Spaces:
Runtime error
Runtime error
File size: 10,101 Bytes
023485e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
from datasets.crowd import Crowd_qnrf, Crowd_nwpu, Crowd_sh
from models import vgg19
from losses.ot_loss import OT_Loss
from utils.pytorch_utils import Save_Handle, AverageMeter
import utils.log_utils as log_utils
def train_collate(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
points = transposed_batch[1] # the number of points is not fixed, keep it as a list of tensor
gt_discretes = torch.stack(transposed_batch[2], 0)
return images, points, gt_discretes
class Trainer(object):
def __init__(self, args):
self.args = args
def setup(self):
args = self.args
sub_dir = 'input-{}_wot-{}_wtv-{}_reg-{}_nIter-{}_normCood-{}'.format(
args.crop_size, args.wot, args.wtv, args.reg, args.num_of_iter_in_ot, args.norm_cood)
self.save_dir = os.path.join('ckpts', sub_dir)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
time_str = datetime.strftime(datetime.now(), '%m%d-%H%M%S')
self.logger = log_utils.get_logger(os.path.join(self.save_dir, 'train-{:s}.log'.format(time_str)))
log_utils.print_config(vars(args), self.logger)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.device_count = torch.cuda.device_count()
assert self.device_count == 1
self.logger.info('using {} gpus'.format(self.device_count))
else:
raise Exception("gpu is not available")
downsample_ratio = 8
if args.dataset.lower() == 'qnrf':
self.datasets = {x: Crowd_qnrf(os.path.join(args.data_dir, x),
args.crop_size, downsample_ratio, x) for x in ['train', 'val']}
elif args.dataset.lower() == 'nwpu':
self.datasets = {x: Crowd_nwpu(os.path.join(args.data_dir, x),
args.crop_size, downsample_ratio, x) for x in ['train', 'val']}
elif args.dataset.lower() == 'sha' or args.dataset.lower() == 'shb':
self.datasets = {'train': Crowd_sh(os.path.join(args.data_dir, 'train_data'),
args.crop_size, downsample_ratio, 'train'),
'val': Crowd_sh(os.path.join(args.data_dir, 'test_data'),
args.crop_size, downsample_ratio, 'val'),
}
else:
raise NotImplementedError
self.dataloaders = {x: DataLoader(self.datasets[x],
collate_fn=(train_collate
if x == 'train' else default_collate),
batch_size=(args.batch_size
if x == 'train' else 1),
shuffle=(True if x == 'train' else False),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == 'train' else False))
for x in ['train', 'val']}
self.model = vgg19()
self.model.to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
self.start_epoch = 0
if args.resume:
self.logger.info('loading pretrained model from ' + args.resume)
suf = args.resume.rsplit('.', 1)[-1]
if suf == 'tar':
checkpoint = torch.load(args.resume, self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.start_epoch = checkpoint['epoch'] + 1
elif suf == 'pth':
self.model.load_state_dict(torch.load(args.resume, self.device))
else:
self.logger.info('random initialization')
self.ot_loss = OT_Loss(args.crop_size, downsample_ratio, args.norm_cood, self.device, args.num_of_iter_in_ot,
args.reg)
self.tv_loss = nn.L1Loss(reduction='none').to(self.device)
self.mse = nn.MSELoss().to(self.device)
self.mae = nn.L1Loss().to(self.device)
self.save_list = Save_Handle(max_num=1)
self.best_mae = np.inf
self.best_mse = np.inf
self.best_count = 0
def train(self):
"""training process"""
args = self.args
for epoch in range(self.start_epoch, args.max_epoch + 1):
self.logger.info('-' * 5 + 'Epoch {}/{}'.format(epoch, args.max_epoch) + '-' * 5)
self.epoch = epoch
self.train_eopch()
if epoch % args.val_epoch == 0 and epoch >= args.val_start:
self.val_epoch()
def train_eopch(self):
epoch_ot_loss = AverageMeter()
epoch_ot_obj_value = AverageMeter()
epoch_wd = AverageMeter()
epoch_count_loss = AverageMeter()
epoch_tv_loss = AverageMeter()
epoch_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
epoch_start = time.time()
self.model.train() # Set model to training mode
for step, (inputs, points, gt_discrete) in enumerate(self.dataloaders['train']):
inputs = inputs.to(self.device)
gd_count = np.array([len(p) for p in points], dtype=np.float32)
points = [p.to(self.device) for p in points]
gt_discrete = gt_discrete.to(self.device)
N = inputs.size(0)
with torch.set_grad_enabled(True):
outputs, outputs_normed = self.model(inputs)
# Compute OT loss.
ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs, points)
ot_loss = ot_loss * self.args.wot
ot_obj_value = ot_obj_value * self.args.wot
epoch_ot_loss.update(ot_loss.item(), N)
epoch_ot_obj_value.update(ot_obj_value.item(), N)
epoch_wd.update(wd, N)
# Compute counting loss.
count_loss = self.mae(outputs.sum(1).sum(1).sum(1),
torch.from_numpy(gd_count).float().to(self.device))
epoch_count_loss.update(count_loss.item(), N)
# Compute TV loss.
gd_count_tensor = torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(
2).unsqueeze(3)
gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
tv_loss = (self.tv_loss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(
1) * torch.from_numpy(gd_count).float().to(self.device)).mean(0) * self.args.wtv
epoch_tv_loss.update(tv_loss.item(), N)
loss = ot_loss + count_loss + tv_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
pred_count = torch.sum(outputs.view(N, -1), dim=1).detach().cpu().numpy()
pred_err = pred_count - gd_count
epoch_loss.update(loss.item(), N)
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
self.logger.info(
'Epoch {} Train, Loss: {:.2f}, OT Loss: {:.2e}, Wass Distance: {:.2f}, OT obj value: {:.2f}, '
'Count Loss: {:.2f}, TV Loss: {:.2f}, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, epoch_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_wd.get_avg(),
epoch_ot_obj_value.get_avg(), epoch_count_loss.get_avg(), epoch_tv_loss.get_avg(),
np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(),
time.time() - epoch_start))
model_state_dic = self.model.state_dict()
save_path = os.path.join(self.save_dir, '{}_ckpt.tar'.format(self.epoch))
torch.save({
'epoch': self.epoch,
'optimizer_state_dict': self.optimizer.state_dict(),
'model_state_dict': model_state_dic
}, save_path)
self.save_list.append(save_path)
def val_epoch(self):
args = self.args
epoch_start = time.time()
self.model.eval() # Set model to evaluate mode
epoch_res = []
for inputs, count, name in self.dataloaders['val']:
inputs = inputs.to(self.device)
assert inputs.size(0) == 1, 'the batch size should equal to 1 in validation mode'
with torch.set_grad_enabled(False):
outputs, _ = self.model(inputs)
res = count[0].item() - torch.sum(outputs).item()
epoch_res.append(res)
epoch_res = np.array(epoch_res)
mse = np.sqrt(np.mean(np.square(epoch_res)))
mae = np.mean(np.abs(epoch_res))
self.logger.info('Epoch {} Val, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, mse, mae, time.time() - epoch_start))
model_state_dic = self.model.state_dict()
if (2.0 * mse + mae) < (2.0 * self.best_mse + self.best_mae):
self.best_mse = mse
self.best_mae = mae
self.logger.info("save best mse {:.2f} mae {:.2f} model epoch {}".format(self.best_mse,
self.best_mae,
self.epoch))
torch.save(model_state_dic, os.path.join(self.save_dir, 'best_model_{}.pth'.format(self.best_count)))
self.best_count += 1
|