File size: 41,177 Bytes
2ab6e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
import streamlit as st
import numpy as np
import pandas as pd
import io
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter
import seaborn as sns
from sklearn.preprocessing import (
OneHotEncoder,
OrdinalEncoder,
StandardScaler,
MinMaxScaler,
)
from sklearn.model_selection import train_test_split
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler, SMOTE
from sklearn.linear_model import Ridge, Lasso, LogisticRegression
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.svm import SVR, SVC
from sklearn.naive_bayes import MultinomialNB
from xgboost import XGBRFRegressor, XGBRFClassifier
from lightgbm import LGBMRegressor, LGBMClassifier
from sklearn.metrics import (
mean_absolute_error,
mean_squared_error,
mean_squared_error,
r2_score,
)
from sklearn.metrics import (
accuracy_score,
f1_score,
confusion_matrix,
precision_score,
recall_score,
)
import pickle
st.set_page_config(page_title="Tabular Data Analysis and Auto ML", page_icon="🤖")
sns.set_style("white")
sns.set_context("poster", font_scale=0.7)
palette = [
"#1d7874",
"#679289",
"#f4c095",
"#ee2e31",
"#ffb563",
"#918450",
"#f85e00",
"#a41623",
"#9a031e",
"#d6d6d6",
"#ffee32",
"#ffd100",
"#333533",
"#202020",
]
def main():
file = st.sidebar.file_uploader("Upload Your CSV File Here: ")
process = st.sidebar.button("Process")
option = st.sidebar.radio(
"Select an Option: ",
(
"Basic EDA",
"Univariate Analysis",
"Bivariate Analysis",
"Preprocess",
"Training and Evaluation",
),
)
placeholder = st.empty()
placeholder.markdown(
"<h1 style='text-align: center;'>Welcome to Tabular Data Analysis and Auto ML🤖</h1>",
unsafe_allow_html=True
)
if file is not None and process:
data = load_csv(file)
st.session_state["data"] = data
if "data" in st.session_state:
data = st.session_state["data"]
placeholder.empty()
if option == "Basic EDA":
st.markdown(
"<h1 style='text-align: center;'>Basic EDA</h1>", unsafe_allow_html=True
)
st.subheader("Data Overview")
st.write(data_overview(data))
st.write(duplicate(data))
st.dataframe(data.head())
st.subheader("Data Types and Unique Value Counts")
display_data_info(data)
st.subheader("Missing Data")
missing_data(data)
st.subheader("Value Counts")
value_counts(data)
st.subheader("Descriptive Statistics")
st.write(data.describe().T)
if option == "Univariate Analysis":
st.markdown(
"<h1 style='text-align: center;'>Univariate Analysis</h1>",
unsafe_allow_html=True,
)
plot = st.radio(
"Select a chart: ",
("Count Plot", "Pie Chart", "Histogram", "Violin Plot", "Scatter Plot"),
)
if plot == "Count Plot":
column = st.selectbox(
"Select a column", [""] + list(data.select_dtypes("O"))
)
if column:
countplot(data, column)
if plot == "Pie Chart":
column = st.selectbox(
"Select a column", [""] + list(data.select_dtypes("O"))
)
if column:
piechart(data, column)
if plot == "Histogram":
column = st.selectbox(
"Select a column",
[""] + list(data.select_dtypes(include=["int", "float"])),
)
if column:
histogram(data, column)
if plot == "Violin Plot":
column = st.selectbox(
"Select a column",
[""] + list(data.select_dtypes(include=["int", "float"])),
)
if column:
violinplot(data, column)
if plot == "Scatter Plot":
column = st.selectbox(
"Select a column",
[""] + list(data.select_dtypes(include=["int", "float"])),
)
if column:
scatterplot(data, column)
if option == "Bivariate Analysis":
st.markdown(
"<h1 style='text-align: center;'>Bivariate Analysis</h1>",
unsafe_allow_html=True,
)
plot = st.radio(
"Select a chart: ",
("Scatter Plot", "Bar Plot", "Box Plot", "Pareto Chart"),
)
if plot == "Scatter Plot":
columns = st.multiselect(
"Select two columns",
[""] + list(data.select_dtypes(include=["int", "float"])),
)
if columns:
biscatterplot(data, columns)
if plot == "Bar Plot":
columns = st.multiselect("Select two columns", list(data.columns))
if columns:
bibarplot(data, columns)
if plot == "Box Plot":
columns = st.multiselect("Select two columns", list(data.columns))
if columns:
biboxplot(data, columns)
