
22 |
+
|
23 |
+
compress_factor: 0.3
|
toolbox/torchaudio/models/clean_unet/configuration_clean_unet.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
4 |
|
5 |
|
6 |
-
class
|
7 |
def __init__(self,
|
8 |
channels_input: int = 1,
|
9 |
channels_output: int = 1,
|
@@ -21,7 +21,7 @@ class CleanUnetConfig(PretrainedConfig):
|
|
21 |
|
22 |
**kwargs
|
23 |
):
|
24 |
-
super(
|
25 |
self.channels_input = channels_input
|
26 |
self.channels_output = channels_output
|
27 |
|
|
|
3 |
from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
4 |
|
5 |
|
6 |
+
class CleanUNetConfig(PretrainedConfig):
|
7 |
def __init__(self,
|
8 |
channels_input: int = 1,
|
9 |
channels_output: int = 1,
|
|
|
21 |
|
22 |
**kwargs
|
23 |
):
|
24 |
+
super(CleanUNetConfig, self).__init__(**kwargs)
|
25 |
self.channels_input = channels_input
|
26 |
self.channels_output = channels_output
|
27 |
|
toolbox/torchaudio/models/clean_unet/inference_clean_unet.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import logging
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
+
import tempfile
|
7 |
+
import zipfile
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torchaudio
|
13 |
+
|
14 |
+
from project_settings import project_path
|
15 |
+
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import CleanUNetConfig
|
16 |
+
from toolbox.torchaudio.models.clean_unet.modeling_clean_unet import CleanUNetPretrainedModel, MODEL_FILE
|
17 |
+
|
18 |
+
logger = logging.getLogger("toolbox")
|
19 |
+
|
20 |
+
|
21 |
+
class InferenceCleanUNet(object):
|
22 |
+
def __init__(self, pretrained_model_path_or_zip_file: str, device: str = "cpu"):
|
23 |
+
self.pretrained_model_path_or_zip_file = pretrained_model_path_or_zip_file
|
24 |
+
self.device = torch.device(device)
|
25 |
+
|
26 |
+
logger.info(f"loading model; model_file: {self.pretrained_model_path_or_zip_file}")
|
27 |
+
config, model = self.load_models(self.pretrained_model_path_or_zip_file)
|
28 |
+
logger.info(f"model loading completed; model_file: {self.pretrained_model_path_or_zip_file}")
|
29 |
+
|
30 |
+
self.config = config
|
31 |
+
self.model = model
|
32 |
+
self.model.to(device)
|
33 |
+
self.model.eval()
|
34 |
+
|
35 |
+
def load_models(self, model_path: str):
|
36 |
+
model_path = Path(model_path)
|
37 |
+
if model_path.name.endswith(".zip"):
|
38 |
+
with zipfile.ZipFile(model_path.as_posix(), "r") as f_zip:
|
39 |
+
out_root = Path(tempfile.gettempdir()) / "nx_denoise"
|
40 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
41 |
+
f_zip.extractall(path=out_root)
|
42 |
+
model_path = out_root / model_path.stem
|
43 |
+
|
44 |
+
config = CleanUNetConfig.from_pretrained(
|
45 |
+
pretrained_model_name_or_path=model_path.as_posix(),
|
46 |
+
)
|
47 |
+
model = CleanUNetPretrainedModel.from_pretrained(
|
48 |
+
pretrained_model_name_or_path=model_path.as_posix(),
|
49 |
+
)
|
50 |
+
model.to(self.device)
|
51 |
+
model.eval()
|
52 |
+
|
53 |
+
shutil.rmtree(model_path)
|
54 |
+
return config, model
|
55 |
+
|
56 |
+
def enhancement_by_ndarray(self, noisy_audio: np.ndarray) -> np.ndarray:
|
57 |
+
noisy_audio = torch.tensor(noisy_audio, dtype=torch.float32)
|
58 |
+
noisy_audio = noisy_audio.unsqueeze(dim=0)
|
59 |
+
|
60 |
+
# noisy_audio shape: [batch_size, n_samples]
|
61 |
+
enhanced_audio = self.enhancement_by_tensor(noisy_audio)
|
62 |
+
# noisy_audio shape: [channels, n_samples]
|
63 |
+
return enhanced_audio.cpu().numpy()
|
64 |
+
|
65 |
+
def enhancement_by_tensor(self, noisy_audio: torch.Tensor) -> torch.Tensor:
|
66 |
+
if torch.max(noisy_audio) > 1 or torch.min(noisy_audio) < -1:
|
67 |
+
raise AssertionError(f"The value range of audio samples should be between -1 and 1.")
|
68 |
+
|
69 |
+
# noisy_audio shape: [batch_size, num_samples]
|
70 |
+
noisy_audios = noisy_audio.to(self.device)
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
enhanced_audios = self.model.forward(noisy_audios)
|
74 |
+
# enhanced_audio shape: [batch_size, channels, num_samples]
|
75 |
+
# enhanced_audios = torch.squeeze(enhanced_audios, dim=1)
|
76 |
+
|
77 |
+
enhanced_audio = enhanced_audios[0]
|
78 |
+
|
79 |
+
# enhanced_audio shape: [channels, num_samples]
|
80 |
+
return enhanced_audio
|
81 |
+
|
82 |
+
def main():
|
83 |
+
model_zip_file = project_path / "trained_models/clean-unet-aishell-18-epoch.zip"
|
84 |
+
infer_mpnet = InferenceCleanUNet(model_zip_file)
|
85 |
+
|
86 |
+
sample_rate = 8000
|
87 |
+
noisy_audio_file = project_path / "data/examples/ai_agent/dfaaf264-b5e3-4ca2-b5cb-5b6d637d962d_section_1.wav"
|
88 |
+
noisy_audio, _ = librosa.load(
|
89 |
+
noisy_audio_file.as_posix(),
|
90 |
+
sr=sample_rate,
|
91 |
+
)
|
92 |
+
noisy_audio = torch.tensor(noisy_audio, dtype=torch.float32)
|
93 |
+
noisy_audio = noisy_audio.unsqueeze(dim=0)
|
94 |
+
|
95 |
+
enhanced_audio = infer_mpnet.enhancement_by_tensor(noisy_audio)
|
96 |
+
|
97 |
+
filename = "enhanced_audio.wav"
|
98 |
+
torchaudio.save(filename, enhanced_audio.detach().cpu(), sample_rate)
|
99 |
+
|
100 |
+
return
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
main()
|
toolbox/torchaudio/models/clean_unet/modeling_clean_unet.py
CHANGED
@@ -22,7 +22,7 @@ import torch.nn.functional as F
|
|
22 |
|
23 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
24 |
from toolbox.torchaudio.models.clean_unet.transformer import TransformerEncoder
|
25 |
-
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import
|
26 |
|
27 |
|
28 |
def weight_scaling_init(layer):
|
@@ -196,7 +196,7 @@ class CleanUNet(nn.Module):
|
|
196 |
|
197 |
x = self.tsfm_conv1(x) # C 1024 -> 512
|
198 |
x = x.permute(0, 2, 1)
|
199 |
-
x = self.tsfm_encoder(x, src_mask=attn_mask)
|
200 |
x = x.permute(0, 2, 1)
|
201 |
x = self.tsfm_conv2(x) # C 512 -> 1024
|
202 |
|
@@ -215,7 +215,7 @@ MODEL_FILE = "model.pt"
|
|
215 |
|
216 |
class CleanUNetPretrainedModel(CleanUNet):
|
217 |
def __init__(self,
|
218 |
-
config:
|
219 |
):
|
220 |
super(CleanUNetPretrainedModel, self).__init__(
|
221 |
channels_input=config.channels_input,
|
@@ -234,7 +234,7 @@ class CleanUNetPretrainedModel(CleanUNet):
|
|
234 |
|
235 |
@classmethod
|
236 |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
237 |
-
config =
|
238 |
|
239 |
model = cls(config)
|
240 |
|
@@ -272,7 +272,7 @@ class CleanUNetPretrainedModel(CleanUNet):
|
|
272 |
|
273 |
def main():
|
274 |
|
275 |
-
config =
|
276 |
model = CleanUNetPretrainedModel(config)
|
277 |
|
278 |
print_size(model, keyword="tsfm")
|
|
|
22 |
|
23 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
24 |
from toolbox.torchaudio.models.clean_unet.transformer import TransformerEncoder
|
25 |
+
from toolbox.torchaudio.models.clean_unet.configuration_clean_unet import CleanUNetConfig
|
26 |
|
27 |
|
28 |
def weight_scaling_init(layer):
|
|
|
196 |
|
197 |
x = self.tsfm_conv1(x) # C 1024 -> 512
|
198 |
