Tonic commited on
Commit
29ba926
·
1 Parent(s): 6d5d07f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -13
app.py CHANGED
@@ -10,9 +10,10 @@ import requests
10
  import json
11
  import openai
12
 
13
- # initialize userinput
14
  userinput = ""
15
- # Initialize session state
 
16
  if 'claims_extraction' not in st.session_state:
17
  st.session_state.claims_extraction = ""
18
 
@@ -56,17 +57,17 @@ if st.button('Start Transcription'):
56
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as audio_file:
57
  audio_file.write(audio_data)
58
  audio_file_path = audio_file.name
59
- st.audio(audio_file_path, format="audio/wav")
60
- st.info("Transcribing...")
61
- st.success("Transcription complete")
62
- result = model.transcribe(audio_file_path)
63
- transcript = result['text']
64
 
65
- with st.expander("See transcript"):
66
- st.markdown(transcript)
67
 
68
- # Update the user input field with the transcription
69
- userinput = st.text_area("Input Text:", transcript) # Moved up here
70
 
71
  # Model Selection Dropdown
72
  model_choice = st.selectbox(
@@ -121,6 +122,10 @@ if userinput and api_key and st.button("Extract Claims", key="claims_extraction"
121
  # Display generated objectives for all chunks
122
  learning_status_placeholder.text(f"Patentable Claims Extracted!\n{all_extracted_claims.strip()}")
123
 
 
 
 
 
124
  from transformers import AutoConfig, AutoTokenizer, AutoModel
125
  from summarizer import Summarizer
126
 
@@ -153,11 +158,9 @@ for chunk in chunks:
153
  summary = bert_legal_model(chunk, min_length=8, ratio=0.05)
154
  summaries.append(summary)
155
 
156
-
157
  # Now you have a list of summaries for each chunk
158
  # You can access them using `summaries[0]`, `summaries[1]`, etc.
159
  # After generating summaries
160
  for i, summary in enumerate(summaries):
161
  st.write(f"### Summary {i+1}")
162
  st.write(summary)
163
-
 
10
  import json
11
  import openai
12
 
13
+ # Initialize user input
14
  userinput = ""
15
+
16
+ # Initialize session state for claims_extraction
17
  if 'claims_extraction' not in st.session_state:
18
  st.session_state.claims_extraction = ""
19
 
 
57
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as audio_file:
58
  audio_file.write(audio_data)
59
  audio_file_path = audio_file.name
60
+ st.audio(audio_file_path, format="audio/wav")
61
+ st.info("Transcribing...")
62
+ st.success("Transcription complete")
63
+ result = model.transcribe(audio_file_path)
64
+ transcript = result['text']
65
 
66
+ with st.expander("See transcript"):
67
+ st.markdown(transcript)
68
 
69
+ # Update the user input field with the transcription
70
+ userinput = st.text_area("Input Text:", transcript) # Moved up here
71
 
72
  # Model Selection Dropdown
73
  model_choice = st.selectbox(
 
122
  # Display generated objectives for all chunks
123
  learning_status_placeholder.text(f"Patentable Claims Extracted!\n{all_extracted_claims.strip()}")
124
 
125
+
126
+ # Get the extracted claims from Streamlit's session state
127
+ claims_extracted = st.session_state.claims_extraction
128
+
129
  from transformers import AutoConfig, AutoTokenizer, AutoModel
130
  from summarizer import Summarizer
131
 
 
158
  summary = bert_legal_model(chunk, min_length=8, ratio=0.05)
159
  summaries.append(summary)
160
 
 
161
  # Now you have a list of summaries for each chunk
162
  # You can access them using `summaries[0]`, `summaries[1]`, etc.
163
  # After generating summaries
164
  for i, summary in enumerate(summaries):
165
  st.write(f"### Summary {i+1}")
166
  st.write(summary)