Tonic commited on
Commit
97729cf
·
1 Parent(s): 25e5767

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -1
app.py CHANGED
@@ -10,6 +10,8 @@ import requests
10
  import json
11
  import openai
12
 
 
 
13
  # Define a function to split text into chunks
14
  def chunk_text(text, chunk_size=2000):
15
  chunks = []
@@ -25,6 +27,10 @@ def chunk_text(text, chunk_size=2000):
25
  if 'learning_objectives' not in st.session_state:
26
  st.session_state.learning_objectives = ""
27
 
 
 
 
 
28
  # Streamlit User Input Form
29
  st.title("Patent Claims Extraction")
30
 
@@ -40,7 +46,7 @@ if audio_file is not None:
40
 
41
  # Moved the submit_button check here
42
  if 'submit_button' in st.session_state:
43
- model = whisper.load_model("base")
44
 
45
  if audio_data:
46
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as audio_file:
@@ -140,5 +146,11 @@ for chunk in chunks:
140
  summary = bert_legal_model(chunk, min_length=8, ratio=0.05)
141
  summaries.append(summary)
142
 
 
143
  # Now you have a list of summaries for each chunk
144
  # You can access them using `summaries[0]`, `summaries[1]`, etc.
 
 
 
 
 
 
10
  import json
11
  import openai
12
 
13
+ # initialize userinput
14
+ userinput = ""
15
  # Define a function to split text into chunks
16
  def chunk_text(text, chunk_size=2000):
17
  chunks = []
 
27
  if 'learning_objectives' not in st.session_state:
28
  st.session_state.learning_objectives = ""
29
 
30
+ # Initialize the Whisper model outside the button
31
+ if 'whisper_model' not in st.session_state:
32
+ st.session_state.whisper_model = whisper.load_model("base")
33
+
34
  # Streamlit User Input Form
35
  st.title("Patent Claims Extraction")
36
 
 
46
 
47
  # Moved the submit_button check here
48
  if 'submit_button' in st.session_state:
49
+ model = st.session_state.whisper_model
50
 
51
  if audio_data:
52
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as audio_file:
 
146
  summary = bert_legal_model(chunk, min_length=8, ratio=0.05)
147
  summaries.append(summary)
148
 
149
+
150
  # Now you have a list of summaries for each chunk
151
  # You can access them using `summaries[0]`, `summaries[1]`, etc.
152
+ # After generating summaries
153
+ for i, summary in enumerate(summaries):
154
+ st.write(f"### Summary {i+1}")
155
+ st.write(summary)
156
+