x = x.permute(0, 2, 1)
|
199 |
+
x = self.tsfm_encoder.forward(x, src_mask=attn_mask)
|
200 |
x = x.permute(0, 2, 1)
|
201 |
x = self.tsfm_conv2(x) # C 512 -> 1024
|
202 |
|
|
|
215 |
|
216 |
class CleanUNetPretrainedModel(CleanUNet):
|
217 |
def __init__(self,
|
218 |
+
config: CleanUNetConfig,
|
219 |
):
|
220 |
super(CleanUNetPretrainedModel, self).__init__(
|
221 |
channels_input=config.channels_input,
|
|
|
234 |
|
235 |
@classmethod
|
236 |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
237 |
+
config = CleanUNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
238 |
|
239 |
model = cls(config)
|
240 |
|
|
|
272 |
|
273 |
def main():
|
274 |
|
275 |
+
config = CleanUNetConfig()
|
276 |
model = CleanUNetPretrainedModel(config)
|
277 |
|
278 |
print_size(model, keyword="tsfm")
|
toolbox/torchaudio/models/nx_clean_unet/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/nx_clean_unet/configuration_nx_clean_unet.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
4 |
+
|
5 |
+
|
6 |
+
class NXCleanUNetConfig(PretrainedConfig):
|
7 |
+
"""
|
8 |
+
https://github.com/yxlu-0102/MP-SENet/blob/main/config.json
|
9 |
+
"""
|
10 |
+
def __init__(self,
|
11 |
+
n_fft: int = 512,
|
12 |
+
win_length: int = 200,
|
13 |
+
hop_length: int = 80,
|
14 |
+
|
15 |
+
down_sampling_num_layers: int = 5,
|
16 |
+
down_sampling_in_channels: int = 1,
|
17 |
+
down_sampling_hidden_channels: int = 64,
|
18 |
+
down_sampling_kernel_size: int = 4,
|
19 |
+
down_sampling_stride: int = 2,
|
20 |
+
|
21 |
+
tsfm_hidden_size: int = 256,
|
22 |
+
tsfm_attention_heads: int = 4,
|
23 |
+
tsfm_num_blocks: int = 6,
|
24 |
+
tsfm_dropout_rate: float = 0.1,
|
25 |
+
|
26 |
+
discriminator_dim: int = 32,
|
27 |
+
discriminator_in_channel: int = 2,
|
28 |
+
|
29 |
+
compress_factor: float = 0.3,
|
30 |
+
|
31 |
+
**kwargs
|
32 |
+
):
|
33 |
+
super(NXCleanUNetConfig, self).__init__(**kwargs)
|
34 |
+
self.n_fft = n_fft
|
35 |
+
self.win_length = win_length
|
36 |
+
self.hop_length = hop_length
|
37 |
+
|
38 |
+
self.down_sampling_num_layers = down_sampling_num_layers
|
39 |
+
self.down_sampling_in_channels = down_sampling_in_channels
|
40 |
+
self.down_sampling_hidden_channels = down_sampling_hidden_channels
|
41 |
+
self.down_sampling_kernel_size = down_sampling_kernel_size
|
42 |
+
self.down_sampling_stride = down_sampling_stride
|
43 |
+
|
44 |
+
self.tsfm_hidden_size = tsfm_hidden_size
|
45 |
+
self.tsfm_attention_heads = tsfm_attention_heads
|
46 |
+
self.tsfm_num_blocks = tsfm_num_blocks
|
47 |
+
self.tsfm_dropout_rate = tsfm_dropout_rate
|
48 |
+
|
49 |
+
self.discriminator_dim = discriminator_dim
|
50 |
+
self.discriminator_in_channel = discriminator_in_channel
|
51 |
+
|
52 |
+
self.compress_factor = compress_factor
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
pass
|
toolbox/torchaudio/models/nx_clean_unet/discriminator.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
from typing import Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torchaudio
|
9 |
+
|
10 |
+
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
11 |
+
from toolbox.torchaudio.models.nx_clean_unet.configuration_nx_clean_unet import NXCleanUNetConfig
|
12 |
+
from toolbox.torchaudio.models.nx_clean_unet.utils import LearnableSigmoid1d
|
13 |
+
|
14 |
+
|
15 |
+
class MetricDiscriminator(nn.Module):
|
16 |
+
def __init__(self, config: NXCleanUNetConfig):
|
17 |
+
super(MetricDiscriminator, self).__init__()
|
18 |
+
dim = config.discriminator_dim
|
19 |
+
self.in_channel = config.discriminator_in_channel
|
20 |
+
|
21 |
+
self.n_fft = config.n_fft
|
22 |
+
self.win_length = config.win_length
|
23 |
+
self.hop_length = config.hop_length
|
24 |
+
|
25 |
+
self.layers = nn.Sequential(
|
26 |
+
torchaudio.transforms.Spectrogram(
|
27 |
+
n_fft=self.n_fft,
|
28 |
+
win_length=self.win_length,
|
29 |
+
hop_length=self.hop_length,
|
30 |
+
power=1.0,
|
31 |
+
window_fn=torch.hamming_window,
|
32 |
+
# window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
33 |
+
),
|
34 |
+
nn.utils.spectral_norm(nn.Conv2d(self.in_channel, dim, (4,4), (2,2), (1,1), bias=False)),
|
35 |
+
nn.InstanceNorm2d(dim, affine=True),
|
36 |
+
nn.PReLU(dim),
|
37 |
+
nn.utils.spectral_norm(nn.Conv2d(dim, dim*2, (4,4), (2,2), (1,1), bias=False)),
|
38 |
+
nn.InstanceNorm2d(dim*2, affine=True),
|
39 |
+
nn.PReLU(dim*2),
|
40 |
+
nn.utils.spectral_norm(nn.Conv2d(dim*2, dim*4, (4,4), (2,2), (1,1), bias=False)),
|
41 |
+
nn.InstanceNorm2d(dim*4, affine=True),
|
42 |
+
nn.PReLU(dim*4),
|
43 |
+
nn.utils.spectral_norm(nn.Conv2d(dim*4, dim*8, (4,4), (2,2), (1,1), bias=False)),
|
44 |
+
nn.InstanceNorm2d(dim*8, affine=True),
|
45 |
+
nn.PReLU(dim*8),
|
46 |
+
nn.AdaptiveMaxPool2d(1),
|
47 |
+
nn.Flatten(),
|
48 |
+
nn.utils.spectral_norm(nn.Linear(dim*8, dim*4)),
|
49 |
+
nn.Dropout(0.3),
|
50 |
+
nn.PReLU(dim*4),
|
51 |
+
nn.utils.spectral_norm(nn.Linear(dim*4, 1)),
|
52 |
+
LearnableSigmoid1d(1)
|
53 |
+
)
|
54 |
+
|
55 |
+
def forward(self, x, y):
|
56 |
+
xy = torch.stack((x, y), dim=1)
|
57 |
+
return self.layers(xy)
|
58 |
+
|
59 |
+
|
60 |
+
MODEL_FILE = "discriminator.pt"
|
61 |
+
|
62 |
+
|
63 |
+
class MetricDiscriminatorPretrainedModel(MetricDiscriminator):
|
64 |
+
def __init__(self,
|
65 |
+
config: NXCleanUNetConfig,
|
66 |
+
):
|
67 |
+
super(MetricDiscriminatorPretrainedModel, self).__init__(
|
68 |
+
config=config,
|
69 |
+
)
|
70 |
+
self.config = config
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
74 |
+
config = NXCleanUNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
75 |
+
|
76 |
+
model = cls(config)
|
77 |
+
|
78 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
79 |
+
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
|
80 |
+
else:
|
81 |
+
ckpt_file = pretrained_model_name_or_path
|
82 |
+
|
83 |
+
with open(ckpt_file, "rb") as f:
|
84 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
85 |
+
model.load_state_dict(state_dict, strict=True)
|
86 |
+
return model
|
87 |
+
|
88 |
+
def save_pretrained(self,
|
89 |
+
save_directory: Union[str, os.PathLike],
|
90 |
+
state_dict: Optional[dict] = None,
|
91 |
+
):
|
92 |
+
|
93 |
+
model = self
|
94 |
+
|
95 |
+
if state_dict is None:
|
96 |
+
state_dict = model.state_dict()
|
97 |
+
|
98 |
+
os.makedirs(save_directory, exist_ok=True)
|
99 |
+
|
100 |
+
# save state dict
|
101 |
+
model_file = os.path.join(save_directory, MODEL_FILE)
|
102 |
+
torch.save(state_dict, model_file)
|
103 |
+
|
104 |
+
# save config
|
105 |
+
config_file = os.path.join(save_directory, CONFIG_FILE)
|
106 |
+
self.config.to_yaml_file(config_file)
|
107 |
+
return save_directory
|
108 |
+
|
109 |
+
|
110 |
+
def main():
|
111 |
+
config = NXCleanUNetConfig()
|
112 |
+
discriminator = MetricDiscriminator(config=config)
|
113 |
+
|
114 |
+
# shape: [batch_size, num_samples]
|
115 |
+