if plot == "Pareto Chart":
column = st.selectbox(
"Select a columns",
[""] + list(data.select_dtypes(include="object")),
)
if column:
paretoplot(data, column)
if option == "Preprocess":
st.markdown(
"<h1 style='text-align: center;'>Data Preprocessing</h1>",
unsafe_allow_html=True,
)
operation = st.radio(
"Select preprocessing step: ",
(
"Drop Columns",
"Handling Missing Values",
"Encode Categorical Features",
),
)
if operation == "Drop Columns":
columns = st.multiselect("Select Columns to drop: ", (data.columns))
drop_columns = st.button("Drop Columns")
if drop_columns:
data.drop(columns, axis=1, inplace=True)
st.success("Dropped selected columns✅✅✅")
elif operation == "Handling Missing Values":
num_missing = st.selectbox(
"Select a Approach (Numerical columns only): ",
("", "Drop", "Backward Fill", "Forward Fill", "Mean", "Median"),
).lower()
cat_missing = st.selectbox(
"Select a Approach (Categorical columns only): ",
("", "Drop", "Most Frequent Values", "Replace with 'Unknown'"),
).lower()
hmv = st.button("Handle Missing Values")
if hmv:
if num_missing:
num_data = data.select_dtypes(include=["int64", "float64"])
if num_missing == "drop":
data = data.dropna(subset=num_data.columns)
elif num_missing in [
"mean",
"median",
"backward fill",
"forward fill",
]:
if num_missing == "mean":
fill_values = num_data.mean()
elif num_missing == "median":
fill_values = num_data.median()
elif num_missing == "backward fill":
fill_values = num_data.bfill()
elif num_missing == "forward fill":
fill_values = num_data.ffill()
data.fillna(value=fill_values, inplace=True)
st.success(
"Imputed missing values in numerical columns with selected approach."
)
if cat_missing:
cat_data = data.select_dtypes(exclude=["int", "float"])
if cat_missing == "drop":
data = data.dropna(subset=cat_data.columns)
elif cat_missing == "most frequent values":
mode_values = data[cat_data.columns].mode().iloc[0]
data[cat_data.columns] = data[cat_data.columns].fillna(
mode_values
)
elif cat_missing == "replace with 'unknown'":
data[cat_data.columns] = data[cat_data.columns].fillna(
"Unknown"
)
st.success(
"Imputed missing values in categorical columns with selected approach."
)
elif operation == "Encode Categorical Features":
oe_columns = st.multiselect(
"Choose Columns for Ordinal Encoding",
[""] + list(data.select_dtypes(include="object")),
)
st.info("Other columns will be One Hot Encoded.")
encode_columns = st.button("Encode Columns")
if encode_columns:
bool_columns = data.select_dtypes(include=bool).columns
data[bool_columns] = data[bool_columns].astype(int)
if oe_columns:
oe = OrdinalEncoder()
data[oe_columns] = oe.fit_transform(
data[oe_columns].astype("str")
)
try:
remaining_cat_cols = [
col
for col in data.select_dtypes(include="object")
if col not in oe_columns
]
except:
pass
if len(remaining_cat_cols) > 0:
data = pd.get_dummies(
data, columns=remaining_cat_cols, drop_first=False
)
st.success("Encoded categorical columns")
bool_columns = data.select_dtypes(include=bool).columns
data[bool_columns] = data[bool_columns].astype(int)
st.session_state["data"] = data
preprocessed_data_csv = data.to_csv(index=False)
preprocessed_data_buffer = io.StringIO()
preprocessed_data_buffer.write(preprocessed_data_csv)
preprocessed_data_bytes = preprocessed_data_buffer.getvalue()
if st.download_button(
label="Download Preprocessed Data",
key="preprocessed_data",
on_click=None,
data=preprocessed_data_bytes.encode(),
file_name="preprocessed_data.csv",
mime="text/csv",
):
st.success('Data Downloaded')
if option == "Training and Evaluation":
st.markdown(
"<h1 style='text-align: center;'>Training and Evaluation</h1>",
unsafe_allow_html=True,
)
algo = st.selectbox("Choose Algorithm Type:", ("", "Regression", "Classification"))
if algo == "Regression":
target = st.selectbox("Chose Target Variable (Y): ", list(data.columns))
try:
X = data.drop(target, axis=1)
Y = data[target]
except Exception as e:
st.write(str(e))
st.write(
"80% of the data will be used for training the model, rest of 20% data will be used for evaluating the model."
