File size: 8,540 Bytes
023485e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from PIL import Image
import torch.utils.data as data
import os
from glob import glob
import torch
import torchvision.transforms.functional as F
from torchvision import transforms
import random
import numpy as np
import scipy.io as sio


def random_crop(im_h, im_w, crop_h, crop_w):
    res_h = im_h - crop_h
    res_w = im_w - crop_w
    i = random.randint(0, res_h)
    j = random.randint(0, res_w)
    return i, j, crop_h, crop_w


def gen_discrete_map(im_height, im_width, points):
    """
        func: generate the discrete map.
        points: [num_gt, 2], for each row: [width, height]
        """
    discrete_map = np.zeros([im_height, im_width], dtype=np.float32)
    h, w = discrete_map.shape[:2]
    num_gt = points.shape[0]
    if num_gt == 0:
        return discrete_map
    
    # fast create discrete map
    points_np = np.array(points).round().astype(int)
    p_h = np.minimum(points_np[:, 1], np.array([h-1]*num_gt).astype(int))
    p_w = np.minimum(points_np[:, 0], np.array([w-1]*num_gt).astype(int))
    p_index = torch.from_numpy(p_h* im_width + p_w)
    discrete_map = torch.zeros(im_width * im_height).scatter_add_(0, index=p_index, src=torch.ones(im_width*im_height)).view(im_height, im_width).numpy()

    ''' slow method
    for p in points:
        p = np.round(p).astype(int)
        p[0], p[1] = min(h - 1, p[1]), min(w - 1, p[0])
        discrete_map[p[0], p[1]] += 1
    '''
    assert np.sum(discrete_map) == num_gt
    return discrete_map


class Base(data.Dataset):
    def __init__(self, root_path, crop_size, downsample_ratio=8):

        self.root_path = root_path
        self.c_size = crop_size
        self.d_ratio = downsample_ratio
        assert self.c_size % self.d_ratio == 0
        self.dc_size = self.c_size // self.d_ratio
        self.trans = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])

    def __len__(self):
        pass

    def __getitem__(self, item):
        pass

    def train_transform(self, img, keypoints):
        wd, ht = img.size
        st_size = 1.0 * min(wd, ht)
        assert st_size >= self.c_size
        assert len(keypoints) >= 0
        i, j, h, w = random_crop(ht, wd, self.c_size, self.c_size)
        img = F.crop(img, i, j, h, w)
        if len(keypoints) > 0:
            keypoints = keypoints - [j, i]
            idx_mask = (keypoints[:, 0] >= 0) * (keypoints[:, 0] <= w) * \
                       (keypoints[:, 1] >= 0) * (keypoints[:, 1] <= h)
            keypoints = keypoints[idx_mask]
        else:
            keypoints = np.empty([0, 2])

        gt_discrete = gen_discrete_map(h, w, keypoints)
        down_w = w // self.d_ratio
        down_h = h // self.d_ratio
        gt_discrete = gt_discrete.reshape([down_h, self.d_ratio, down_w, self.d_ratio]).sum(axis=(1, 3))
        assert np.sum(gt_discrete) == len(keypoints)

        if len(keypoints) > 0:
            if random.random() > 0.5:
                img = F.hflip(img)
                gt_discrete = np.fliplr(gt_discrete)
                keypoints[:, 0] = w - keypoints[:, 0]
        else:
            if random.random() > 0.5:
                img = F.hflip(img)
                gt_discrete = np.fliplr(gt_discrete)
        gt_discrete = np.expand_dims(gt_discrete, 0)

        return self.trans(img), torch.from_numpy(keypoints.copy()).float(), torch.from_numpy(
            gt_discrete.copy()).float()


class Crowd_qnrf(Base):
    def __init__(self, root_path, crop_size,
                 downsample_ratio=8,
                 method='train'):
        super().__init__(root_path, crop_size, downsample_ratio)
        self.method = method
        self.im_list = sorted(glob(os.path.join(self.root_path, '*.jpg')))
        print('number of img: {}'.format(len(self.im_list)))
        if method not in ['train', 'val']:
            raise Exception("not implement")

    def __len__(self):
        return len(self.im_list)