x = torch.ones([4, int(4.5 * 16000)])
|
116 |
+
y = torch.ones([4, int(4.5 * 16000)])
|
117 |
+
|
118 |
+
output = discriminator.forward(x, y)
|
119 |
+
print(output.shape)
|
120 |
+
print(output)
|
121 |
+
|
122 |
+
return
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main()
|
toolbox/torchaudio/models/nx_clean_unet/loss.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def anti_wrapping_function(x):
|
8 |
+
|
9 |
+
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)
|
10 |
+
|
11 |
+
|
12 |
+
def phase_losses(phase_r, phase_g):
|
13 |
+
|
14 |
+
ip_loss = torch.mean(anti_wrapping_function(phase_r - phase_g))
|
15 |
+
gd_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=1) - torch.diff(phase_g, dim=1)))
|
16 |
+
iaf_loss = torch.mean(anti_wrapping_function(torch.diff(phase_r, dim=2) - torch.diff(phase_g, dim=2)))
|
17 |
+
|
18 |
+
return ip_loss, gd_loss, iaf_loss
|
19 |
+
|
20 |
+
|
21 |
+
if __name__ == '__main__':
|
22 |
+
pass
|
toolbox/torchaudio/models/nx_clean_unet/metrics.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from joblib import Parallel, delayed
|
4 |
+
import numpy as np
|
5 |
+
from pesq import pesq
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
from pesq import cypesq
|
9 |
+
|
10 |
+
|
11 |
+
def run_pesq(clean_audio: np.ndarray,
|
12 |
+
noisy_audio: np.ndarray,
|
13 |
+
sample_rate: int = 16000,
|
14 |
+
mode: str = "wb",
|
15 |
+
) -> float:
|
16 |
+
if sample_rate == 8000 and mode == "wb":
|
17 |
+
raise AssertionError(f"mode should be `nb` when sample_rate is 8000")
|
18 |
+
try:
|
19 |
+
pesq_score = pesq(sample_rate, clean_audio, noisy_audio, mode)
|
20 |
+
except cypesq.NoUtterancesError as e:
|
21 |
+
pesq_score = -1
|
22 |
+
except Exception as e:
|
23 |
+
print(f"pesq failed. error type: {type(e)}, error text: {str(e)}")
|
24 |
+
pesq_score = -1
|
25 |
+
return pesq_score
|
26 |
+
|
27 |
+
|
28 |
+
def run_batch_pesq(clean_audio_list: List[np.ndarray],
|
29 |
+
noisy_audio_list: List[np.ndarray],
|
30 |
+
sample_rate: int = 16000,
|
31 |
+
mode: str = "wb",
|
32 |
+
n_jobs: int = 4,
|
33 |
+
) -> List[float]:
|
34 |
+
parallel = Parallel(n_jobs=n_jobs)
|
35 |
+
|
36 |
+
parallel_tasks = list()
|
37 |
+
for clean_audio, noisy_audio in zip(clean_audio_list, noisy_audio_list):
|
38 |
+
parallel_task = delayed(run_pesq)(clean_audio, noisy_audio, sample_rate, mode)
|
39 |
+
parallel_tasks.append(parallel_task)
|
40 |
+
|
41 |
+
pesq_score_list = parallel.__call__(parallel_tasks)
|
42 |
+
return pesq_score_list
|
43 |
+
|
44 |
+
|
45 |
+
def run_pesq_score(clean_audio_list: List[np.ndarray],
|
46 |
+
noisy_audio_list: List[np.ndarray],
|
47 |
+
sample_rate: int = 16000,
|
48 |
+
mode: str = "wb",
|
49 |
+
n_jobs: int = 4,
|
50 |
+
) -> List[float]:
|
51 |
+
|
52 |
+
pesq_score_list = run_batch_pesq(clean_audio_list=clean_audio_list,
|
53 |
+
noisy_audio_list=noisy_audio_list,
|
54 |
+
sample_rate=sample_rate,
|
55 |
+
mode=mode,
|
56 |
+
n_jobs=n_jobs,
|
57 |
+
)
|
58 |
+
|
59 |
+
pesq_score = np.mean(pesq_score_list)
|
60 |
+
return pesq_score
|
61 |
+
|
62 |
+
|
63 |
+
def main():
|
64 |
+
clean_audio = np.random.uniform(low=0, high=1, size=(2, 160000,))
|
65 |
+
noisy_audio = np.random.uniform(low=0, high=1, size=(2, 160000,))
|
66 |
+
|
67 |
+
clean_audio_list = list(clean_audio)
|
68 |
+
noisy_audio_list = list(noisy_audio)
|
69 |
+
|
70 |
+
pesq_score_list = run_batch_pesq(clean_audio_list, noisy_audio_list)
|
71 |
+
print(pesq_score_list)
|
72 |
+
|
73 |
+
pesq_score = run_pesq_score(clean_audio_list, noisy_audio_list)
|
74 |
+
print(pesq_score)
|
75 |
+
|
76 |
+
return
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
main()
|
toolbox/torchaudio/models/nx_clean_unet/modeling_nx_clean_unet.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
from typing import Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
12 |
+
from toolbox.torchaudio.models.nx_clean_unet.configuration_nx_clean_unet import NXCleanUNetConfig
|
13 |
+
from toolbox.torchaudio.models.nx_clean_unet.transformer.transformer import TransformerEncoder
|
14 |
+
|
15 |
+
|
16 |
+
class DownSamplingBlock(nn.Module):
|
17 |
+
def __init__(self,
|
18 |
+
in_channels: int,
|
19 |
+
hidden_channels: int,
|
20 |
+
kernel_size: int,
|
21 |
+
stride: int,
|
22 |
+
):
|
23 |
+
super(DownSamplingBlock, self).__init__()
|
24 |
+
self.conv1 = nn.Conv1d(in_channels, hidden_channels, kernel_size, stride)
|
25 |
+
self.relu = nn.ReLU()
|
26 |
+
self.conv2 = nn.Conv1d(hidden_channels, hidden_channels * 2, 1)
|
27 |
+
self.glu = nn.GLU(dim=1)
|
28 |
+
|
29 |
+
def forward(self, x: torch.Tensor):
|
30 |
+
# x shape: [batch_size, 1, num_samples]
|
31 |
+
x = self.conv1.forward(x)
|
32 |
+
# x shape: [batch_size, hidden_channels, new_num_samples]
|
33 |
+
x = self.relu(x)
|
34 |
+
x = self.conv2.forward(x)
|
35 |
+
# x shape: [batch_size, hidden_channels*2, new_num_samples]
|
36 |
+
x = self.glu(x)
|
37 |
+
# x shape: [batch_size, hidden_channels, new_num_samples]
|
38 |
+
# new_num_samples = (num_samples-kernel_size) // stride + 1
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
class DownSampling(nn.Module):
|
43 |
+
def __init__(self,
|
44 |
+
num_layers: int,
|
45 |
+
in_channels: int,
|
46 |
+
hidden_channels: int,
|
47 |
+
kernel_size: int,
|
48 |
+
stride: int,
|
49 |
+
):
|
50 |
+
super(DownSampling, self).__init__()
|
51 |
+
self.num_layers = num_layers
|
52 |
+
|
53 |
+
self.down_sampling_block_list = list()
|
54 |
+
|
55 |
+
for idx in range(self.num_layers):
|
56 |
+
down_sampling_block = DownSamplingBlock(
|
57 |
+
in_channels=in_channels,
|
58 |
+
hidden_channels=hidden_channels,
|
59 |
+
kernel_size=kernel_size,
|
60 |
+
stride=stride,
|
61 |
+
)
|
62 |
+
self.down_sampling_block_list.append(down_sampling_block)
|
63 |
+
in_channels = hidden_channels
|
64 |
+
|
65 |
+
def forward(self, x: torch.Tensor):
|
66 |
+
# x shape: [batch_size, channels, num_samples]
|
67 |
+
for down_sampling_block in self.down_sampling_block_list:
|
68 |
+
x = down_sampling_block.forward(x)
|
69 |
+
# x shape: [batch_size, hidden_channels, num_samples**]
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
class UpSamplingBlock(nn.Module):
|
74 |
+
def __init__(self,
|
75 |
+
out_channels: int,
|
76 |
+
hidden_channels: int,
|
77 |
+
kernel_size: int,
|
78 |
+
stride: int,
|
79 |
+
do_relu: bool = True,
|
80 |
+
):
|
81 |
+
super(UpSamplingBlock, self).__init__()
|
82 |
+
self.do_relu = do_relu
|
83 |
+
|
84 |
+
self.conv1 = nn.Conv1d(hidden_channels, hidden_channels * 2, 1)
|
85 |
+
self.glu = nn.GLU(dim=1)
|
86 |
+
self.convt = nn.ConvTranspose1d(hidden_channels, out_channels, kernel_size, stride)
|
87 |
+
self.relu = nn.ReLU()
|
88 |
+
|
89 |
+
def forward(self, x: torch.Tensor):
|
90 |
+
# x shape: [batch_size, hidden_channels*2, num_samples]
|
91 |
+
x = self.conv1.forward(x)
|
92 |
+
