Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Commit
•
74c43d1
1
Parent(s):
c1aa126
Update app.py
Browse files
app.py
CHANGED
@@ -9,265 +9,6 @@ import spaces
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
-
DESCRIPTIONx = """
|
13 |
-
|
14 |
-
|
15 |
-
"""
|
16 |
-
|
17 |
-
css = '''
|
18 |
-
.gradio-container{max-width: 560px !important}
|
19 |
-
h1{text-align:center}
|
20 |
-
footer {
|
21 |
-
visibility: hidden
|
22 |
-
}
|
23 |
-
'''
|
24 |
-
|
25 |
-
#examples = [
|
26 |
-
# "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
27 |
-
# "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5",
|
28 |
-
# "Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD",
|
29 |
-
# "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
30 |
-
# "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
31 |
-
#]
|
32 |
-
|
33 |
-
MODEL_OPTIONS = {
|
34 |
-
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
35 |
-
"Realvision": "SG161222/RealVisXL_V4.0",
|
36 |
-
}
|
37 |
-
|
38 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
39 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
40 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
41 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
42 |
-
|
43 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
44 |
-
|
45 |
-
def load_and_prepare_model(model_id):
|
46 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
47 |
-
model_id,
|
48 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
49 |
-
use_safetensors=True,
|
50 |
-
add_watermarker=False,
|
51 |
-
).to(device)
|
52 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
53 |
-
|
54 |
-
if USE_TORCH_COMPILE:
|
55 |
-
pipe.compile()
|
56 |
-
|
57 |
-
if ENABLE_CPU_OFFLOAD:
|
58 |
-
pipe.enable_model_cpu_offload()
|
59 |
-
|
60 |
-
return pipe
|
61 |
-
|
62 |
-
# Preload and compile both models
|
63 |
-
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
64 |
-
|
65 |
-
MAX_SEED = np.iinfo(np.int32).max
|
66 |
-
|
67 |
-
def save_image(img):
|
68 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
69 |
-
img.save(unique_name)
|
70 |
-
return unique_name
|
71 |
-
|
72 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
73 |
-
if randomize_seed:
|
74 |
-
seed = random.randint(0, MAX_SEED)
|
75 |
-
return seed
|
76 |
-
|
77 |
-
@spaces.GPU(duration=60, enable_queue=True)
|
78 |
-
def generate(
|
79 |
-
model_choice: str,
|
80 |
-
prompt: str,
|
81 |
-
negative_prompt: str = "",
|
82 |
-
use_negative_prompt: bool = False,
|
83 |
-
seed: int = 1,
|
84 |
-
width: int = 1024,
|
85 |
-
height: int = 1024,
|
86 |
-
guidance_scale: float = 3,
|
87 |
-
num_inference_steps: int = 25,
|
88 |
-
randomize_seed: bool = False,
|
89 |
-
use_resolution_binning: bool = True,
|
90 |
-
num_images: int = 1,
|
91 |
-
progress=gr.Progress(track_tqdm=True),
|
92 |
-
):
|
93 |
-
global models
|
94 |
-
pipe = models[model_choice]
|
95 |
-
|
96 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
97 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
98 |
-
|
99 |
-
options = {
|
100 |
-
"prompt": [prompt] * num_images,
|
101 |
-
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
102 |
-
"width": width,
|
103 |
-
"height": height,
|
104 |
-
"guidance_scale": guidance_scale,
|
105 |
-
"num_inference_steps": num_inference_steps,
|
106 |
-
"generator": generator,
|
107 |
-
"output_type": "pil",
|
108 |
-
}
|
109 |
-
|
110 |
-
if use_resolution_binning:
|
111 |
-
options["use_resolution_binning"] = True
|
112 |
-
|
113 |
-
images = []
|
114 |
-
for i in range(0, num_images, BATCH_SIZE):
|
115 |
-
batch_options = options.copy()
|
116 |
-
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
117 |
-
if "negative_prompt" in batch_options:
|
118 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
119 |
-
images.extend(pipe(**batch_options).images)
|
120 |
-
|
121 |
-
image_paths = [save_image(img) for img in images]
|
122 |
-
return image_paths, seed
|
123 |
-
|
124 |
-
def load_predefined_images():
|
125 |
-
predefined_images = [
|
126 |
-
"assets/1.png",
|
127 |
-
"assets/2.png",
|
128 |
-
"assets/3.png",
|
129 |
-
"assets/4.png",
|
130 |
-
"assets/5.png",
|
131 |
-
"assets/6.png",
|
132 |
-
"assets/7.png",
|
133 |
-
"assets/8.png",
|
134 |
-
"assets/9.png",
|
135 |
-
"assets/10.png",
|
136 |
-
"assets/11.png",
|
137 |
-
"assets/12.png",
|
138 |
-
]
|
139 |
-
