prsdm commited on
Commit
e6b2b6c
1 Parent(s): 746c9e6

Upload 4 files

Browse files
Files changed (4) hide show
  1. app (1).py +194 -0
  2. gitattributes +35 -0
  3. htmlTemplates (1).py +44 -0
  4. requirements (1).txt +16 -0
app (1).py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
3
+ This script uses the LangChain Language Model API to answer questions using Retrieval QA
4
+ and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
5
+ generate responses.
6
+ """
7
+
8
+ import os
9
+ import streamlit as st
10
+ from dotenv import load_dotenv
11
+ from PyPDF2 import PdfReader
12
+ from langchain.text_splitter import CharacterTextSplitter
13
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
14
+ from langchain.vectorstores import FAISS
15
+ from langchain.chat_models import ChatOpenAI
16
+ from langchain.memory import ConversationBufferMemory
17
+ from langchain.chains import ConversationalRetrievalChain
18
+ from htmlTemplates import css, bot_template, user_template
19
+ from langchain.llms import HuggingFaceHub
20
+
21
+
22
+ def get_pdf_text(pdf_docs):
23
+ """
24
+ Extract text from a list of PDF documents.
25
+
26
+ Parameters
27
+ ----------
28
+ pdf_docs : list
29
+ List of PDF documents to extract text from.
30
+
31
+ Returns
32
+ -------
33
+ str
34
+ Extracted text from all the PDF documents.
35
+
36
+ """
37
+ text = ""
38
+ for pdf in pdf_docs:
39
+ pdf_reader = PdfReader(pdf)
40
+ for page in pdf_reader.pages:
41
+ text += page.extract_text()
42
+ return text
43
+
44
+
45
+ def get_text_chunks(text):
46
+ """
47
+ Split the input text into chunks.
48
+
49
+ Parameters
50
+ ----------
51
+ text : str
52
+ The input text to be split.
53
+
54
+ Returns
55
+ -------
56
+ list
57
+ List of text chunks.
58
+
59
+ """
60
+ text_splitter = CharacterTextSplitter(
61
+ separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
62
+ )
63
+ chunks = text_splitter.split_text(text)
64
+ return chunks
65
+
66
+
67
+ def get_vectorstore(text_chunks):
68
+ """
69
+ Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
70
+
71
+ Parameters
72
+ ----------
73
+ text_chunks : list
74
+ List of text chunks to be embedded.
75
+
76
+ Returns
77
+ -------
78
+ FAISS
79
+ A FAISS vector store containing the embeddings of the text chunks.
80
+
81
+ """
82
+ model = "BAAI/bge-base-en-v1.5"
83
+ encode_kwargs = {
84
+ "normalize_embeddings": True
85
+ } # set True to compute cosine similarity
86
+ embeddings = HuggingFaceBgeEmbeddings(
87
+ model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
88
+ )
89
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
90
+ return vectorstore
91
+
92
+
93
+ def get_conversation_chain(vectorstore):
94
+ """
95
+ Create a conversational retrieval chain using a vector store and a language model.
96
+
97
+ Parameters
98
+ ----------
99
+ vectorstore : FAISS
100
+ A FAISS vector store containing the embeddings of the text chunks.
101
+
102
+ Returns
103
+ -------
104
+ ConversationalRetrievalChain
105
+ A conversational retrieval chain for generating responses.
106
+
107
+ """
108
+ llm = HuggingFaceHub(
109
+ repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
110
+ model_kwargs={"temperature": 0.5, "max_length": 1048},
111
+ )
112
+ # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
113
+
114
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
115
+ conversation_chain = ConversationalRetrievalChain.from_llm(
116
+ llm=llm, retriever=vectorstore.as_retriever(), memory=memory
117
+ )
118
+ return conversation_chain
119
+
120
+
121
+ def handle_userinput(user_question):
122
+ """
123
+ Handle user input and generate a response using the conversational retrieval chain.
124
+ Parameters
125
+ ----------
126
+ user_question : str
127
+ The user's question.