# x shape: [batch_size, hidden_channels, num_samples]
|
93 |
+
x = self.glu(x)
|
94 |
+
# x shape: [batch_size, hidden_channels, num_samples]
|
95 |
+
x = self.convt.forward(x)
|
96 |
+
# x shape: [batch_size, hidden_channels, new_num_samples]
|
97 |
+
# new_num_samples = (num_samples - 1) * stride + kernel_size
|
98 |
+
if self.do_relu:
|
99 |
+
x = self.relu(x)
|
100 |
+
return x
|
101 |
+
|
102 |
+
|
103 |
+
class UpSampling(nn.Module):
|
104 |
+
def __init__(self,
|
105 |
+
num_layers: int,
|
106 |
+
out_channels: int,
|
107 |
+
hidden_channels: int,
|
108 |
+
kernel_size: int,
|
109 |
+
stride: int,
|
110 |
+
):
|
111 |
+
super(UpSampling, self).__init__()
|
112 |
+
self.num_layers = num_layers
|
113 |
+
|
114 |
+
self.up_sampling_block_list = list()
|
115 |
+
|
116 |
+
for idx in range(self.num_layers-1):
|
117 |
+
up_sampling_block = UpSamplingBlock(
|
118 |
+
out_channels=hidden_channels,
|
119 |
+
hidden_channels=hidden_channels,
|
120 |
+
kernel_size=kernel_size,
|
121 |
+
stride=stride,
|
122 |
+
do_relu=True,
|
123 |
+
)
|
124 |
+
self.up_sampling_block_list.append(up_sampling_block)
|
125 |
+
else:
|
126 |
+
up_sampling_block = UpSamplingBlock(
|
127 |
+
out_channels=out_channels,
|
128 |
+
hidden_channels=hidden_channels,
|
129 |
+
kernel_size=kernel_size,
|
130 |
+
stride=stride,
|
131 |
+
do_relu=False,
|
132 |
+
)
|
133 |
+
self.up_sampling_block_list.append(up_sampling_block)
|
134 |
+
|
135 |
+
def forward(self, x: torch.Tensor):
|
136 |
+
# x shape: [batch_size, channels, num_samples]
|
137 |
+
for up_sampling_block in self.up_sampling_block_list:
|
138 |
+
x = up_sampling_block.forward(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
def get_padding_length(length, num_layers: int, kernel_size: int, stride: int):
|
143 |
+
for _ in range(num_layers):
|
144 |
+
if length < kernel_size:
|
145 |
+
length = 1
|
146 |
+
else:
|
147 |
+
length = 1 + np.ceil((length - kernel_size) / stride)
|
148 |
+
|
149 |
+
for _ in range(num_layers):
|
150 |
+
length = (length - 1) * stride + kernel_size
|
151 |
+
|
152 |
+
padded_length = int(length)
|
153 |
+
return padded_length
|
154 |
+
|
155 |
+
|
156 |
+
class NXCleanUNet(nn.Module):
|
157 |
+
def __init__(self, config):
|
158 |
+
super().__init__()
|
159 |
+
self.config = config
|
160 |
+
|
161 |
+
self.down_sampling = DownSampling(
|
162 |
+
num_layers=config.down_sampling_num_layers,
|
163 |
+
in_channels=config.down_sampling_in_channels,
|
164 |
+
hidden_channels=config.down_sampling_hidden_channels,
|
165 |
+
kernel_size=config.down_sampling_kernel_size,
|
166 |
+
stride=config.down_sampling_stride,
|
167 |
+
)
|
168 |
+
self.transformer = TransformerEncoder(
|
169 |
+
input_size=config.down_sampling_hidden_channels,
|
170 |
+
hidden_size=config.tsfm_hidden_size,
|
171 |
+
attention_heads=config.tsfm_attention_heads,
|
172 |
+
num_blocks=config.tsfm_num_blocks,
|
173 |
+
dropout_rate=config.tsfm_dropout_rate,
|
174 |
+
)
|
175 |
+
self.up_sampling = UpSampling(
|
176 |
+
num_layers=config.down_sampling_num_layers,
|
177 |
+
out_channels=config.down_sampling_in_channels,
|
178 |
+
hidden_channels=config.down_sampling_hidden_channels,
|
179 |
+
kernel_size=config.down_sampling_kernel_size,
|
180 |
+
stride=config.down_sampling_stride,
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(self, noisy_audios: torch.Tensor):
|
184 |
+
# noisy_audios shape: [batch_size, 1, n_samples]
|
185 |
+
|
186 |
+
n_samples = noisy_audios.shape[-1]
|
187 |
+
padded_length = get_padding_length(
|
188 |
+
n_samples,
|
189 |
+
num_layers=self.config.down_sampling_num_layers,
|
190 |
+
kernel_size=self.config.down_sampling_kernel_size,
|
191 |
+
stride=self.config.down_sampling_stride,
|
192 |
+
)
|
193 |
+
noisy_audios_padded = F.pad(input=noisy_audios, pad=(0, padded_length - n_samples), mode="constant", value=0)
|
194 |
+
|
195 |
+
bottle_neck = self.down_sampling.forward(noisy_audios_padded)
|
196 |
+
# bottle_neck shape: [batch_size, channels, time_steps]
|
197 |
+
|
198 |
+
bottle_neck = torch.transpose(bottle_neck, dim0=-2, dim1=-1)
|
199 |
+
# bottle_neck shape: [batch_size, time_steps, input_size]
|
200 |
+
|
201 |
+
bottle_neck = self.transformer.forward(bottle_neck)
|
202 |
+
# bottle_neck shape: [batch_size, time_steps, input_size]
|
203 |
+
|
204 |
+
bottle_neck = torch.transpose(bottle_neck, dim0=-2, dim1=-1)
|
205 |
+
# bottle_neck shape: [batch_size, channels, time_steps]
|
206 |
+
|
207 |
+
enhanced_audios = self.up_sampling.forward(bottle_neck)
|
208 |
+
|
209 |
+
enhanced_audios = enhanced_audios[:, :, :n_samples]
|
210 |
+
# enhanced_audios shape: [batch_size, 1, n_samples]
|
211 |
+
return enhanced_audios
|
212 |
+
|
213 |
+
|
214 |
+
MODEL_FILE = "generator.pt"
|
215 |
+
|
216 |
+
|
217 |
+
class NXCleanUNetPretrainedModel(NXCleanUNet):
|
218 |
+
def __init__(self,
|
219 |
+
config: NXCleanUNetConfig,
|
220 |
+
):
|
221 |
+
super(NXCleanUNetPretrainedModel, self).__init__(
|
222 |
+
config=config,
|
223 |
+
)
|
224 |
+
self.config = config
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
228 |
+
config = NXCleanUNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
229 |
+
|
230 |
+
model = cls(config)
|
231 |
+
|
232 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
233 |
+
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
|
234 |
+
else:
|
235 |
+
ckpt_file = pretrained_model_name_or_path
|
236 |
+
|
237 |
+
with open(ckpt_file, "rb") as f:
|
238 |
+
state_dict = torch.load(f, map_location="cpu", weights_only=True)
|
239 |
+
model.load_state_dict(state_dict, strict=True)
|
240 |
+
return model
|
241 |
+
|
242 |
+
def save_pretrained(self,
|
243 |
+
save_directory: Union[str, os.PathLike],
|
244 |
+
state_dict: Optional[dict] = None,
|
245 |
+
):
|
246 |
+
|
247 |
+
model = self
|
248 |
+
|
249 |
+
if state_dict is None:
|
250 |
+
state_dict = model.state_dict()
|
251 |
+
|
252 |
+
os.makedirs(save_directory, exist_ok=True)
|
253 |
+
|
254 |
+
# save state dict
|
255 |
+
model_file = os.path.join(save_directory, MODEL_FILE)
|
256 |
+
torch.save(state_dict, model_file)
|
257 |
+
|
258 |
+
# save config
|
259 |
+
config_file = os.path.join(save_directory, CONFIG_FILE)
|
260 |
+
self.config.to_yaml_file(config_file)
|
261 |
+
return save_directory
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
def main2():
|
266 |
+
|
267 |
+
config = NXCleanUNetConfig()
|
268 |
+
down_sampling = DownSampling(
|
269 |
+
num_layers=config.down_sampling_num_layers,
|
270 |
+
in_channels=config.down_sampling_in_channels,
|
271 |
+
hidden_channels=config.down_sampling_hidden_channels,
|
272 |
+
kernel_size=config.down_sampling_kernel_size,
|
273 |
+
stride=config.down_sampling_stride,
|
274 |
+
)
|
275 |
+
up_sampling = UpSampling(
|
276 |
+
num_layers=config.down_sampling_num_layers,
|
277 |
+
out_channels=config.down_sampling_in_channels,