return predefined_images
|
140 |
-
|
141 |
-
with gr.Blocks(css=css) as demo:
|
142 |
-
gr.Markdown(DESCRIPTIONx)
|
143 |
-
with gr.Row():
|
144 |
-
prompt = gr.Text(
|
145 |
-
label="Prompt",
|
146 |
-
show_label=False,
|
147 |
-
max_lines=1,
|
148 |
-
placeholder="Enter your prompt",
|
149 |
-
value="A cartoon of a Ironman fighting with Hulk, wall painting",
|
150 |
-
container=False,
|
151 |
-
)
|
152 |
-
run_button = gr.Button("Run⚡", scale=0)
|
153 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
154 |
-
|
155 |
-
with gr.Row():
|
156 |
-
model_choice = gr.Dropdown(
|
157 |
-
label="Model Selection",
|
158 |
-
choices=list(MODEL_OPTIONS.keys()),
|
159 |
-
value="Lightning"
|
160 |
-
)
|
161 |
-
|
162 |
-
with gr.Accordion("Advanced options", open=True, visible=False):
|
163 |
-
num_images = gr.Slider(
|
164 |
-
label="Number of Images",
|
165 |
-
minimum=1,
|
166 |
-
maximum=1,
|
167 |
-
step=1,
|
168 |
-
value=1,
|
169 |
-
)
|
170 |
-
with gr.Row():
|
171 |
-
with gr.Column(scale=1):
|
172 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
173 |
-
negative_prompt = gr.Text(
|
174 |
-
label="Negative prompt",
|
175 |
-
max_lines=5,
|
176 |
-
lines=4,
|
177 |
-
placeholder="Enter a negative prompt",
|
178 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
179 |
-
visible=True,
|
180 |
-
)
|
181 |
-
seed = gr.Slider(
|
182 |
-
label="Seed",
|
183 |
-
minimum=0,
|
184 |
-
maximum=MAX_SEED,
|
185 |
-
step=1,
|
186 |
-
value=0,
|
187 |
-
)
|
188 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
189 |
-
with gr.Row():
|
190 |
-
width = gr.Slider(
|
191 |
-
label="Width",
|
192 |
-
minimum=512,
|
193 |
-
maximum=MAX_IMAGE_SIZE,
|
194 |
-
step=64,
|
195 |
-
value=1024,
|
196 |
-
)
|
197 |
-
height = gr.Slider(
|
198 |
-
label="Height",
|
199 |
-
minimum=512,
|
200 |
-
maximum=MAX_IMAGE_SIZE,
|
201 |
-
step=64,
|
202 |
-
value=1024,
|
203 |
-
)
|
204 |
-
with gr.Row():
|
205 |
-
guidance_scale = gr.Slider(
|
206 |
-
label="Guidance Scale",
|
207 |
-
minimum=0.1,
|
208 |
-
maximum=6,
|
209 |
-
step=0.1,
|
210 |
-
value=3.0,
|
211 |
-
)
|
212 |
-
num_inference_steps = gr.Slider(
|
213 |
-
label="Number of inference steps",
|
214 |
-
minimum=1,
|
215 |
-
maximum=35,
|
216 |
-
step=1,
|
217 |
-
value=20,
|
218 |
-
)
|
219 |
-
|
220 |
-
# gr.Examples(
|
221 |
-
# examples=examples,
|
222 |
-
# inputs=prompt,
|
223 |
-
# cache_examples=False
|
224 |
-
#)
|
225 |
-
|
226 |
-
use_negative_prompt.change(
|
227 |
-
fn=lambda x: gr.update(visible=x),
|
228 |
-
inputs=use_negative_prompt,
|
229 |
-
outputs=negative_prompt,
|
230 |
-
api_name=False,
|
231 |
-
)
|
232 |
-
|
233 |
-
gr.on(
|
234 |
-
triggers=[
|
235 |
-
prompt.submit,
|
236 |
-
negative_prompt.submit,
|
237 |
-
run_button.click,
|
238 |
-
],
|
239 |
-
fn=generate,
|
240 |
-
inputs=[
|
241 |
-
model_choice,
|
242 |
-
prompt,
|
243 |
-
negative_prompt,
|
244 |
-
use_negative_prompt,
|
245 |
-
seed,
|
246 |
-
width,
|
247 |
-
height,
|
248 |
-
guidance_scale,
|
249 |
-
num_inference_steps,
|
250 |
-
randomize_seed,
|
251 |
-
num_images
|
252 |
-
],
|
253 |
-
outputs=[result, seed],
|
254 |
-
api_name="run",
|
255 |
-
)
|
256 |
-
#!/usr/bin/env python
|
257 |
-
import os
|
258 |
-
import random
|
259 |
-
import uuid
|
260 |
-
import gradio as gr
|
261 |
-
import numpy as np
|
262 |
-
from PIL import Image
|
263 |
-
import spaces
|
264 |
-
import torch
|
265 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
266 |
-
|
267 |
-
DESCRIPTIONx = """
|
268 |
-
|
269 |
-
|
270 |
-
"""
|
271 |
|
272 |
css = '''
|
273 |
.gradio-container{max-width: 570px !important}
|
@@ -394,7 +135,13 @@ def generate(
|
|
394 |
# return predefined_images
|
395 |
|
396 |
with gr.Blocks(css=css) as demo:
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
with gr.Row():
|
399 |
prompt = gr.Text(
|
400 |
label="Prompt",
|
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
css = '''
|
14 |
.gradio-container{max-width: 570px !important}
|
|
|
135 |
# return predefined_images
|
136 |
|
137 |
with gr.Blocks(css=css) as demo:
|
138 |
+
|
139 |
+
gr.Markdown(
|
140 |
+
f"""
|
141 |
+
# Text to Image : Playground 🥠
|
142 |
+
[Lightning](https://huggingface.co/SG161222/RealVisXL_V4.0_Lightning), [Realvision](https://huggingface.co/SG161222/RealVisXL_V4.0)
|
143 |
+
"""
|
144 |
+
)
|
145 |
with gr.Row():
|
146 |
prompt = gr.Text(
|
147 |
label="Prompt",
|