)
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=42
)
scale = st.selectbox(
"Choose how do you want to scale features:",
("", "Standard Scaler", "Min Max Scaler"),
)
if scale == "Standard Scaler":
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
elif scale == "Min Max Scaler":
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
model = st.selectbox(
"Choose Regression Model for training: ",
(
"",
"Ridge Regression",
"Decision Tree Regressor",
"Random Forest Regressor",
"SVR",
"XGBRF Regressor",
"LGBM Regressor",
),
)
if model == "Ridge Regression":
reg = Ridge(alpha=1.0)
reg.fit(X_train, y_train)
pred = reg.predict(X_test)
st.write(
"Mean Absolute Error (MAE): {:.4f}".format(
mean_absolute_error(pred, y_test)
)
)
st.write(
"Mean Squared Error (MSE): {:.4f}".format(
mean_squared_error(pred, y_test)
)
)
st.write(
"Root Mean Squared Error (RMSE): {:.4f}".format(
mean_squared_error(pred, y_test, squared=False)
)
)
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(reg),
file_name="ridge_regression_model.pkl",
mime="application/octet-stream",
):
with open("ridge_regression_model.pkl", "wb") as model_file:
pickle.dump(reg, model_file)
elif model == "Decision Tree Regressor":
reg = DecisionTreeRegressor(max_depth=10)
reg.fit(X_train, y_train)
pred = reg.predict(X_test)
st.write(
"Mean Absolute Error (MAE): {:.4f}".format(
mean_absolute_error(pred, y_test)
)
)
st.write(
"Mean Squared Error (MSE): {:.4f}".format(
mean_squared_error(pred, y_test)
)
)
st.write(
"Root Mean Squared Error (RMSE): {:.4f}".format(
mean_squared_error(pred, y_test, squared=False)
)
)
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(reg),
file_name="decision_tree_regression_model.pkl",
mime="application/octet-stream",
):
with open(
"decision_tree_regression_model.pkl", "wb"
) as model_file:
pickle.dump(reg, model_file)
elif model == "Random Forest Regressor":
reg = RandomForestRegressor(max_depth=10, n_estimators=100)
reg.fit(X_train, y_train)
pred = reg.predict(X_test)
st.write(
"Mean Absolute Error (MAE): {:.4f}".format(
mean_absolute_error(pred, y_test)
)
)
st.write(
"Mean Squared Error (MSE): {:.4f}".format(
mean_squared_error(pred, y_test)
)
)
st.write(
"Root Mean Squared Error (RMSE): {:.4f}".format(
mean_squared_error(pred, y_test, squared=False)
)
)
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(reg),
file_name="random_forest_regression_model.pkl",
mime="application/octet-stream",
):
with open(
"random_forest_regression_model.pkl", "wb"
) as model_file:
pickle.dump(reg, model_file)
elif model == "SVR":
reg = SVR(C=1.0, epsilon=0.2)
reg.fit(X_train, y_train)
pred = reg.predict(X_test)
st.write(
"Mean Absolute Error (MAE): {:.4f}".format(
mean_absolute_error(pred, y_test)
)
)
st.write(
"Mean Squared Error (MSE): {:.4f}".format(
mean_squared_error(pred, y_test)
)
)
st.write(
"Root Mean Squared Error (RMSE): {:.4f}".format(
mean_squared_error(pred, y_test, squared=False)
)
)
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(reg),
file_name="svr_model.pkl",
mime="application/octet-stream",
):
with open("svr_model.pkl", "wb") as model_file:
pickle.dump(reg, model_file)
elif model == "XGBRF Regressor":
reg = XGBRFRegressor(reg_lambda=1)
reg.fit(X_train, y_train)
pred = reg.predict(X_test)
st.write(
"Mean Absolute Error (MAE): {:.4f}".format(
mean_absolute_error(pred, y_test)
)
)
st.write(
"Mean Squared Error (MSE): {:.4f}".format(
mean_squared_error(pred, y_test)
)
)
st.write(
"Root Mean Squared Error (RMSE): {:.4f}".format(
mean_squared_error(pred, y_test, squared=False)
)
)
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(reg),
file_name="xgbrf_regression_model.pkl",
mime="application/octet-stream",
):
with open("xgbrf_regression_model.pkl", "wb") as model_file:
pickle.dump(reg, model_file)
elif model == "LGBM Regressor":
reg = LGBMRegressor(reg_lambda=1)
reg.fit(X_train, y_train)
pred = reg.predict(X_test)
st.write(
"Mean Absolute Error (MAE): {:.4f}".format(
mean_absolute_error(pred, y_test)
)
)
st.write(
"Mean Squared Error (MSE): {:.4f}".format(
mean_squared_error(pred, y_test)
)
)
st.write(
"Root Mean Squared Error (RMSE): {:.4f}".format(
mean_squared_error(pred, y_test, squared=False)
)
)
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(reg),
file_name="lgbm_regression_model.pkl",
mime="application/octet-stream",
):
with open("lgbm_regression_model.pkl", "wb") as model_file:
pickle.dump(reg, model_file)
elif algo == "Classification":
target = st.selectbox("Chose Target Variable (Y): ", list(data.columns))
try:
X = data.drop(target, axis=1)
Y = data[target]
except Exception as e:
st.write(str(e))
st.write(
"80% of the data will be used for training the model, rest of 20% data will be used for evaluating the model."