|
278 |
+
hidden_channels=config.down_sampling_hidden_channels,
|
279 |
+
kernel_size=config.down_sampling_kernel_size,
|
280 |
+
stride=config.down_sampling_stride,
|
281 |
+
)
|
282 |
+
|
283 |
+
# shape: [batch_size, channels, num_samples]
|
284 |
+
# min length: 94, stride: 32, 32 == 2**5
|
285 |
+
# x = torch.ones([4, 1, 94])
|
286 |
+
# x = torch.ones([4, 1, 126])
|
287 |
+
# x = torch.ones([4, 1, 158])
|
288 |
+
x = torch.ones([4, 1, 190])
|
289 |
+
|
290 |
+
length = x.shape[-1]
|
291 |
+
padded_length = get_padding_length(
|
292 |
+
length,
|
293 |
+
num_layers=config.down_sampling_num_layers,
|
294 |
+
kernel_size=config.down_sampling_kernel_size,
|
295 |
+
stride=config.down_sampling_stride,
|
296 |
+
)
|
297 |
+
x = F.pad(input=x, pad=(0, padded_length - length), mode="constant", value=0)
|
298 |
+
# print(x)
|
299 |
+
print(x.shape)
|
300 |
+
bottle_neck = down_sampling.forward(x)
|
301 |
+
print("-" * 150)
|
302 |
+
x = up_sampling.forward(bottle_neck)
|
303 |
+
print(x.shape)
|
304 |
+
return
|
305 |
+
|
306 |
+
|
307 |
+
def main():
|
308 |
+
|
309 |
+
config = NXCleanUNetConfig()
|
310 |
+
|
311 |
+
# shape: [batch_size, channels, num_samples]
|
312 |
+
# min length: 94, stride: 32, 32 == 2**5
|
313 |
+
# x = torch.ones([4, 1, 94])
|
314 |
+
# x = torch.ones([4, 1, 126])
|
315 |
+
# x = torch.ones([4, 1, 158])
|
316 |
+
# x = torch.ones([4, 1, 190])
|
317 |
+
x = torch.ones([4, 1, 16000])
|
318 |
+
|
319 |
+
model = NXCleanUNet(config)
|
320 |
+
enhanced_audios = model.forward(x)
|
321 |
+
print(enhanced_audios.shape)
|
322 |
+
return
|
323 |
+
|
324 |
+
|
325 |
+
if __name__ == "__main__":
|
326 |
+
main()
|
toolbox/torchaudio/models/nx_clean_unet/transformer/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/torchaudio/models/nx_clean_unet/transformer/mask.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def make_pad_mask(lengths: torch.Tensor,
|
7 |
+
max_len: int = 0,
|
8 |
+
) -> torch.Tensor:
|
9 |
+
batch_size = lengths.size(0)
|
10 |
+
max_len = max_len if max_len > 0 else lengths.max().item()
|
11 |
+
seq_range = torch.arange(
|
12 |
+
0,
|
13 |
+
max_len,
|
14 |
+
dtype=torch.int64,
|
15 |
+
device=lengths.device
|
16 |
+
)
|
17 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
18 |
+
seq_length_expand = lengths.unsqueeze(-1)
|
19 |
+
mask = seq_range_expand >= seq_length_expand
|
20 |
+
return mask
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def subsequent_chunk_mask(
|
25 |
+
size: int,
|
26 |
+
chunk_size: int,
|
27 |
+
num_left_chunks: int = -1,
|
28 |
+
device: torch.device = torch.device("cpu"),
|
29 |
+
) -> torch.Tensor:
|
30 |
+
"""
|
31 |
+
Create mask for subsequent steps (size, size) with chunk size,
|
32 |
+
this is for streaming encoder
|
33 |
+
|
34 |
+
Examples:
|
35 |
+
> subsequent_chunk_mask(4, 2)
|
36 |
+
[[1, 1, 0, 0],
|
37 |
+
[1, 1, 0, 0],
|
38 |
+
[1, 1, 1, 1],
|
39 |
+
[1, 1, 1, 1]]
|
40 |
+
|
41 |
+
:param size: int. size of mask.
|
42 |
+
:param chunk_size: int. size of chunk.
|
43 |
+
:param num_left_chunks: int. number of left chunks. <0: use full chunk. >=0 use num_left_chunks.
|
44 |
+
:param device: torch.device. "cpu" or "cuda" or torch.Tensor.device.
|
45 |
+
:return: torch.Tensor. mask
|
46 |
+
"""
|
47 |
+
|
48 |
+
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
49 |
+
for i in range(size):
|
50 |
+
if num_left_chunks < 0:
|
51 |
+
start = 0
|
52 |
+
else:
|
53 |
+
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
54 |
+
ending = min((i // chunk_size + 1) * chunk_size, size)
|
55 |
+
ret[i, start:ending] = True
|
56 |
+
return ret
|
57 |
+
|
58 |
+
|
59 |
+
def main():
|
60 |
+
chunk_mask = subsequent_chunk_mask(size=8, chunk_size=2, num_left_chunks=2)
|
61 |
+
print(chunk_mask)
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|
toolbox/torchaudio/models/nx_clean_unet/transformer/transformer.py
ADDED
@@ -0,0 +1,577 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import math
|
4 |
+
from typing import Dict, Optional, Tuple, List, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as f
|
9 |
+
|
10 |
+
from toolbox.torchaudio.models.nx_clean_unet.transformer.mask import subsequent_chunk_mask
|
11 |
+
|
12 |
+
|
13 |
+
class SinusoidalPositionalEncoding(nn.Module):
|
14 |
+
"""
|
15 |
+
Positional Encoding
|
16 |
+
|
17 |
+
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
18 |
+
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
19 |
+
"""
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def demo1():
|
23 |
+
batch_size = 2
|
24 |
+
time_steps = 10
|
25 |
+
embedding_dim = 64
|
26 |
+
|
27 |
+
pe = SinusoidalPositionalEncoding(
|
28 |
+
embedding_dim=embedding_dim,
|
29 |
+
dropout_rate=0.1,
|
30 |
+
)
|
31 |
+
|
32 |
+
x = torch.randn(size=(batch_size, time_steps, embedding_dim))
|
33 |
+
|
34 |
+
x, pos_emb = pe.forward(x)
|
35 |
+
|
36 |
+
# torch.Size([2, 10, 64])
|
37 |
+
print(x.shape)
|
38 |
+
# torch.Size([1, 10, 64])
|
39 |
+
print(pos_emb.shape)
|
40 |
+
return
|
41 |
+
|
42 |
+
@staticmethod
|
43 |
+
def demo2():
|
44 |
+
batch_size = 2
|
45 |
+
time_steps = 10
|
46 |
+
embedding_dim = 64
|
47 |
+
|
48 |
+
pe = SinusoidalPositionalEncoding(
|
49 |
+
embedding_dim=embedding_dim,
|
50 |
+
dropout_rate=0.1,
|
51 |
+
)
|
52 |
+
|
53 |
+
x = torch.randn(size=(batch_size, time_steps, embedding_dim))
|
54 |
+
offset = torch.randint(low=3, high=7, size=(batch_size,))
|
55 |
+
x, pos_emb = pe.forward(x, offset=offset)
|
56 |
+
|
57 |
+
# tensor([3, 4])
|
58 |
+
print(offset)
|
59 |
+
# torch.Size([2, 10, 64])
|
60 |
+
print(x.shape)
|
61 |
+
# torch.Size([2, 10, 64])
|
62 |
+
print(pos_emb.shape)
|
63 |
+
return
|
64 |
+
|
65 |
+
def __init__(self,
|
66 |
+
embedding_dim: int,
|
67 |
+
dropout_rate: float,
|
68 |
+
max_length: int = 5000,
|
69 |
+
reverse: bool = False
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
self.embedding_dim = embedding_dim
|
73 |
+
self.dropout_rate = dropout_rate
|
74 |
+
self.max_length = max_length
|
75 |
+
self.reverse = reverse
|
76 |
+
|
77 |
+
self.x_scale = math.sqrt(self.embedding_dim)
|
78 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
79 |
+
|
80 |
+
self.pe = torch.zeros(self.max_length, self.embedding_dim)
|
81 |
+
position = torch.arange(0, self.max_length, dtype=torch.float32).unsqueeze(1)
|
82 |
+
|
83 |
+
div_term = torch.exp(
|
84 |
+
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) *
|
85 |
+
- (math.log(10000.0) / self.embedding_dim)
|
86 |
+
)
|
87 |
+
self.pe[:, 0::2] = torch.sin(position * div_term)
|
88 |
+
self.pe[:, 1::2] = torch.cos(position * div_term)
|
89 |
+
self.pe = self.pe.unsqueeze(0)
|
90 |
+
|
91 |
+
def forward(self,
|
92 |
+
x: torch.Tensor,
|
93 |
+
offset: Union[int, torch.Tensor] = 0
|
94 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
95 |
+
"""
|
96 |
+
Add positional encoding.
