Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import uuid
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
-
import tempfile
|
8 |
from threading import Thread
|
9 |
|
10 |
import gradio as gr
|
@@ -13,7 +12,6 @@ import torch
|
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
import edge_tts
|
16 |
-
import trimesh
|
17 |
|
18 |
from transformers import (
|
19 |
AutoModelForCausalLM,
|
@@ -23,75 +21,8 @@ from transformers import (
|
|
23 |
AutoProcessor,
|
24 |
)
|
25 |
from transformers.image_utils import load_image
|
26 |
-
|
27 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
28 |
-
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
29 |
-
from diffusers.utils import export_to_ply
|
30 |
-
|
31 |
-
|
32 |
-
MAX_SEED = np.iinfo(np.int32).max
|
33 |
-
|
34 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
35 |
-
if randomize_seed:
|
36 |
-
seed = random.randint(0, MAX_SEED)
|
37 |
-
return seed
|
38 |
|
39 |
-
class Model:
|
40 |
-
def __init__(self):
|
41 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
-
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
43 |
-
self.pipe.to(self.device)
|
44 |
-
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
45 |
-
if torch.cuda.is_available():
|
46 |
-
try:
|
47 |
-
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
48 |
-
except AttributeError:
|
49 |
-
pass
|
50 |
-
|
51 |
-
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
52 |
-
self.pipe_img.to(self.device)
|
53 |
-
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
54 |
-
if torch.cuda.is_available():
|
55 |
-
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
56 |
-
if text_encoder_img is not None:
|
57 |
-
self.pipe_img.text_encoder = text_encoder_img.half()
|
58 |
-
|
59 |
-
def to_glb(self, ply_path: str) -> str:
|
60 |
-
mesh = trimesh.load(ply_path)
|
61 |
-
# Rotate the mesh for proper orientation
|
62 |
-
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
63 |
-
mesh.apply_transform(rot)
|
64 |
-
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
65 |
-
mesh.apply_transform(rot)
|
66 |
-
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
67 |
-
mesh.export(mesh_path.name, file_type="glb")
|
68 |
-
return mesh_path.name
|
69 |
-
|
70 |
-
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
71 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
72 |
-
images = self.pipe(
|
73 |
-
prompt,
|
74 |
-
generator=generator,
|
75 |
-
guidance_scale=guidance_scale,
|
76 |
-
num_inference_steps=num_steps,
|
77 |
-
output_type="mesh",
|
78 |
-
).images
|
79 |
-
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
80 |
-
export_to_ply(images[0], ply_path.name)
|
81 |
-
return self.to_glb(ply_path.name)
|
82 |
-
|
83 |
-
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
84 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
85 |
-
images = self.pipe_img(
|
86 |
-
image,
|
87 |
-
generator=generator,
|
88 |
-
guidance_scale=guidance_scale,
|
89 |
-
num_inference_steps=num_steps,
|
90 |
-
output_type="mesh",
|
91 |
-
).images
|
92 |
-
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
93 |
-
export_to_ply(images[0], ply_path.name)
|
94 |
-
return self.to_glb(ply_path.name)
|
95 |
|
96 |
DESCRIPTION = """
|
97 |
# QwQ Edge 💬
|
@@ -117,7 +48,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
117 |
|
118 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
119 |
|
120 |
-
# Load
|
121 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
122 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
123 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -127,13 +58,11 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
127 |
)
|
128 |
model.eval()
|
129 |
|
130 |
-
# Voices for text-to-speech
|
131 |
TTS_VOICES = [
|
132 |
"en-US-JennyNeural", # @tts1
|
133 |
"en-US-GuyNeural", # @tts2
|
134 |
]
|
135 |
|
136 |
-
# Load multimodal processor and model (e.g. for OCR and image processing)
|
137 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
138 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
139 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -159,12 +88,14 @@ def clean_chat_history(chat_history):
|
|
159 |
cleaned.append(msg)
|
160 |
return cleaned
|
161 |
|
|
|
162 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
163 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
164 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
165 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
166 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
167 |
|
|
|
168 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
169 |
MODEL_ID_SD,
|
170 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
@@ -173,21 +104,31 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
173 |
).to(device)
|
174 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
175 |
|
|
|
176 |
if torch.cuda.is_available():
|
177 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
178 |
|
|
|
179 |
if USE_TORCH_COMPILE:
|
180 |
sd_pipe.compile()
|
181 |
|
|
|
182 |
if ENABLE_CPU_OFFLOAD:
|
183 |
sd_pipe.enable_model_cpu_offload()
|
184 |
|
|
|
|
|
185 |
def save_image(img: Image.Image) -> str:
|
186 |
"""Save a PIL image with a unique filename and return the path."""
