File size: 4,660 Bytes
56541bd 9f4d7d7 56541bd dd51e9f 56541bd dd51e9f 1b8ed56 56541bd dd51e9f 56541bd dd51e9f 56541bd 9f4d7d7 56541bd 9f4d7d7 1b8ed56 56541bd dd51e9f 56541bd dd51e9f 1b8ed56 56541bd dd51e9f 56541bd dd51e9f 56541bd 1b8ed56 56541bd dd51e9f 56541bd dd51e9f 74663dc dd51e9f 571871b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import streamlit as st
import openai
def chunk_text(text, chunk_size=2000):
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
chunk = text[start:end]
chunks.append(chunk)
start = end
return chunks
# Streamlit Session State
if 'learning_objectives' not in st.session_state:
st.session_state.learning_objectives = ""
# Streamlit User Input Form
st.title("Patent Claims Extraction")
# API Key Input
api_key = st.text_input("Enter your OpenAI API Key:", type="password")
# Model Selection Dropdown
model_choice = st.selectbox(
"Select the model you want to use:",
["gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613", "gpt-3.5-turbo", "gpt-4-0314", "gpt-4-0613", "gpt-4"]
)
# Context, Subject, and Level
context = "You are a patent claims identifier and extractor. You will freeform text, identify any claims contained therein that may be patentable. You identify , extract, print such claims, briefly explain why each claim is patentable."
userinput = st.text_input("Input Text:", "Freeform text here!")
# Initialize OpenAI API
if api_key:
openai.api_key = api_key
# Learning Objectives
st.write("### Patentable Claims:")
# Initialize autogenerated objectives
claims_extraction = ""
# Initialize status placeholder
learning_status_placeholder = st.empty()
disable_button_bool = False
if userinput and api_key and st.button("Extract Claims", key="claims_extraction", disabled=disable_button_bool):
# Split the user input into chunks
input_chunks = chunk_text(userinput)
# Initialize a variable to store the extracted claims
all_extracted_claims = ""
for chunk in input_chunks:
# Display status message for the current chunk
learning_status_placeholder.text(f"Extracting Patentable Claims for chunk {input_chunks.index(chunk) + 1}...")
# API call to generate objectives for the current chunk
claims_extraction_response = openai.ChatCompletion.create(
model=model_choice,
messages=[
{"role": "user", "content": f"Extract any patentable claims from the following: \n {chunk}. \n extract each claim. Briefly explain why you extracted this word phrase. Exclude any additional commentary."}
]
)
# Extract the generated objectives from the API response
claims_extraction = claims_extraction_response['choices'][0]['message']['content']
# Append the extracted claims from the current chunk to the overall results
all_extracted_claims += claims_extraction.strip()
# Save the generated objectives to session state
st.session_state.claims_extraction = all_extracted_claims
# Display generated objectives for all chunks
learning_status_placeholder.text(f"Patentable Claims Extracted!\n{all_extracted_claims.strip()}")
# Generate Lesson Plan Button
if st.button("Extract Claims") and api_key:
# Construct the prompt as a dictionary
prompt_dict = {
"context": context,
"userinput": userinput,
"claims_extraction": claims_extraction.strip(), # Use the claims_extraction variable
"tasks": [
{"task": "Extract Claims", "objective": "extract any wordphrases in the text provided that could be considered a patentable claim"},
{"task": "Extract Every Claim", "objective": "Ensure each and every wordphrase with a claim is evaluated whether or not it is patentable"},
{"task": "Explain Your Choice", "objective": "Briefly explain why you have retained each claim"},
{"task": "Check Your Work", "objective": "Check your work to assure you have not forgotten any claims"}
],
"output_format": """Present in a structured format.
\nClaim:
\nExplanation:
\nNotes:
"""
}
# Convert the dictionary to a string
prompt_str = str(prompt_dict)
# API call to generate the lesson plan
lesson_plan_response = openai.ChatCompletion.create(
model=model_choice,
messages=[
{"role": "user", "content": f"Create a lesson plan based on the following parameters: {prompt_str}"}
]
)
# Display status message
lesson_plan=st.text("Extracting Patentable Claims...")
# Extract and display
assistant_reply = claims_extraction_response['choices'][0]['message']['content']
claims_extraction=st.text(assistant_reply.strip())
# Citation
st.markdown("<sub>This app was created by [Taylor Ennen](https://github.com/taylor-ennen/GPT-Streamlit-MVP) & [Tonic](https://huggingface.co./tonic)</sub>", unsafe_allow_html=True)
|