|
97 |
+
:param x: torch.Tensor. Input. shape=(batch_size, time_steps, ...).
|
98 |
+
:param offset: int or torch.Tensor. position offset.
|
99 |
+
:return:
|
100 |
+
torch.Tensor. Encoded tensor. shape=(batch_size, time_steps, ...).
|
101 |
+
torch.Tensor. for compatibility to RelPositionalEncoding. shape=(1, time_steps, ...).
|
102 |
+
"""
|
103 |
+
self.pe = self.pe.to(x.device)
|
104 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
105 |
+
x = x * self.x_scale + pos_emb
|
106 |
+
return self.dropout(x), self.dropout(pos_emb)
|
107 |
+
|
108 |
+
def position_encoding(self,
|
109 |
+
offset: Union[int, torch.Tensor],
|
110 |
+
size: int,
|
111 |
+
apply_dropout: bool = True
|
112 |
+
) -> torch.Tensor:
|
113 |
+
"""
|
114 |
+
For getting encoding in a streaming fashion.
|
115 |
+
|
116 |
+
Attention!!!!!
|
117 |
+
we apply dropout only once at the whole utterance level in a none
|
118 |
+
streaming way, but will call this function several times with
|
119 |
+
increasing input size in a streaming scenario, so the dropout will
|
120 |
+
be applied several times.
|
121 |
+
|
122 |
+
:param offset: int or torch.Tensor. start offset.
|
123 |
+
:param size: int. required size of position encoding.
|
124 |
+
:param apply_dropout:
|
125 |
+
:return: torch.Tensor. Corresponding encoding.
|
126 |
+
"""
|
127 |
+
if isinstance(offset, int):
|
128 |
+
assert offset + size <= self.max_length
|
129 |
+
pos_emb = self.pe[:, offset:offset + size]
|
130 |
+
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
131 |
+
assert offset + size <= self.max_length
|
132 |
+
pos_emb = self.pe[:, offset:offset + size]
|
133 |
+
else: # for batched streaming decoding on GPU
|
134 |
+
# offset. shape=(batch_size,)
|
135 |
+
assert torch.max(offset) + size <= self.max_length
|
136 |
+
|
137 |
+
# shape=(batch_size, time_steps)
|
138 |
+
index = offset.unsqueeze(1) + torch.arange(0, size).to(offset.device)
|
139 |
+
flag = index > 0
|
140 |
+
# remove negative offset
|
141 |
+
index = index * flag
|
142 |
+
# shape=(batch_size, time_steps, embedding_dim)
|
143 |
+
pos_emb = f.embedding(index, self.pe[0])
|
144 |
+
|
145 |
+
if apply_dropout:
|
146 |
+
pos_emb = self.dropout(pos_emb)
|
147 |
+
return pos_emb
|
148 |
+
|
149 |
+
|
150 |
+
class RelPositionalEncoding(SinusoidalPositionalEncoding):
|
151 |
+
"""
|
152 |
+
Relative positional encoding module.
|
153 |
+
|
154 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
155 |
+
|
156 |
+
"""
|
157 |
+
def __init__(self,
|
158 |
+
embedding_dim: int,
|
159 |
+
dropout_rate: float,
|
160 |
+
max_length: int = 5000,
|
161 |
+
):
|
162 |
+
super().__init__(embedding_dim, dropout_rate, max_length, reverse=True)
|
163 |
+
|
164 |
+
def forward(self,
|
165 |
+
x: torch.Tensor,
|
166 |
+
offset: Union[int, torch.Tensor] = 0
|
167 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
168 |
+
"""
|
169 |
+
Compute positional encoding.
|
170 |
+
:param x: torch.Tensor. Input. shape=(batch_size, time_steps, ...).
|
171 |
+
:param offset:
|
172 |
+
:return:
|
173 |
+
torch.Tensor. Encoded tensor. shape=(batch_size, time_steps, ...).
|
174 |
+
torch.Tensor. Positional embedding tensor. shape=(1, time_steps, ...).
|
175 |
+
"""
|
176 |
+
self.pe = self.pe.to(x.device)
|
177 |
+
x = x * self.x_scale
|
178 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
179 |
+
return self.dropout(x), self.dropout(pos_emb)
|
180 |
+
|
181 |
+
|
182 |
+
class PositionwiseFeedForward(nn.Module):
|
183 |
+
def __init__(self,
|
184 |
+
input_dim: int,
|
185 |
+
hidden_units: int,
|
186 |
+
dropout_rate: float,
|
187 |
+
activation: torch.nn.Module = torch.nn.ReLU()):
|
188 |
+
"""
|
189 |
+
FeedForward are applied on each position of the sequence.
|
190 |
+
the output dim is same with the input dim.
|
191 |
+
|
192 |
+
:param input_dim: int. input dimension.
|
193 |
+
:param hidden_units: int. the number of hidden units.
|
194 |
+
:param dropout_rate: float. dropout rate.
|
195 |
+
:param activation: torch.nn.Module. activation function.
|
196 |
+
"""
|
197 |
+
super(PositionwiseFeedForward, self).__init__()
|
198 |
+
self.w_1 = torch.nn.Linear(input_dim, hidden_units)
|
199 |
+
self.activation = activation
|
200 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
201 |
+
self.w_2 = torch.nn.Linear(hidden_units, input_dim)
|
202 |
+
|
203 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
204 |
+
"""
|
205 |
+
Forward function.
|
206 |
+
:param xs: torch.Tensor. input tensor. shape=(batch_size, max_length, dim).
|
207 |
+
:return: output tensor. shape=(batch_size, max_length, dim).
|
208 |
+
"""
|
209 |
+
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
210 |
+
|
211 |
+
|
212 |
+
class MultiHeadedAttention(nn.Module):
|
213 |
+
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
|
214 |
+
"""
|
215 |
+
:param n_head: int. the number of heads.
|
216 |
+
:param n_feat: int. the number of features.
|
217 |
+
:param dropout_rate: float. dropout rate.
|
218 |
+
"""
|
219 |
+
super().__init__()
|
220 |
+
assert n_feat % n_head == 0
|
221 |
+
# We assume d_v always equals d_k
|
222 |
+
self.d_k = n_feat // n_head
|
223 |
+
self.h = n_head
|
224 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
225 |
+
self.linear_k = nn.Linear(n_feat, n_feat)
|
226 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
227 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
228 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
229 |
+
|
230 |
+
def forward_qkv(self,
|
231 |
+
query: torch.Tensor,
|
232 |
+
key: torch.Tensor,
|
233 |
+
value: torch.Tensor
|
234 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
235 |
+
"""
|
236 |
+
transform query, key and value.
|
237 |
+
:param query: torch.Tensor. query tensor. shape=(batch_size, time1, n_feat).
|
238 |
+
:param key: torch.Tensor. key tensor. shape=(batch_size, time2, n_feat).
|
239 |
+
:param value: torch.Tensor. value tensor. shape=(batch_size, time2, n_feat).
|
240 |
+
:return:
|
241 |
+
"""
|
242 |
+
n_batch = query.size(0)
|
243 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
244 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
245 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
246 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
247 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
248 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
249 |
+
|
250 |
+
return q, k, v
|
251 |
+
|
252 |
+
def forward_attention(self,
|
253 |
+
value: torch.Tensor,
|
254 |
+
scores: torch.Tensor,
|
255 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
256 |
+
) -> torch.Tensor:
|
257 |
+
"""
|
258 |
+
compute attention context vector.
|
259 |
+
:param value: torch.Tensor. transformed value. shape=(batch_size, n_head, time2, d_k).
|
260 |
+
:param scores: torch.Tensor. attention score. shape=(batch_size, n_head, time1, time2).
|
261 |
+
:param mask: torch.Tensor. mask. shape=(batch_size, 1, time2) or
|
262 |
+
(batch_size, time1, time2), (0, 0, 0) means fake mask.
|
263 |
+
:return: torch.Tensor. transformed value. (batch_size, time1, d_model).
|
264 |
+
weighted by the attention score (batch_size, time1, time2).