|
187 |
unique_name = str(uuid.uuid4()) + ".png"
|
188 |
img.save(unique_name)
|
189 |
return unique_name
|
190 |
|
|
|
|
|
|
|
|
|
|
|
191 |
@spaces.GPU(duration=60, enable_queue=True)
|
192 |
def generate_image_fn(
|
193 |
prompt: str,
|
@@ -227,6 +168,7 @@ def generate_image_fn(
|
|
227 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
228 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
229 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
|
|
230 |
if device.type == "cuda":
|
231 |
with torch.autocast("cuda", dtype=torch.float16):
|
232 |
outputs = sd_pipe(**batch_options)
|
@@ -236,23 +178,6 @@ def generate_image_fn(
|
|
236 |
image_paths = [save_image(img) for img in images]
|
237 |
return image_paths, seed
|
238 |
|
239 |
-
@spaces.GPU(duration=120, enable_queue=True)
|
240 |
-
def generate_3d_fn(
|
241 |
-
prompt: str,
|
242 |
-
seed: int = 1,
|
243 |
-
guidance_scale: float = 15.0,
|
244 |
-
num_steps: int = 64,
|
245 |
-
randomize_seed: bool = False,
|
246 |
-
):
|
247 |
-
"""
|
248 |
-
Generate a 3D model from text using the ShapE pipeline.
|
249 |
-
Returns a tuple of (glb_file_path, used_seed).
|
250 |
-
"""
|
251 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
252 |
-
model3d = Model()
|
253 |
-
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
254 |
-
return glb_path, seed
|
255 |
-
|
256 |
@spaces.GPU
|
257 |
def generate(
|
258 |
input_dict: dict,
|
@@ -264,34 +189,16 @@ def generate(
|
|
264 |
repetition_penalty: float = 1.2,
|
265 |
):
|
266 |
"""
|
267 |
-
Generates chatbot responses with support for multimodal input, TTS, image generation
|
268 |
-
and 3D model generation.
|
269 |
-
|
270 |
Special commands:
|
271 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
272 |
- "@image": triggers image generation using the SDXL pipeline.
|
273 |
-
- "@3d": triggers 3D model generation using the ShapE pipeline.
|
274 |
"""
|
275 |
text = input_dict["text"]
|
276 |
files = input_dict.get("files", [])
|
277 |
|
278 |
-
# --- 3D Generation branch ---
|
279 |
-
if text.strip().lower().startswith("@3d"):
|
280 |
-
prompt = text[len("@3d"):].strip()
|
281 |
-
yield "Generating 3D model..."
|
282 |
-
glb_path, used_seed = generate_3d_fn(
|
283 |
-
prompt=prompt,
|
284 |
-
seed=1,
|
285 |
-
guidance_scale=15.0,
|
286 |
-
num_steps=64,
|
287 |
-
randomize_seed=True,
|
288 |
-
)
|
289 |
-
# Instead of returning as a file, yield a 3D model component so it displays inline.
|
290 |
-
yield gr.Model3D(value=glb_path, label="3D Model")
|
291 |
-
return
|
292 |
-
|
293 |
-
# --- Image Generation branch ---
|
294 |
if text.strip().lower().startswith("@image"):
|
|
|
295 |
prompt = text[len("@image"):].strip()
|
296 |
yield "Generating image..."
|
297 |
image_paths, used_seed = generate_image_fn(
|
@@ -307,10 +214,10 @@ def generate(
|
|
307 |
use_resolution_binning=True,
|
308 |
num_images=1,
|
309 |
)
|
|
|
310 |
yield gr.Image(image_paths[0])
|
311 |
-
return
|
312 |
|
313 |
-
# --- Text and TTS branch ---
|
314 |
tts_prefix = "@tts"
|
315 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
316 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -318,9 +225,11 @@ def generate(
|
|
318 |
if is_tts and voice_index:
|
319 |
voice = TTS_VOICES[voice_index - 1]
|
320 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
321 |
conversation = [{"role": "user", "content": text}]
|
322 |
else:
|
323 |
voice = None
|
|
|
324 |
text = text.replace(tts_prefix, "").strip()
|
325 |
conversation = clean_chat_history(chat_history)
|
326 |
conversation.append({"role": "user", "content": text})
|
@@ -354,6 +263,7 @@ def generate(
|
|
354 |
time.sleep(0.01)
|
355 |
yield buffer
|
356 |
else:
|
|
|
357 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
358 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
359 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -382,6 +292,7 @@ def generate(
|
|
382 |
final_response = "".join(outputs)
|
383 |
yield final_response
|
384 |
|
|
|
385 |
if is_tts and voice:
|
386 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
387 |
yield gr.Audio(output_file, autoplay=True)
|
@@ -397,11 +308,12 @@ demo = gr.ChatInterface(
|
|
397 |
],
|
398 |
examples=[
|
399 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
400 |
-
["
|
401 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
402 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
403 |
["Write a Python function to check if a number is prime."],
|
404 |
["@tts2 What causes rainbows to form?"],
|
|
|
405 |
],
|
406 |
cache_examples=False,
|
407 |
type="messages",
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
|
|
7 |
from threading import Thread
|
8 |
|
9 |
import gradio as gr
|
|
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import edge_tts
|
|
|
15 |
|
16 |
from transformers import (
|
17 |
AutoModelForCausalLM,
|
|
|
21 |
AutoProcessor,
|
22 |
)
|
23 |
from transformers.image_utils import load_image
|
|
|
24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
DESCRIPTION = """
|
28 |
# QwQ Edge 💬
|
|
|
48 |
|
49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
|
51 |
+
# Load text-only model and tokenizer
|
52 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
58 |
)
|
59 |
model.eval()
|
60 |
|
|
|
61 |
TTS_VOICES = [
|
62 |
"en-US-JennyNeural", # @tts1
|
63 |
"en-US-GuyNeural", # @tts2
|
64 |
]
|
65 |
|
|
|
66 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
67 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
68 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
88 |
cleaned.append(msg)
|
89 |
return cleaned
|
90 |
|
91 |
+
# Environment variables and parameters for Stable Diffusion XL
|
92 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
93 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
94 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
95 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
96 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
97 |
|
98 |
+
# Load the SDXL pipeline
|
99 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
100 |
MODEL_ID_SD,
|
101 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
104 |
).to(device)