)
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=42
)
balance = st.selectbox(
"Do you want to balance dataset?", ("", "Yes", "No")
)
if balance == "Yes":
piechart(data, target)
sample = st.selectbox(
"Which approach you want to use?",
("", "Random Under Sampling", "Random Over Sampling", "SMOTE"),
)
if sample == "Random Under Sampling":
rus = RandomUnderSampler(random_state=42)
X_train, y_train = rus.fit_resample(X_train, y_train)
elif sample == "Random Over Sampling":
ros = RandomOverSampler(random_state=42)
X_train, y_train = ros.fit_resample(X_train, y_train)
elif sample == "SMOTE":
smote = SMOTE(random_state=42)
X_train, y_train = smote.fit_resample(X_train, y_train)
scale = st.selectbox(
"Choose how do you want to scale features:",
("", "Standard Scaler", "Min Max Scaler"),
)
if scale == "Standard Scaler":
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
elif scale == "Min Max Scaler":
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
model = st.selectbox(
"Choose Classification Model for training: ",
(
"",
"Logistic Regression",
"Decision Tree Classifier",
"Random Forest Classifier",
"SVC",
"XGBRF Classifier",
"LGBM Classifier",
),
)
if model == "Logistic Regression":
clf = LogisticRegression(penalty="l2")
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
st.write(
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
)
try:
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
st.write('Precision Score: {:.4f}' .format(precision_score(pred, y_test)))
st.write('Recall Score: {:.4f}'.format(recall_score(pred, y_test)))
except ValueError:
st.write('Macro Precision Score: {:.4f}' .format(precision_score(pred, y_test, average='macro')))
st.write('Macro Recall Score: {:.4f}'.format(recall_score(pred, y_test, average='macro')))
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
plot_confusion_matrix(
pred, y_test, "Logistic Regression Confusion Matrix "
)
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(clf),
file_name="logistic_regression_model.pkl",
mime="application/octet-stream",
):
with open("logistic_regression_model.pkl", "wb") as model_file:
pickle.dump(clf, model_file)
if model == "Decision Tree Classifier":
clf = DecisionTreeClassifier(max_depth=5)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
st.write(
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
)
try:
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
st.write('Precision Score: {:.4f}' .format(precision_score(pred, y_test)))
st.write('Recall Score: {:.4f}'.format(recall_score(pred, y_test)))
except ValueError:
st.write('Macro Precision Score: {:.4f}' .format(precision_score(pred, y_test, average='macro')))
st.write('Macro Recall Score: {:.4f}'.format(recall_score(pred, y_test, average='macro')))
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
plot_confusion_matrix(
pred, y_test, "DecisionTree Classifier Confusion Matrix "
)
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(clf),
file_name="decision_tree_classifier_model.pkl",
mime="application/octet-stream",
):
with open(
"decision_tree_classifier_model.pkl", "wb"
) as model_file:
pickle.dump(clf, model_file)
if model == "Random Forest Classifier":
clf = RandomForestClassifier(n_estimators=100, max_depth=5)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
st.write(
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
)
try:
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
st.write('Precision Score: {:.4f}' .format(precision_score(pred, y_test)))
st.write('Recall Score: {:.4f}'.format(recall_score(pred, y_test)))
except ValueError:
st.write('Macro Precision Score: {:.4f}' .format(precision_score(pred, y_test, average='macro')))
st.write('Macro Recall Score: {:.4f}'.format(recall_score(pred, y_test, average='macro')))
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
plot_confusion_matrix(
pred, y_test, "RandomForest Classifier Confusion Matrix "
)
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(clf),
file_name="random_forest_classifier_model.pkl",
mime="application/octet-stream",
):
with open(
"random_forest_classifier_model.pkl", "wb"
) as model_file:
pickle.dump(clf, model_file)
if model == "SVC":
clf = SVC(C=1.5)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
