File size: 8,313 Bytes
0c1b8f7
 
 
 
 
 
10cb780
 
0c1b8f7
 
 
66fdbc3
 
 
 
 
 
 
ab6b5e5
 
 
 
4111962
 
 
ab6b5e5
 
 
 
94cce9f
 
ab6b5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b16b5e
ab6b5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b12660
 
394e65e
74c43d1
ae418f5
7f5e61e
74c43d1
 
ab6b5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c1b8f7
50aa35c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

css = '''
.gradio-container{max-width: 570px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "Chocolate dripping from a donut against a yellow background, 8k",
    "Illustration of A starry night camp in the mountains, 4k, cinematic --ar 85:128 --v 6.0 --style raw",
    "A photo of a lavender cat, hdr, 4k, --ar 85:128 --v 6.0 --style raw",
    "A delicious ceviche cheesecake slice, 4k, octane render, ray tracing, Ultra-High-Definition"
]

MODEL_OPTIONS = {
    "Lightning": "SG161222/RealVisXL_V4.0_Lightning",
    "Turbovision": "SG161222/RealVisXL_V3.0_Turbo",

}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def load_and_prepare_model(model_id):
    pipe = StableDiffusionXLPipeline.from_pretrained(
        model_id,
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        use_safetensors=True,
        add_watermarker=False,
    ).to(device)
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    
    if USE_TORCH_COMPILE:
        pipe.compile()
    
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    
    return pipe

# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}

MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  
    progress=gr.Progress(track_tqdm=True),
):
    global models
    pipe = models[model_choice]
    
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

#def load_predefined_images():
  #  predefined_images = [
 #       "assets/1.png",
    #    "assets/2.png",
    #    "assets/3.png",
    #    "assets/4.png",
    #    "assets/5.png",
   #     "assets/6.png",
    #    "assets/7.png",
     #   "assets/8.png",
    #    "assets/9.png",
     #   "assets/10.png",
   #     "assets/11.png",
 #       "assets/12.png",
 #   ]
  #  return predefined_images


with gr.Blocks(css=css) as demo:
    gr.Markdown(
            f"""
        # Text🥠Image
        Models used in the playground [[Lightning]](https://huggingface.co./SG161222/RealVisXL_V4.0_Lightning), [[Realvision]](https://huggingface.co./) ,[[Turbo]](https://huggingface.co./SG161222/RealVisXL_V3.0_Turbo) for image generation. stable diffusion xl piped (sdxl) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multi different variants available. ⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
        """
        )
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run⚡", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():
        model_choice = gr.Dropdown(
            label="Model Selection",
            choices=list(MODEL_OPTIONS.keys()),
            value="Lightning"
        )

    with gr.Accordion("Advanced options", open=True, visible=False):
        num_images = gr.Slider(
            label="Number of Images",
            minimum=1,
            maximum=1,
            step=1,
            value=1,
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                    visible=True,
                )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=35,
                step=1,
                value=20,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
            num_images
        ],
        outputs=[result, seed],
        api_name="run",
    )
 #   with gr.Column(scale=3):
    #    gr.Markdown("### Image Gallery")
     #   predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load_predefined_images())       
if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=False)