    def __getitem__(self, item):
        img_path = self.im_list[item]
        gd_path = img_path.replace('jpg', 'npy')
        img = Image.open(img_path).convert('RGB')
        if self.method == 'train':
            keypoints = np.load(gd_path)
            return self.train_transform(img, keypoints)
        elif self.method == 'val':
            keypoints = np.load(gd_path)
            img = self.trans(img)
            name = os.path.basename(img_path).split('.')[0]
            return img, len(keypoints), name


class Crowd_nwpu(Base):
    def __init__(self, root_path, crop_size,
                 downsample_ratio=8,
                 method='train'):
        super().__init__(root_path, crop_size, downsample_ratio)
        self.method = method
        self.im_list = sorted(glob(os.path.join(self.root_path, '*.jpg')))
        print('number of img: {}'.format(len(self.im_list)))

        if method not in ['train', 'val', 'test']:
            raise Exception("not implement")

    def __len__(self):
        return len(self.im_list)

    def __getitem__(self, item):
        img_path = self.im_list[item]
        gd_path = img_path.replace('jpg', 'npy')
        img = Image.open(img_path).convert('RGB')
        if self.method == 'train':
            keypoints = np.load(gd_path)
            return self.train_transform(img, keypoints)
        elif self.method == 'val':
            keypoints = np.load(gd_path)
            img = self.trans(img)
            name = os.path.basename(img_path).split('.')[0]
            return img, len(keypoints), name
        elif self.method == 'test':
            img = self.trans(img)
            name = os.path.basename(img_path).split('.')[0]
            return img, name


class Crowd_sh(Base):
    def __init__(self, root_path, crop_size,
                 downsample_ratio=8,
                 method='train'):
        super().__init__(root_path, crop_size, downsample_ratio)
        self.method = method
        if method not in ['train', 'val']:
            raise Exception("not implement")

        self.im_list = sorted(glob(os.path.join(self.root_path, 'images', '*.jpg')))
        print('number of img: {}'.format(len(self.im_list)))

    def __len__(self):
        return len(self.im_list)

    def __getitem__(self, item):
        img_path = self.im_list[item]
        name = os.path.basename(img_path).split('.')[0]
        gd_path = os.path.join(self.root_path, 'ground-truth', 'GT_{}.mat'.format(name))
        img = Image.open(img_path).convert('RGB')
        keypoints = sio.loadmat(gd_path)['image_info'][0][0][0][0][0]

        if self.method == 'train':
            return self.train_transform(img, keypoints)
        elif self.method == 'val':
            img = self.trans(img)
            return img, len(keypoints), name

    def train_transform(self, img, keypoints):
        wd, ht = img.size
        st_size = 1.0 * min(wd, ht)
        # resize the image to fit the crop size
        if st_size < self.c_size:
            rr = 1.0 * self.c_size / st_size
            wd = round(wd * rr)
            ht = round(ht * rr)
            st_size = 1.0 * min(wd, ht)
            img = img.resize((wd, ht), Image.BICUBIC)
            keypoints = keypoints * rr
        assert st_size >= self.c_size, print(wd, ht)
        assert len(keypoints) >= 0
        i, j, h, w = random_crop(ht, wd, self.c_size, self.c_size)
        img = F.crop(img, i, j, h, w)
        if len(keypoints) > 0:
            keypoints = keypoints - [j, i]
            idx_mask = (keypoints[:, 0] >= 0) * (keypoints[:, 0] <= w) * \
                       (keypoints[:, 1] >= 0) * (keypoints[:, 1] <= h)
            keypoints = keypoints[idx_mask]
        else:
            keypoints = np.empty([0, 2])

        gt_discrete = gen_discrete_map(h, w, keypoints)
        down_w = w // self.d_ratio
        down_h = h // self.d_ratio
        gt_discrete = gt_discrete.reshape([down_h, self.d_ratio, down_w, self.d_ratio]).sum(axis=(1, 3))
        assert np.sum(gt_discrete) == len(keypoints)

        if len(keypoints) > 0:
            if random.random() > 0.5:
                img = F.hflip(img)
                gt_discrete = np.fliplr(gt_discrete)
                keypoints[:, 0] = w - keypoints[:, 0] - 1
        else:
            if random.random() > 0.5:
                img = F.hflip(img)
                gt_discrete = np.fliplr(gt_discrete)
        gt_discrete = np.expand_dims(gt_discrete, 0)

        return self.trans(img), torch.from_numpy(keypoints.copy()).float(), torch.from_numpy(
            gt_discrete.copy()).float()