st.write(
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
)
try:
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
st.write('Precision Score: {:.4f}' .format(precision_score(pred, y_test)))
st.write('Recall Score: {:.4f}'.format(recall_score(pred, y_test)))
except ValueError:
st.write('Macro Precision Score: {:.4f}' .format(precision_score(pred, y_test, average='macro')))
st.write('Macro Recall Score: {:.4f}'.format(recall_score(pred, y_test, average='macro')))
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
plot_confusion_matrix(pred, y_test, "SVC Confusion Matrix ")
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(clf),
file_name="svc_model.pkl",
mime="application/octet-stream",
):
with open("svc_model.pkl", "wb") as model_file:
pickle.dump(clf, model_file)
if model == "XGBRF Classifier":
clf = XGBRFClassifier(reg_lambda=1.0)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
st.write(
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
)
try:
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
st.write('Precision Score: {:.4f}' .format(precision_score(pred, y_test)))
st.write('Recall Score: {:.4f}'.format(recall_score(pred, y_test)))
except ValueError:
st.write('Macro Precision Score: {:.4f}' .format(precision_score(pred, y_test, average='macro')))
st.write('Macro Recall Score: {:.4f}'.format(recall_score(pred, y_test, average='macro')))
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
plot_confusion_matrix(
pred, y_test, "XGBRF Classifier Confusion Matrix "
)
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(clf),
file_name="xgbrf_classifier_model.pkl",
mime="application/octet-stream",
):
with open("xgbrf_classifier_model.pkl", "wb") as model_file:
pickle.dump(clf, model_file)
if model == "LGBM Classifier":
clf = LGBMClassifier(reg_lambda=1.0)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
st.write(
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
)
try:
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
st.write('Precision Score: {:.4f}' .format(precision_score(pred, y_test)))
st.write('Recall Score: {:.4f}'.format(recall_score(pred, y_test)))
except ValueError:
st.write('Macro Precision Score: {:.4f}' .format(precision_score(pred, y_test, average='macro')))
st.write('Macro Recall Score: {:.4f}'.format(recall_score(pred, y_test, average='macro')))
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
plot_confusion_matrix(
pred, y_test, "LGBM Classifier Confusion Matrix "
)
if st.download_button(
label="Download Trained Model",
key="trained_model",
on_click=None,
data=pickle.dumps(clf),
file_name="lgbm_classifier_model.pkl",
mime="application/octet-stream",
):
with open("lgbm_classifier_model.pkl", "wb") as model_file:
pickle.dump(clf, model_file)
def load_csv(file):
data = pd.read_csv(file)
return data
def data_overview(data):
r, c = data.shape
st.write(f"Number of Rows: {r}")
return f"Number of Columns: {c}"
def missing_data(data):
missing_values = data.isna().sum()
missing_values = missing_values[missing_values > 0]
missing_value_per = (missing_values / data.shape[0]) * 100
missing_value_per = missing_value_per.round(2).astype(str) + "%"
missing_df = pd.DataFrame(
{"Missing Values": missing_values, "Percentage": missing_value_per}
)
missing_df_html = missing_df.to_html(
classes="table table-striped", justify="center"
)
return st.markdown(missing_df_html, unsafe_allow_html=True)
def display_data_info(data):
dtypes = pd.DataFrame(data.dtypes, columns=["Data Type"])
dtypes.reset_index(inplace=True)
nunique = pd.DataFrame(data.nunique(), columns=["Unique Counts"])
nunique.reset_index(inplace=True)
dtypes.columns = ["Column", "Data Type"]
nunique.columns = ["Column", "Unique Counts"]
combined_df = pd.merge(dtypes, nunique, on="Column")
combined_df_html = combined_df.to_html(
classes="table table-striped", justify="center"
)
return st.markdown(combined_df_html, unsafe_allow_html=True)
def value_counts(data):
column = st.selectbox("Select a Column", [""] + list(data.columns))
if column:
st.write(data[column].value_counts())
def duplicate(data):
if data.duplicated().any():
st.write(
f"There is/are {data.duplicated().sum()} duplicate rows in the DataFrame. Duplicated values will be dropped."
