Spaces:
Paused
Paused
from transformers import T5TokenizerFast, T5ForConditionalGeneration | |
class T5: | |
def __init__(self, | |
model_dir:str='./model/pko_t5_COMU_patience10', | |
max_input_length:int=64, | |
max_target_length:int=64, | |
prefix:str='qa question: ' | |
): | |
self.model = T5ForConditionalGeneration.from_pretrained(model_dir) | |
self.tokenizer = T5TokenizerFast.from_pretrained(model_dir) | |
self.max_input_length = max_input_length | |
self.max_target_length = max_target_length | |
self.prefix = prefix | |
# add tokens | |
self.tokenizer.add_tokens(["#νμ#", "#μ²μ#", "#(λ¨μ)μ²μ#", "#(λ¨μ)νμ#", "#(μ¬μ)μ²μ#", "(μ¬μ)νμ"]) | |
self.model.resize_token_embeddings(len(self.tokenizer)) | |
self.model.config.max_length = max_target_length | |
self.tokenizer.model_max_length = max_target_length | |
def chat(self, inputs): | |
inputs = [self.prefix + inputs] | |
input_ids = self.tokenizer(inputs, max_length=self.max_input_length, truncation=True, return_tensors="pt") | |
output_tensor = self.model.generate(**input_ids, num_beams=2, do_sample=True, min_length=10, max_length=self.max_target_length, no_repeat_ngram_size=2) #repetition_penalty=2.5 | |
output_ids = self.tokenizer.batch_decode(output_tensor, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
outputs = str(output_ids) | |
outputs = outputs.replace('[', '').replace(']', '').replace("'", '').replace("'", '') | |
return outputs | |