Spaces:
Running
Running
File size: 9,132 Bytes
0c1b8f7 10cb780 0c1b8f7 be810f5 0c1b8f7 66fdbc3 2401cf3 66fdbc3 ab6b5e5 4111962 ab6b5e5 94cce9f be810f5 ab6b5e5 be810f5 ab6b5e5 9b16b5e ab6b5e5 be810f5 ab6b5e5 2b12660 2401cf3 ab6b5e5 be810f5 ab6b5e5 be810f5 0c1b8f7 50aa35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from diffusers import AuraFlowPipeline
css = '''
.gradio-container{max-width: 600px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"Chocolate dripping from a donut against a yellow background, 8k",
"Illustration of A starry night camp in the mountains, 4k, cinematic --ar 85:128 --v 6.0 --style raw",
"A photo of a lavender cat, hdr, 4k, --ar 85:128 --v 6.0 --style raw",
"A delicious ceviche cheesecake slice, 4k, octane render, ray tracing, Ultra-High-Definition"
]
MODEL_OPTIONS = {
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
"Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
"AuraFlow": "fal/AuraFlow"
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_and_prepare_model(model_id):
if model_id == "fal/AuraFlow":
pipe = AuraFlowPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
).to(device)
else:
pipe = StableDiffusionXLPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
if USE_TORCH_COMPILE:
pipe.compile()
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
MAX_SEED = np.iinfo(np.int32).max
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60, enable_queue=True)
def generate(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
def load_predefined_images():
predefined_images = [
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/10.png",
"assets/11.png",
"assets/12.png",
]
return predefined_images
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run⚡", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
model_choice = gr.Dropdown(
label="Model Selection",
choices=list(MODEL_OPTIONS.keys()),
value="AuraFlow"
)
with gr.Accordion("Advanced options", open=True, visible=False):
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=1,
step=1,
value=1,
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=35,
step=1,
value=20,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images
],
outputs=[result, seed],
api_name="run",
)
gr.Markdown("🥠Models used in the playground [[Lightning]](https://huggingface.co./SG161222/RealVisXL_V4.0_Lightning), [[AuraFlow]](https://huggingface.co./fal/AuraFlow) ,[[Turbo]](https://huggingface.co./SG161222/RealVisXL_V3.0_Turbo) for image generation. stable diffusion xl piped (sdxl) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multi different variants available. ⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
gr.Markdown("🥠This is the demo space for generating images using Stable Diffusion with grids, filters, templates, quality styles, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.<a href='https://huggingface.co./spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.")
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
with gr.Column(scale=3):
gr.Markdown("### Image Gallery")
predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load_predefined_images())
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False) |