)
data.drop_duplicates(keep="first", inplace=True)
return ""
else:
return "There are no duplicate rows in the DataFrame."
def countplot(data, col):
plt.figure(figsize=(10, 6))
sns.countplot(y=data[col], palette=palette[1:], edgecolor="#1c1c1c", linewidth=2)
plt.title(f"Countplot of {col} Column")
st.pyplot(plt)
def piechart(data, col):
value_counts = data[col].value_counts()
plt.figure(figsize=(8, 6))
plt.pie(
value_counts,
labels=value_counts.index,
autopct="%1.1f%%",
colors=palette,
shadow=False,
wedgeprops=dict(edgecolor="#1c1c1c"),
)
plt.title(f"Pie Chart of {col} Column")
st.pyplot(plt)
def histogram(data, col):
plt.figure(figsize=(10, 6))
sns.histplot(
data[col],
kde=True,
color=palette[4],
fill=True,
edgecolor="#1c1c1c",
linewidth=2,
)
plt.title(f"Histogram of {col} Column")
st.pyplot(plt)
def violinplot(data, col):
plt.figure(figsize=(10, 6))
sns.violinplot(data[col], color=palette[8])
plt.title(f"Violin Plot of {col} Column")
st.pyplot(plt)
def scatterplot(data, col):
plt.figure(figsize=(10, 8))
sns.scatterplot(data[col], color=palette[3])
plt.title(f"Scatter Plot of {col} Column")
st.pyplot(plt)
def biscatterplot(data, cols):
try:
plt.figure(figsize=(10, 8))
sns.scatterplot(
data=data,
x=cols[0],
y=cols[1],
palette=palette[1:],
edgecolor="#1c1c1c",
linewidth=2,
)
plt.title(f"Scatter Plot of {cols[0]} and {cols[1]} Columns")
st.pyplot(plt)
except Exception as e:
st.write(str(e))
def bibarplot(data, cols):
try:
plt.figure(figsize=(10, 8))
sns.barplot(
data=data,
x=cols[0],
y=cols[1],
palette=palette[1:],
edgecolor="#1c1c1c",
linewidth=2,
)
plt.title(f"Bar Plot of {cols[0]} and {cols[1]} Columns")
st.pyplot(plt)
except Exception as e:
st.write(str(e))
def biboxplot(data, cols):
try:
plt.figure(figsize=(10, 8))
sns.boxplot(data=data, x=cols[0], y=cols[1], palette=palette[1:], linewidth=2)
plt.title(f"Box Plot of {cols[0]} and {cols[1]} Columns")
st.pyplot(plt)
except Exception as e:
st.write(str(e))
def paretoplot(data, categorical_col):
try:
value_counts = data[categorical_col].value_counts()
cumulative_percentage = (value_counts / value_counts.sum()).cumsum()
pareto_df = pd.DataFrame(
{
"Categories": value_counts.index,
"Frequency": value_counts.values,
"Cumulative Percentage": cumulative_percentage.values * 100,
}
)
pareto_df = pareto_df.sort_values(by="Frequency", ascending=False)
fig, ax1 = plt.subplots(figsize=(10, 8))
ax1.bar(
pareto_df["Categories"],
pareto_df["Frequency"],
color=palette[1:],
edgecolor="#1c1c1c",
linewidth=2,
)
ax2 = ax1.twinx()
ax2.yaxis.set_major_formatter(PercentFormatter())
ax2.plot(
pareto_df["Categories"],
pareto_df["Cumulative Percentage"],
color=palette[3],
marker="D",
ms=10,
)
ax1.set_xlabel(categorical_col)
ax1.set_ylabel("Frequency", color=palette[0])
ax2.set_ylabel("Cumulative Percentage", color=palette[3])
st.pyplot(fig)
except Exception as e:
pass
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title(title)
st.pyplot(plt)
if __name__ == "__main__":
main()
|