128
+ """
129
+ response = st.session_state.conversation({"question": user_question})
130
+ st.session_state.chat_history = response["chat_history"]
131
+
132
+ for i, message in enumerate(st.session_state.chat_history):
133
+ if i % 2 == 0:
134
+ st.write("//_^ User: " + message.content)
135
+ else:
136
+ st.write("🤖 ChatBot: " + message.content)
137
+
138
+
139
+ def main():
140
+ """
141
+ Putting it all together.
142
+ """
143
+ st.set_page_config(
144
+ page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
145
+ page_icon=":books:",
146
+ )
147
+
148
+ st.markdown("# Chat with a Bot")
149
+ st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
150
+
151
+ st.write(css, unsafe_allow_html=True)
152
+
153
+ # set huggingface hub token in st.text_input widget
154
+ # then hide the input
155
+ huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password")
156
+ #openai_api_key = st.text_input("Enter your OpenAI API key", type="password")
157
+
158
+ # set this key as an environment variable
159
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
160
+ #os.environ["OPENAI_API_KEY"] = openai_api_key
161
+
162
+
163
+ if "conversation" not in st.session_state:
164
+ st.session_state.conversation = None
165
+ if "chat_history" not in st.session_state:
166
+ st.session_state.chat_history = None
167
+
168
+ st.header("Chat with a Bot 🤖��� that tries to answer questions about multiple PDFs :books:")
169
+ user_question = st.text_input("Ask a question about your documents:")
170
+ if user_question:
171
+ handle_userinput(user_question)
172
+
173
+ with st.sidebar:
174
+ st.subheader("Your documents")
175
+ pdf_docs = st.file_uploader(
176
+ "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
177
+ )
178
+ if st.button("Process"):
179
+ with st.spinner("Processing"):
180
+ # get pdf text
181
+ raw_text = get_pdf_text(pdf_docs)
182
+
183
+ # get the text chunks
184
+ text_chunks = get_text_chunks(raw_text)
185
+
186
+ # create vector store
187
+ vectorstore = get_vectorstore(text_chunks)
188
+
189
+ # create conversation chain
190
+ st.session_state.conversation = get_conversation_chain(vectorstore)
191
+
192
+
193
+ if __name__ == "__main__":
194
+ main()
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
htmlTemplates (1).py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ css = """
2
+ <style>
3
+ .chat-message {
4
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
5
+ }
6
+ .chat-message.user {
7
+ background-color: #2b313e
8
+ }
9
+ .chat-message.bot {
10
+ background-color: #475063
11
+ }
12
+ .chat-message .avatar {
13
+ width: 20%;
14
+ }
15
+ .chat-message .avatar img {
16
+ max-width: 78px;
17
+ max-height: 78px;
18
+ border-radius: 50%;
19
+ object-fit: cover;
20
+ }
21
+ .chat-message .message {
22
+ width: 80%;
23
+ padding: 0 1.5rem;
24
+ color: #fff;
25
+ }
26
+ """
27
+
28
+ bot_template = """
29
+ <div class="chat-message bot">
30
+ <div class="avatar">
31
+ <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
32
+ </div>
33
+ <div class="message">{{MSG}}</div>
34
+ </div>
35
+ """
36
+
37
+ user_template = """
38
+ <div class="chat-message user">
39
+ <div class="avatar">
40
+ <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
41
+ </div>
42
+ <div class="message">{{MSG}}</div>
43
+ </div>
44
+ """
requirements (1).txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain==0.0.335
2
+ PyPDF2==3.0.1
3
+ python-dotenv==1.0.0
4
+ streamlit==1.28.2
5
+ openai==1.2.4
6
+ faiss-cpu==1.7.4
7
+ altair==5.1.2
8
+ tiktoken==0.5.1
9
+ black==23.11.0
10
+ # uncomment to use huggingface llms
11
+ huggingface-hub==0.17.3
12
+
13
+ # uncomment to use instructor embeddings
14
+ InstructorEmbedding==1.0.1
15
+ sentence-transformers==2.2.2
16
+ transformers