import streamlit as st from annotated_text import annotated_text from multiprocessing import Process import math import re import json import difflib import requests import time import os def start_server(): '''Helper to start to service through Unicorn ''' os.system("uvicorn InferenceServer:app --port 8080 --host 0.0.0.0 --workers 1") def load_models(): '''One time loading/ Init of models and starting server as a seperate process''' if not is_port_in_use(8080): with st.spinner(text="Loading models, please wait..."): proc = Process(target=start_server, args=(), daemon=True) proc.start() while not is_port_in_use(8080): time.sleep(1) st.success("Model server started.") else: st.success("Model server already running...") st.session_state['models_loaded'] = True def is_port_in_use(port): '''Helper to check if service already running''' import socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(('0.0.0.0', port)) == 0 if 'models_loaded' not in st.session_state: st.session_state['models_loaded'] = False def get_correction(input_text, model): '''Invokes the Neuspell inference service''' correct_request = "http://0.0.0.0:8080/correct?input_sentence="+input_text + "&model=" + model correct_response = requests.get(correct_request) correct_json = json.loads(correct_response.text) corrected_sentence = correct_json["corrected_sentence"] diff = diff_strings(input_text, corrected_sentence) st.markdown(f'##### Corrected text:') st.write('') annotated_text(*diff) def diff_strings(a, b): '''Highlights corrections with annotated_text library''' result = [] diff = difflib.Differ().compare(a.split(), b.split()) replacement = "" for line in diff: if line.startswith(" "): if len(replacement) == 0: result.append(" ") result.append(line[2:]) else: result.append(" ") result.append(("", replacement, "#39ff14")) replacement = "" result.append(line[2:]) if line.startswith("- "): if len(replacement) == 0: replacement = line[2:] else: result.append(" ") result.append(("", replacement, "#39ff14")) replacement = "" elif line.startswith("+ "): if len(replacement) == 0: result.append((line[2:], "", "#39ff14")) else: result.append(" ") result.append((line[2:], replacement, "#39ff14")) replacement = "" return result if __name__ == "__main__": st.title('Neuspell - A Python library') st.subheader('For fast & accurate spell correction') st.markdown("Added to HuggingFace hub and spaces with 💙 by Prithivi Da.[Fork with HF hub support](https://github.com/PrithivirajDamodaran/neuspell) | [Original repo](https://github.com/neuspell/neuspell)", unsafe_allow_html=True) st.markdown("
Integrate with your app with just few lines of code
", unsafe_allow_html=True) st.markdown(""" ```python import neuspell from neuspell import BertsclstmChecker checker = BertsclstmChecker() checker.from_pretrained() checker.correct("Oh! I loovee it when it starts to rain, its smells awesomee") # (or) checker.correct_strings(["sent1", "sent2"]) # (or) checker.correct_from_file(src="typo_ridden_texts.txt") ``` """) models = [ "BERT-LSTM", "ELMo-LSTM", "CNN-LSTM" ] examples = [ "what is the reazon for everyone to laeve the comapny?", "I loovee it when it starts to rain, it smells awesomee", "Feel free to rech out to me", "Life is shart, so live freely", "We know the boy actually stol the books", " We all ate the foood and then made desert", ] if not st.session_state['models_loaded']: load_models() st.markdown(f'##### Supported Models:') selected_model = st.selectbox( label="Choose a model: (Test and integrate the best that suits your needs)", options=models ) st.markdown(f'##### Try it now:') input_text = st.selectbox( label="Choose an example", options=examples ) st.write("(or)") input_text = st.text_input( label="Bring your own sentence", value=input_text ) if input_text.strip(): get_correction(input_text, selected_model)