Spaces:
Running
Running
punithkumar779
commited on
Commit
•
478d982
1
Parent(s):
e7e5e6d
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
3 |
from PIFuHD.data import EvalWMetaDataset
|
4 |
from PIFuHD.data.ImageBundle import ImageBundle
|
5 |
from PIFuHD.options import BaseOptions
|
@@ -9,9 +11,7 @@ from human_pose_estimator import PoseEstimator
|
|
9 |
from estimator import rect
|
10 |
|
11 |
REPO_ID = "cxeep/PIFuHD"
|
12 |
-
|
13 |
pose_estimator = PoseEstimator("cpu")
|
14 |
-
|
15 |
checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename="pifuhd.pt")
|
16 |
|
17 |
cmd = [
|
@@ -23,51 +23,74 @@ cmd = [
|
|
23 |
'--start_id', '-1',
|
24 |
'--end_id', '-1'
|
25 |
]
|
26 |
-
|
27 |
parser = BaseOptions()
|
28 |
opts = parser.parse(cmd)
|
29 |
reconstructor = Reconstructor(opts)
|
30 |
|
31 |
-
|
32 |
def make_bundle(image, name):
|
33 |
image, rects = rect(pose_estimator, image)
|
34 |
return ImageBundle(img=image, name=name, meta=rects)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
footer = r"""
|
44 |
<center>
|
45 |
-
<b>
|
46 |
-
3D Human Digitization
|
47 |
-
</b>
|
48 |
</center>
|
49 |
"""
|
50 |
|
51 |
with gr.Blocks(title="PIFuHD") as app:
|
52 |
gr.HTML("<center><h1>3D Human Digitization</h1></center>")
|
|
|
|
|
53 |
with gr.Row(equal_height=False):
|
54 |
with gr.Column():
|
55 |
input_img = gr.Image(type="numpy", label="Input image")
|
|
|
56 |
run_btn = gr.Button(variant="primary")
|
57 |
with gr.Column():
|
58 |
output_obj = gr.Model3D(label="Output model")
|
59 |
output_img = gr.Image(type="filepath", label="Output image")
|
60 |
-
gr.ClearButton(components=[input_img, output_img, output_obj], variant="stop")
|
61 |
-
|
62 |
-
run_btn.click(predict, [input_img], [output_img, output_obj])
|
63 |
-
|
64 |
with gr.Row():
|
65 |
blobs = [[f"examples/{x:02d}.png"] for x in range(1, 4)]
|
66 |
examples = gr.Dataset(components=[input_img], samples=blobs)
|
67 |
examples.click(lambda x: x[0], [examples], [input_img])
|
68 |
-
|
69 |
with gr.Row():
|
70 |
gr.HTML(footer)
|
71 |
|
72 |
app.launch(share=False, debug=True, show_error=True)
|
73 |
-
app.queue()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
from PIFuHD.data import EvalWMetaDataset
|
6 |
from PIFuHD.data.ImageBundle import ImageBundle
|
7 |
from PIFuHD.options import BaseOptions
|
|
|
11 |
from estimator import rect
|
12 |
|
13 |
REPO_ID = "cxeep/PIFuHD"
|
|
|
14 |
pose_estimator = PoseEstimator("cpu")
|
|
|
15 |
checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename="pifuhd.pt")
|
16 |
|
17 |
cmd = [
|
|
|
23 |
'--start_id', '-1',
|
24 |
'--end_id', '-1'
|
25 |
]
|
|
|
26 |
parser = BaseOptions()
|
27 |
opts = parser.parse(cmd)
|
28 |
reconstructor = Reconstructor(opts)
|
29 |
|
|
|
30 |
def make_bundle(image, name):
|
31 |
image, rects = rect(pose_estimator, image)
|
32 |
return ImageBundle(img=image, name=name, meta=rects)
|
33 |
|
34 |
+
def process_video(video_path):
|
35 |
+
frames = []
|
36 |
+
cap = cv2.VideoCapture(video_path)
|
37 |
+
while cap.isOpened():
|
38 |
+
ret, frame = cap.read()
|
39 |
+
if not ret:
|
40 |
+
break
|
41 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
42 |
+
frames.append(Image.fromarray(frame))
|
43 |
+
cap.release()
|
44 |
+
|
45 |
+
models = []
|
46 |
+
for frame in frames:
|
47 |
+
bundle = make_bundle(np.array(frame), "Model3D")
|
48 |
+
dataset = EvalWMetaDataset(opts, [bundle])
|
49 |
+
model = reconstructor.evaluate(dataset)
|
50 |
+
models.append(model)
|
51 |
+
|
52 |
+
# TODO: Combine models into animation
|
53 |
+
output_animation = models[0] # Placeholder, replace with actual animation
|
54 |
+
|
55 |
+
return output_animation
|
56 |
+
|
57 |
+
def predict(input):
|
58 |
+
if isinstance(input, str): # video
|
59 |
+
return process_video(input)
|
60 |
+
else: # image
|
61 |
+
bundle = make_bundle(input, "Model3D")
|
62 |
+
dataset = EvalWMetaDataset(opts, [bundle])
|
63 |
+
return reconstructor.evaluate(dataset)
|
64 |
|
65 |
footer = r"""
|
66 |
<center>
|
67 |
+
<b>Demo for <a href='https://github.com/facebookresearch/pifuhd'>PIFuHD</a></b>
|
|
|
|
|
68 |
</center>
|
69 |
"""
|
70 |
|
71 |
with gr.Blocks(title="PIFuHD") as app:
|
72 |
gr.HTML("<center><h1>3D Human Digitization</h1></center>")
|
73 |
+
gr.HTML("<center><h3>PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020)</h3></center>")
|
74 |
+
|
75 |
with gr.Row(equal_height=False):
|
76 |
with gr.Column():
|
77 |
input_img = gr.Image(type="numpy", label="Input image")
|
78 |
+
input_video = gr.Video(type="filepath", label="Input Video")
|
79 |
run_btn = gr.Button(variant="primary")
|
80 |
with gr.Column():
|
81 |
output_obj = gr.Model3D(label="Output model")
|
82 |
output_img = gr.Image(type="filepath", label="Output image")
|
83 |
+
gr.ClearButton(components=[input_img, input_video, output_img, output_obj], variant="stop")
|
84 |
+
|
85 |
+
run_btn.click(predict, [input_img, input_video], [output_img, output_obj])
|
86 |
+
|
87 |
with gr.Row():
|
88 |
blobs = [[f"examples/{x:02d}.png"] for x in range(1, 4)]
|
89 |
examples = gr.Dataset(components=[input_img], samples=blobs)
|
90 |
examples.click(lambda x: x[0], [examples], [input_img])
|
91 |
+
|
92 |
with gr.Row():
|
93 |
gr.HTML(footer)
|
94 |
|
95 |
app.launch(share=False, debug=True, show_error=True)
|
96 |
+
app.queue()
|