|
105 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
106 |
|
107 |
+
# Ensure that the text encoder is in half-precision if using CUDA.
|
108 |
if torch.cuda.is_available():
|
109 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
110 |
|
111 |
+
# Optional: compile the model for speedup if enabled
|
112 |
if USE_TORCH_COMPILE:
|
113 |
sd_pipe.compile()
|
114 |
|
115 |
+
# Optional: offload parts of the model to CPU if needed
|
116 |
if ENABLE_CPU_OFFLOAD:
|
117 |
sd_pipe.enable_model_cpu_offload()
|
118 |
|
119 |
+
MAX_SEED = np.iinfo(np.int32).max
|
120 |
+
|
121 |
def save_image(img: Image.Image) -> str:
|
122 |
"""Save a PIL image with a unique filename and return the path."""
|
123 |
unique_name = str(uuid.uuid4()) + ".png"
|
124 |
img.save(unique_name)
|
125 |
return unique_name
|
126 |
|
127 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
128 |
+
if randomize_seed:
|
129 |
+
seed = random.randint(0, MAX_SEED)
|
130 |
+
return seed
|
131 |
+
|
132 |
@spaces.GPU(duration=60, enable_queue=True)
|
133 |
def generate_image_fn(
|
134 |
prompt: str,
|
|
|
168 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
169 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
170 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
171 |
+
# Wrap the pipeline call in autocast if using CUDA
|
172 |
if device.type == "cuda":
|
173 |
with torch.autocast("cuda", dtype=torch.float16):
|
174 |
outputs = sd_pipe(**batch_options)
|
|
|
178 |
image_paths = [save_image(img) for img in images]
|
179 |
return image_paths, seed
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
@spaces.GPU
|
182 |
def generate(
|
183 |
input_dict: dict,
|
|
|
189 |
repetition_penalty: float = 1.2,
|
190 |
):
|
191 |
"""
|
192 |
+
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
|
|
|
|
193 |
Special commands:
|
194 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
195 |
- "@image": triggers image generation using the SDXL pipeline.
|
|
|
196 |
"""
|
197 |
text = input_dict["text"]
|
198 |
files = input_dict.get("files", [])
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if text.strip().lower().startswith("@image"):
|
201 |
+
# Remove the "@image" tag and use the rest as prompt
|
202 |
prompt = text[len("@image"):].strip()
|
203 |
yield "Generating image..."
|
204 |
image_paths, used_seed = generate_image_fn(
|
|
|
214 |
use_resolution_binning=True,
|
215 |
num_images=1,
|
216 |
)
|
217 |
+
# Yield the generated image so that the chat interface displays it.
|
218 |
yield gr.Image(image_paths[0])
|
219 |
+
return # Exit early
|
220 |
|
|
|
221 |
tts_prefix = "@tts"
|
222 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
223 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
225 |
if is_tts and voice_index:
|
226 |
voice = TTS_VOICES[voice_index - 1]
|
227 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
228 |
+
# Clear previous chat history for a fresh TTS request.
|
229 |
conversation = [{"role": "user", "content": text}]
|
230 |
else:
|
231 |
voice = None
|
232 |
+
# Remove any stray @tts tags and build the conversation history.
|
233 |
text = text.replace(tts_prefix, "").strip()
|
234 |
conversation = clean_chat_history(chat_history)
|
235 |
conversation.append({"role": "user", "content": text})
|
|
|
263 |
time.sleep(0.01)
|
264 |
yield buffer
|
265 |
else:
|
266 |
+
|
267 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
268 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
269 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
292 |
final_response = "".join(outputs)
|
293 |
yield final_response
|
294 |
|
295 |
+
# If TTS was requested, convert the final response to speech.
|
296 |
if is_tts and voice:
|
297 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
298 |
yield gr.Audio(output_file, autoplay=True)
|
|
|
308 |
],
|
309 |
examples=[
|
310 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
311 |
+
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
312 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
313 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
314 |
["Write a Python function to check if a number is prime."],
|
315 |
["@tts2 What causes rainbows to form?"],
|
316 |
+
|
317 |
],
|
318 |
cache_examples=False,
|
319 |
type="messages",
|