|
265 |
+
"""
|
266 |
+
n_batch = value.size(0)
|
267 |
+
# NOTE: When will `if mask.size(2) > 0` be True?
|
268 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
269 |
+
# 1st chunk to ease the onnx export.]
|
270 |
+
# 2. pytorch training
|
271 |
+
if mask.size(2) > 0: # time2 > 0
|
272 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
273 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
274 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
275 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
276 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2)
|
277 |
+
|
278 |
+
# NOTE: When will `if mask.size(2) > 0` be False?
|
279 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
280 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
281 |
+
else:
|
282 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
283 |
+
|
284 |
+
p_attn = self.dropout(attn)
|
285 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
286 |
+
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) # (batch, time1, n_feat)
|
287 |
+
|
288 |
+
return self.linear_out(x) # (batch, time1, n_feat)
|
289 |
+
|
290 |
+
def forward(self,
|
291 |
+
query: torch.Tensor,
|
292 |
+
key: torch.Tensor,
|
293 |
+
value: torch.Tensor,
|
294 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
295 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
296 |
+
**kwargs,
|
297 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
298 |
+
"""
|
299 |
+
compute scaled dot product attention.
|
300 |
+
:param query: torch.Tensor. query tensor. shape=(batch_size, time1, n_feat).
|
301 |
+
:param key: torch.Tensor. key tensor. shape=(batch_size, time2, n_feat).
|
302 |
+
:param value: torch.Tensor. value tensor. shape=(batch_size, time2, n_feat).
|
303 |
+
:param mask: torch.Tensor. mask tensor (batch_size, 1, time2) or
|
304 |
+
(batch_size, time1, time2).
|
305 |
+
:param cache: torch.Tensor. cache tensor. shape=(1, head, cache_t, d_k * 2),
|
306 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
307 |
+
and `head * d_k == n_feat`
|
308 |
+
:return:
|
309 |
+
torch.Tensor. output tensor. shape=(batch_size, time1, n_feat).
|
310 |
+
torch.Tensor. cache tensor. (1, head, cache_t + time1, d_k * 2)
|
311 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
312 |
+
and `head * d_k == n_feat`
|
313 |
+
"""
|
314 |
+
q, k, v = self.forward_qkv(query, key, value)
|
315 |
+
|
316 |
+
# NOTE:
|
317 |
+
# when export onnx model, for 1st chunk, we feed
|
318 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
319 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
320 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
321 |
+
# and we will always do splitting and
|
322 |
+
# concatnation(this will simplify onnx export). Note that
|
323 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
324 |
+
# when export jit model, for 1st chunk, we always feed
|
325 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
326 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
327 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
328 |
+
# >>> c = torch.cat((a, b), dim=2)
|
329 |
+
# >>> torch.equal(b, c) # True
|
330 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
331 |
+
# >>> torch.equal(d[0], d[1]) # True
|
332 |
+
if cache.size(0) > 0:
|
333 |
+
key_cache, value_cache = torch.split(
|
334 |
+
cache, cache.size(-1) // 2, dim=-1)
|
335 |
+
k = torch.cat([key_cache, k], dim=2)
|
336 |
+
v = torch.cat([value_cache, v], dim=2)
|
337 |
+
# NOTE: We do cache slicing in encoder.forward_chunk, since it's
|
338 |
+
# non-trivial to calculate `next_cache_start` here.
|
339 |
+
new_cache = torch.cat((k, v), dim=-1)
|
340 |
+
|
341 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
342 |
+
return self.forward_attention(v, scores, mask), new_cache
|
343 |
+
|
344 |
+
|
345 |
+
class TransformerEncoderLayer(nn.Module):
|
346 |
+
def __init__(self,
|
347 |
+
input_dim: int,
|
348 |
+
dropout_rate: float = 0.1,
|
349 |
+
n_heads: int = 4,
|
350 |
+
):
|
351 |
+
super().__init__()
|
352 |
+
self.norm1 = nn.LayerNorm(input_dim, eps=1e-5)
|
353 |
+
self.attention = MultiHeadedAttention(
|
354 |
+
n_head=n_heads,
|
355 |
+
n_feat=input_dim,
|
356 |
+
dropout_rate=dropout_rate
|
357 |
+
)
|
358 |
+
|
359 |
+
self.dropout1 = nn.Dropout(dropout_rate)
|
360 |
+
self.norm2 = nn.LayerNorm(input_dim, eps=1e-5)
|
361 |
+
self.ffn = PositionwiseFeedForward(
|
362 |
+
input_dim=input_dim,
|
363 |
+
hidden_units=input_dim,
|
364 |
+
dropout_rate=dropout_rate
|
365 |
+
)
|
366 |
+
self.dropout2 = nn.Dropout(dropout_rate)
|
367 |
+
self.norm3 = nn.LayerNorm(input_dim, eps=1e-5)
|
368 |
+
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
x: torch.Tensor,
|
372 |
+
mask: torch.Tensor,
|
373 |
+
position_embedding: torch.Tensor,
|
374 |
+
attention_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
375 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
376 |
+
"""
|
377 |
+
|
378 |
+
:param x: torch.Tensor. shape=(batch_size, time, input_dim).
|
379 |
+
:param mask: torch.Tensor. mask tensor for the input. shape=(batch_size, time,time).
|
380 |
+
:param position_embedding: torch.Tensor.
|
381 |
+
:param attention_cache: torch.Tensor. cache tensor of the KEY & VALUE
|
382 |
+
shape=(batch_size=1, head, cache_t1, d_k * 2), head * d_k == input_dim.
|
383 |
+
:return:
|
384 |
+
torch.Tensor: Output tensor (batch_size, time, input_dim).
|
385 |
+
torch.Tensor: att_cache tensor, (batch_size=1, head, cache_t1 + time, d_k * 2).
|
386 |
+
"""
|
387 |
+
|
388 |
+
xt = self.norm1(x)
|
389 |
+
|
390 |
+
x_att, new_att_cache = self.attention.forward(
|
391 |
+
xt, xt, xt, mask=mask, cache=attention_cache, position_embedding=position_embedding
|
392 |
+
)
|
393 |
+
x = x + self.dropout1(xt)
|
394 |
+
xt = self.norm2(x)
|
395 |
+
xt = self.ffn.forward(xt)
|
396 |
+
x = x + self.dropout2(xt)
|
397 |
+
|
398 |
+
x = self.norm3(x)
|
399 |
+
|
400 |
+
return x, new_att_cache
|
401 |
+
|
402 |
+
|
403 |
+
class TransformerEncoder(nn.Module):
|
404 |
+
"""
|
405 |
+
https://github.com/wenet-e2e/wenet/blob/main/wenet/transformer/encoder.py#L364
|
406 |
+
"""
|
407 |
+
def __init__(self,
|
408 |
+
input_size: int = 64,
|
409 |
+
hidden_size: int = 256,
|
410 |
+
attention_heads: int = 4,
|
411 |
+
num_blocks: int = 6,
|
412 |
+
dropout_rate: float = 0.1,
|
413 |
+
max_length: int = 512,
|
414 |
+
chunk_size: int = 1,
|
415 |
+
num_left_chunks: int = 128,
|
416 |
+
):
|
417 |
+
super().__init__()
|
418 |
+
self.input_size = input_size
|
419 |
+
self.hidden_size = hidden_size
|
420 |
+
|
421 |
+
self.max_length = max_length
|
422 |
+
self.chunk_size = chunk_size
|
423 |
+
self.num_left_chunks = num_left_chunks
|
424 |
+
|
425 |
+
self.input_linear = nn.Linear(
|
426 |
+
in_features=self.input_size,
|
427 |
+
out_features=self.hidden_size,
|
428 |
+
)
|
429 |
+
|
430 |
+
self.positional_encoding = RelPositionalEncoding(
|
431 |
+
embedding_dim=hidden_size,
|
432 |
+
dropout_rate=dropout_rate,
|
433 |
+
max_length=max_length,
|
434 |
+
)
|
435 |
+
|
436 |
+
self.encoder_layer_list = torch.nn.ModuleList([
|
437 |
+
TransformerEncoderLayer(
|
438 |
+
input_dim=hidden_size,
|
439 |
+
n_heads=attention_heads,
|
440 |
+
dropout_rate=dropout_rate,
|
441 |
+
) for _ in range(num_blocks)
|
442 |
+
])
|
443 |
+
|
444 |
+
self.output_linear = nn.Linear(
|
445 |
+
in_features=self.hidden_size,
|
446 |
+
out_features=self.input_size,
|
447 |
+
)
|
448 |
+
|
449 |
+
def forward(self,
|
450 |
+
xs: torch.Tensor,
|
451 |
+
):
|
452 |
+
"""
|
453 |
+
:param xs: Tensor, shape: [batch_size, time_steps, input_size]
|
454 |
+
:return: Tensor, shape: [batch_size, time_steps, input_size]
|
455 |
+
"""
|
456 |
+
batch_size, time_steps, _ = xs.shape
|
457 |
+
# xs shape: [batch_size, time_steps, input_size]
|
458 |
+
xs = self.input_linear.forward(xs)
|
459 |
+
# xs shape: [batch_size, time_steps, hidden_size]
|
460 |
+
|
461 |
+
xs, position_embedding = self.positional_encoding.forward(xs)
|
462 |
+
# xs shape: [batch_size, time_steps, hidden_size]
|
463 |
+
# position_embedding shape: [1, time_steps, hidden_size]
|
464 |
+
|
465 |
+
chunk_masks = subsequent_chunk_mask(
|
466 |
+
size=time_steps,
|
467 |
+
chunk_size=self.chunk_size,
|
468 |
+
num_left_chunks=self.num_left_chunks
|
469 |
+
)
|
470 |
+
# chunk_masks shape: [1, time_steps, time_steps]
|
471 |
+
chunk_masks = torch.broadcast_to(chunk_masks, size=(batch_size, time_steps, time_steps))
|
472 |
+
# chunk_masks shape: [batch_size, time_steps, time_steps]
|
473 |
+
|
474 |
+
for encoder_layer in self.encoder_layer_list:
|
475 |
+
xs, _ = encoder_layer.forward(xs, chunk_masks, position_embedding)
|
476 |
+
|
477 |
+
# xs shape: [batch_size, time_steps, hidden_size]
|
478 |
+
xs = self.output_linear.forward(xs)
|
479 |
+
# xs shape: [batch_size, time_steps, input_size]
|
480 |
+
|
481 |
+
return xs
|
482 |
+
|
483 |
+
def forward_chunk(self,
|
484 |
+
xs: torch.Tensor,
|
485 |
+
offset: int,
|
486 |
+
attention_mask: torch.Tensor = torch.zeros(0, 0, 0),
|
487 |
+
attention_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
488 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
489 |
+
"""
|
490 |
+
Forward just one chunk.
