File size: 5,563 Bytes
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1f7b5
6c8bea2
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8bea2
 
 
f74ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import os
from pathlib import Path
import random
import sys
import shutil

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import pandas as pd
from scipy.io import wavfile
from tqdm import tqdm
import librosa

from project_settings import project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--file_dir", default="./", type=str)

    parser.add_argument(
        "--noise_dir",
        default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
        type=str
    )
    parser.add_argument(
        "--speech_dir",
        default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
        type=str
    )

    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--duration", default=2.0, type=float)
    parser.add_argument("--min_snr_db", default=-10, type=float)
    parser.add_argument("--max_snr_db", default=20, type=float)

    parser.add_argument("--target_sample_rate", default=8000, type=int)

    parser.add_argument("--scale", default=1, type=float)

    args = parser.parse_args()
    return args


def filename_generator(data_dir: str):
    data_dir = Path(data_dir)
    for filename in data_dir.glob("**/*.wav"):
        yield filename.as_posix()


def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000):
    data_dir = Path(data_dir)
    for filename in data_dir.glob("**/*.wav"):
        signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
        raw_duration = librosa.get_duration(y=signal, sr=sample_rate)

        if raw_duration < duration:
            # print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
            continue
        if signal.ndim != 1:
            raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")

        signal_length = len(signal)
        win_size = int(duration * sample_rate)
        for begin in range(0, signal_length - win_size, win_size):
            row = {
                "filename": filename.as_posix(),
                "raw_duration": round(raw_duration, 4),
                "offset": round(begin / sample_rate, 4),
                "duration": round(duration, 4),
            }
            yield row


def get_dataset(args):
    file_dir = Path(args.file_dir)
    file_dir.mkdir(exist_ok=True)

    noise_dir = Path(args.noise_dir)
    speech_dir = Path(args.speech_dir)

    noise_generator = target_second_signal_generator(
        noise_dir.as_posix(),
        duration=args.duration,
        sample_rate=args.target_sample_rate
    )
    speech_generator = target_second_signal_generator(
        speech_dir.as_posix(),
        duration=args.duration,
        sample_rate=args.target_sample_rate
    )

    dataset = list()

    count = 0
    process_bar = tqdm(desc="build dataset excel")
    for noise, speech in zip(noise_generator, speech_generator):
        flag = random.random()
        if flag > args.scale:
            continue

        noise_filename = noise["filename"]
        noise_raw_duration = noise["raw_duration"]
        noise_offset = noise["offset"]
        noise_duration = noise["duration"]

        speech_filename = speech["filename"]
        speech_raw_duration = speech["raw_duration"]
        speech_offset = speech["offset"]
        speech_duration = speech["duration"]

        random1 = random.random()
        random2 = random.random()

        row = {
            "noise_filename": noise_filename,
            "noise_raw_duration": noise_raw_duration,
            "noise_offset": noise_offset,
            "noise_duration": noise_duration,

            "speech_filename": speech_filename,
            "speech_raw_duration": speech_raw_duration,
            "speech_offset": speech_offset,
            "speech_duration": speech_duration,

            "snr_db": random.uniform(args.min_snr_db, args.max_snr_db),

            "random1": random1,
            "random2": random2,
            "flag": "TRAIN" if random2 < 0.8 else "TEST",
        }
        dataset.append(row)
        count += 1
        duration_seconds = count * args.duration
        duration_hours = duration_seconds / 3600

        process_bar.update(n=1)
        process_bar.set_postfix({
            # "duration_seconds": round(duration_seconds, 4),
            "duration_hours": round(duration_hours, 4),

        })

    dataset = pd.DataFrame(dataset)
    dataset = dataset.sort_values(by=["random1"], ascending=False)
    dataset.to_excel(
        file_dir / "dataset.xlsx",
        index=False,
    )
    return



def split_dataset(args):
    """分割训练集, 测试集"""
    file_dir = Path(args.file_dir)
    file_dir.mkdir(exist_ok=True)

    df = pd.read_excel(file_dir / "dataset.xlsx")

    train = list()
    test = list()

    for i, row in df.iterrows():
        flag = row["flag"]
        if flag == "TRAIN":
            train.append(row)
        else:
            test.append(row)

    train = pd.DataFrame(train)
    train.to_excel(
        args.train_dataset,
        index=False,
        # encoding="utf_8_sig"
    )
    test = pd.DataFrame(test)
    test.to_excel(
        args.valid_dataset,
        index=False,
        # encoding="utf_8_sig"
    )

    return


def main():
    args = get_args()

    get_dataset(args)
    split_dataset(args)
    return


if __name__ == "__main__":
    main()