Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,214 Bytes
0a329ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# TEXT 2 IMAGE PLAYGROUND Documentation ## Overview TEXT 2 IMAGE PLAYGROUND is a Gradio-based web application designed to generate images from text prompts using advanced AI models. It offers various model options, customization parameters, and a user-friendly interface for an enhanced user experience. ## Features - **Model Selection**: Choose from multiple AI models to generate images with different styles and qualities. - **Custom Prompts**: Input text prompts to define the content and style of the generated images. - **Negative Prompts**: Use negative prompts to avoid unwanted elements in the images. - **Image Customization**: Adjust parameters like seed, width, height, guidance scale, and number of inference steps. - **Random Seed Generation**: Enable random seed generation for varied outputs. - **Image Gallery**: View a gallery of predefined images for inspiration. ## Interface ### Description ```markdown ## TEXT 2 IMAGE PLAYGROUND 🥠 ``` ### CSS ```css .gradio-container { max-width: 690px !important; } h1 { text-align: center; } footer { visibility: hidden; } ``` ### JavaScript ```javascript function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } ``` ### Examples Predefined text prompts for quick testing: - 3d image, cute girl, in the style of Pixar... - Chocolate dripping from a donut against a yellow background... - Illustration of A starry night camp in the mountains... - Man in brown leather jacket posing for camera... - Commercial photography, giant burger... ## Model Options ```python MODEL_OPTIONS = { "Realism : V4.0_Lightning🔥": "SG161222/RealVisXL_V4.0_Lightning", "Detailed/SOTA : Mobius🚀": "Corcelio/mobius", "Anime : Cagliostrolab🍺": "cagliostrolab/animagine-xl-3.1" } ``` ## Configuration Environment variables and configurations: ```python MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ``` ## Model Loading and Preparation Function to load and prepare models: ```python def load_and_prepare_model(model_id): pipe = StableDiffusionXLPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True, add_watermarker=False, ).to(device) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) if USE_TORCH_COMPILE: pipe.compile() if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() return pipe models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()} ``` ## Image Generation Function to generate images based on user inputs: ```python @spaces.GPU(duration=60, enable_queue=True) def generate( model_choice: str, prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 1, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 25, randomize_seed: bool = False, use_resolution_binning: bool = True, num_images: int = 1, progress=gr.Progress(track_tqdm=True), ): global models pipe = models[model_choice] seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) options = { "prompt": [prompt] * num_images, "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "generator": generator, "output_type": "pil", } if use_resolution_binning: options["use_resolution_binning"] = True images = [] for i in range(0, num_images, BATCH_SIZE): batch_options = options.copy() batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] if "negative_prompt" in batch_options: batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] images.extend(pipe(**batch_options).images) image_paths = [save_image(img) for img in images] return image_paths, seed ``` ## Load Predefined Images Function to load predefined images for the gallery: ```python def load_predefined_images(): predefined_images = [ "assets/1.png", "assets/2.png", "assets/3.png", "assets/4.png", "assets/5.png", "assets/6.png", "assets/7.png", "assets/8.png", "assets/9.png", "assets/10.png", "assets/11.png", "assets/12.png", ] return predefined_images ``` ## Gradio Interface Creating the Gradio interface: ```python with gr.Blocks(css=css, theme="bethecloud/storj_theme", js=js_func) as demo: gr.Markdown(DESCRIPTIONx) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", value="Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5", container=False, ) run_button = gr.Button("Run🚀", scale=0) result = gr.Gallery(label="Result", columns=1, show_label=False) with gr.Row(): model_choice = gr.Dropdown( label="Model Selection ☑️", choices=list(MODEL_OPTIONS.keys()), value="Realism : V4.0_Lightning🔥" ) with gr.Accordion("Advanced options", open=True): num_images = gr.Slider( label="Number of Images", minimum=1, maximum=1, step=1, value=1, ) with gr.Row(): with gr.Column(scale=1): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=6, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=35, step=1, value=20, ) gr.Examples( examples=examples, inputs=prompt, cache_examples=False ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ model_choice, prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, num_images ], outputs=[result, seed], api_name="run", ) with gr.Column(scale=3): gr.Markdown("### Image Gallery") predefined_gallery = gr.Gallery(label="Image Gallery", columns=4, show_label=False, value=load _predefined_images()) if __name__ == "__main__": demo.queue(max_size=40).launch(show_api=False) ``` ## Running the Application To run the application, simply execute the script. The interface will launch and be accessible via a web browser. ```sh python app.py ``` |