|
491 |
+
:param xs: torch.Tensor. chunk input, with shape (b=1, time, mel-dim),
|
492 |
+
where `time == (chunk_size - 1) * subsample_rate + subsample.right_context + 1`
|
493 |
+
:param offset: int. current offset in encoder output timestamp.
|
494 |
+
:param attention_mask:
|
495 |
+
:param attention_cache: torch.Tensor. cache tensor for KEY & VALUE in
|
496 |
+
transformer/conformer attention, with shape
|
497 |
+
(elayers, head, cache_t1, d_k * 2), where
|
498 |
+
`head * d_k == hidden-dim` and
|
499 |
+
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
500 |
+
:return:
|
501 |
+
"""
|
502 |
+
# xs shape: [batch_size, time_steps, input_size]
|
503 |
+
xs = self.input_linear.forward(xs)
|
504 |
+
# xs shape: [batch_size, time_steps, hidden_size]
|
505 |
+
|
506 |
+
xs, position_embedding = self.positional_encoding.forward(xs, offset=offset)
|
507 |
+
# xs shape: [batch_size, time_steps, hidden_size]
|
508 |
+
# position_embedding shape: [1, time_steps, hidden_size]
|
509 |
+
|
510 |
+
r_att_cache = []
|
511 |
+
for encoder_layer in self.encoder_layer_list:
|
512 |
+
xs, new_att_cache = encoder_layer.forward(
|
513 |
+
x=xs, mask=attention_mask,
|
514 |
+
position_embedding=position_embedding,
|
515 |
+
attention_cache=attention_cache,
|
516 |
+
)
|
517 |
+
r_att_cache.append(new_att_cache[:, :, self.chunk_size:, :])
|
518 |
+
|
519 |
+
r_att_cache = torch.cat(r_att_cache, dim=0)
|
520 |
+
|
521 |
+
return xs, r_att_cache
|
522 |
+
|
523 |
+
def forward_chunk_by_chunk(
|
524 |
+
self,
|
525 |
+
xs: torch.Tensor,
|
526 |
+
) -> torch.Tensor:
|
527 |
+
|
528 |
+
batch_size, time_steps, _ = xs.shape
|
529 |
+
|
530 |
+
offset = 0
|
531 |
+
attention_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
532 |
+
attention_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
533 |
+
|
534 |
+
outputs = []
|
535 |
+
for idx in range(0, time_steps - self.chunk_size + 1, self.chunk_size):
|
536 |
+
begin = idx * self.chunk_size
|
537 |
+
end = begin + self.chunk_size
|
538 |
+
chunk_xs = xs[:, begin:end, :]
|
539 |
+
|
540 |
+
ys, att_cache = self.forward_chunk(
|
541 |
+
xs=chunk_xs, attention_mask=attention_mask,
|
542 |
+
offset=offset, attention_cache=attention_cache
|
543 |
+
)
|
544 |
+
# xs shape: [batch_size, chunk_size, hidden_size]
|
545 |
+
ys = self.output_linear.forward(ys)
|
546 |
+
# xs shape: [batch_size, chunk_size, input_size]
|
547 |
+
|
548 |
+
offset += self.chunk_size
|
549 |
+
outputs.append(ys)
|
550 |
+
|
551 |
+
ys = torch.cat(outputs, 1)
|
552 |
+
return ys
|
553 |
+
|
554 |
+
|
555 |
+
def main():
|
556 |
+
|
557 |
+
encoder = TransformerEncoder(
|
558 |
+
input_size=64,
|
559 |
+
hidden_size=256,
|
560 |
+
attention_heads=4,
|
561 |
+
num_blocks=6,
|
562 |
+
dropout_rate=0.1,
|
563 |
+
)
|
564 |
+
|
565 |
+
x = torch.ones([4, 200, 64])
|
566 |
+
|
567 |
+
y = encoder.forward(xs=x)
|
568 |
+
print(y.shape)
|
569 |
+
|
570 |
+
# y = encoder.forward_chunk_by_chunk(xs=x)
|
571 |
+
# print(y.shape)
|
572 |
+
|
573 |
+
return
|
574 |
+
|
575 |
+
|
576 |
+
if __name__ == '__main__':
|
577 |
+
main()
|
toolbox/torchaudio/models/nx_clean_unet/utils.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class LearnableSigmoid1d(nn.Module):
|
8 |
+
def __init__(self, in_features, beta=1):
|
9 |
+
super().__init__()
|
10 |
+
self.beta = beta
|
11 |
+
self.slope = nn.Parameter(torch.ones(in_features))
|
12 |
+
self.slope.requiresGrad = True
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
# x shape: [batch_size, time_steps, spec_bins]
|
16 |
+
return self.beta * torch.sigmoid(self.slope * x)
|
17 |
+
|
18 |
+
|
19 |
+
def mag_pha_stft(y, n_fft, hop_size, win_size, compress_factor=1.0, center=True):
|
20 |
+
|
21 |
+
hann_window = torch.hann_window(win_size).to(y.device)
|
22 |
+
stft_spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window,
|
23 |
+
center=center, pad_mode='reflect', normalized=False, return_complex=True)
|
24 |
+
stft_spec = torch.view_as_real(stft_spec)
|
25 |
+
mag = torch.sqrt(stft_spec.pow(2).sum(-1) + 1e-9)
|
26 |
+
pha = torch.atan2(stft_spec[:, :, :, 1] + 1e-10, stft_spec[:, :, :, 0] + 1e-5)
|
27 |
+
# Magnitude Compression
|
28 |
+
mag = torch.pow(mag, compress_factor)
|
29 |
+
com = torch.stack((mag*torch.cos(pha), mag*torch.sin(pha)), dim=-1)
|
30 |
+
|
31 |
+
return mag, pha, com
|
32 |
+
|
33 |
+
|
34 |
+
def mag_pha_istft(mag, pha, n_fft, hop_size, win_size, compress_factor=1.0, center=True):
|
35 |
+
# Magnitude Decompression
|
36 |
+
mag = torch.pow(mag, (1.0/compress_factor))
|
37 |
+
com = torch.complex(mag*torch.cos(pha), mag*torch.sin(pha))
|
38 |
+
hann_window = torch.hann_window(win_size).to(com.device)
|
39 |
+
wav = torch.istft(com, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center)
|
40 |
+
|
41 |
+
return wav
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
pass
|
toolbox/torchaudio/models/nx_clean_unet/yaml/config.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name: "nx_clean_unet"
|
2 |
+
|
3 |
+
sample_rate: 8000
|
4 |
+
segment_size: 16000
|
5 |
+
n_fft: 512
|
6 |
+
win_size: 200
|
7 |
+
hop_size: 80
|
8 |
+
|
9 |
+
down_sampling_num_layers: 5
|
10 |
+
down_sampling_in_channels: 1
|
11 |
+
down_sampling_hidden_channels: 64
|
12 |
+
down_sampling_kernel_size: 4
|
13 |
+
down_sampling_stride: 2
|
14 |
+
|
15 |
+
tsfm_hidden_size: 256
|
16 |
+
tsfm_attention_heads: 4
|
17 |
+
tsfm_num_blocks: 6
|
18 |
+
tsfm_dropout_rate: 0.1
|
19 |
+
|
20 |
+
discriminator_dim: 32
|
21 |
+
discriminator_in_channel: 2
|
22 |
+
|
23 |
+
compress_factor: 0.3
|