Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
from transformers.image_utils import load_image
|
5 |
from threading import Thread
|
6 |
import time
|
7 |
import torch
|
8 |
-
|
9 |
-
import uuid
|
10 |
-
import io
|
11 |
-
import os
|
12 |
|
13 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
14 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
15 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
16 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
17 |
MODEL_ID,
|
@@ -19,78 +15,25 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
19 |
torch_dtype=torch.float16
|
20 |
).to("cuda").eval()
|
21 |
|
22 |
-
# Supported media extensions
|
23 |
-
image_extensions = Image.registered_extensions()
|
24 |
-
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
25 |
-
|
26 |
-
def identify_and_save_blob(blob_path):
|
27 |
-
"""Identifies if the blob is an image or video and saves it accordingly."""
|
28 |
-
try:
|
29 |
-
with open(blob_path, 'rb') as file:
|
30 |
-
blob_content = file.read()
|
31 |
-
|
32 |
-
# Try to identify if it's an image
|
33 |
-
try:
|
34 |
-
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
35 |
-
extension = ".png" # Default to PNG for saving
|
36 |
-
media_type = "image"
|
37 |
-
except (IOError, SyntaxError):
|
38 |
-
# If it's not a valid image, assume it's a video
|
39 |
-
extension = ".mp4" # Default to MP4 for saving
|
40 |
-
media_type = "video"
|
41 |
-
|
42 |
-
# Create a unique filename
|
43 |
-
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
44 |
-
with open(filename, "wb") as f:
|
45 |
-
f.write(blob_content)
|
46 |
-
|
47 |
-
return filename, media_type
|
48 |
-
|
49 |
-
except FileNotFoundError:
|
50 |
-
raise ValueError(f"The file {blob_path} was not found.")
|
51 |
-
except Exception as e:
|
52 |
-
raise ValueError(f"An error occurred while processing the file: {e}")
|
53 |
-
|
54 |
-
def process_vision_info(messages):
|
55 |
-
"""Processes vision inputs (images and videos) from messages."""
|
56 |
-
image_inputs = []
|
57 |
-
video_inputs = []
|
58 |
-
for message in messages:
|
59 |
-
for content in message["content"]:
|
60 |
-
if content["type"] == "image":
|
61 |
-
image_inputs.append(load_image(content["image"]))
|
62 |
-
elif content["type"] == "video":
|
63 |
-
video_inputs.append(content["video"])
|
64 |
-
return image_inputs, video_inputs
|
65 |
-
|
66 |
@spaces.GPU
|
67 |
def model_inference(input_dict, history):
|
68 |
text = input_dict["text"]
|
69 |
files = input_dict["files"]
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
media_type = "video"
|
79 |
-
else:
|
80 |
-
try:
|
81 |
-
file, media_type = identify_and_save_blob(file)
|
82 |
-
except Exception as e:
|
83 |
-
gr.Error(f"Unsupported media type: {e}")
|
84 |
-
return
|
85 |
-
media_paths.append(file)
|
86 |
-
media_types.append(media_type)
|
87 |
|
88 |
# Validate input
|
89 |
-
if text == "" and not
|
90 |
-
gr.Error("Please input a query and optionally image(s)
|
91 |
return
|
92 |
-
if text == "" and
|
93 |
-
gr.Error("Please input a text query along with the image(s)
|
94 |
return
|
95 |
|
96 |
# Prepare messages for the model
|
@@ -98,7 +41,7 @@ def model_inference(input_dict, history):
|
|
98 |
{
|
99 |
"role": "user",
|
100 |
"content": [
|
101 |
-
*[{"type":
|
102 |
{"type": "text", "text": text},
|
103 |
],
|
104 |
}
|
@@ -106,18 +49,9 @@ def model_inference(input_dict, history):
|
|
106 |
|
107 |
# Apply chat template and process inputs
|
108 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
109 |
-
|
110 |
-
# Process vision inputs (images and videos)
|
111 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
112 |
-
|
113 |
-
# Ensure video_inputs is not empty
|
114 |
-
if not video_inputs:
|
115 |
-
video_inputs = None
|
116 |
-
|
117 |
inputs = processor(
|
118 |
text=[prompt],
|
119 |
-
images=
|
120 |
-
videos=video_inputs if video_inputs else None,
|
121 |
return_tensors="pt",
|
122 |
padding=True,
|
123 |
).to("cuda")
|
@@ -142,7 +76,7 @@ def model_inference(input_dict, history):
|
|
142 |
|
143 |
# Example inputs
|
144 |
examples = [
|
145 |
-
|
146 |
[{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
147 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
148 |
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
|
@@ -153,16 +87,17 @@ examples = [
|
|
153 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
154 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
155 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
|
|
156 |
]
|
157 |
|
158 |
demo = gr.ChatInterface(
|
159 |
fn=model_inference,
|
160 |
description="# **Multimodal OCR**",
|
161 |
examples=examples,
|
162 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"
|
163 |
stop_btn="Stop Generation",
|
164 |
multimodal=True,
|
165 |
cache_examples=False,
|
166 |
)
|
167 |
|
168 |
-
demo.launch(debug=True
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
from transformers.image_utils import load_image
|
4 |
from threading import Thread
|
5 |
import time
|
6 |
import torch
|
7 |
+
import spaces
|
|
|
|
|
|
|
8 |
|
9 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
10 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
11 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
12 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
MODEL_ID,
|
|
|
15 |
torch_dtype=torch.float16
|
16 |
).to("cuda").eval()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@spaces.GPU
|
19 |
def model_inference(input_dict, history):
|
20 |
text = input_dict["text"]
|
21 |
files = input_dict["files"]
|
22 |
|
23 |
+
# Load images if provided
|
24 |
+
if len(files) > 1:
|
25 |
+
images = [load_image(image) for image in files]
|
26 |
+
elif len(files) == 1:
|
27 |
+
images = [load_image(files[0])]
|
28 |
+
else:
|
29 |
+
images = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Validate input
|
32 |
+
if text == "" and not images:
|
33 |
+
gr.Error("Please input a query and optionally image(s).")
|
34 |
return
|
35 |
+
if text == "" and images:
|
36 |
+
gr.Error("Please input a text query along with the image(s).")
|
37 |
return
|
38 |
|
39 |
# Prepare messages for the model
|
|
|
41 |
{
|
42 |
"role": "user",
|
43 |
"content": [
|
44 |
+
*[{"type": "image", "image": image} for image in images],
|
45 |
{"type": "text", "text": text},
|
46 |
],
|
47 |
}
|
|
|
49 |
|
50 |
# Apply chat template and process inputs
|
51 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
inputs = processor(
|
53 |
text=[prompt],
|
54 |
+
images=images if images else None,
|
|
|
55 |
return_tensors="pt",
|
56 |
padding=True,
|
57 |
).to("cuda")
|
|
|
76 |
|
77 |
# Example inputs
|
78 |
examples = [
|
79 |
+
|
80 |
[{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
81 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
82 |
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
|
|
|
87 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
88 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
89 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
90 |
+
|
91 |
]
|
92 |
|
93 |
demo = gr.ChatInterface(
|
94 |
fn=model_inference,
|
95 |
description="# **Multimodal OCR**",
|
96 |
examples=examples,
|
97 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
98 |
stop_btn="Stop Generation",
|
99 |
multimodal=True,
|
100 |
cache_examples=False,
|
101 |
)
|
102 |
|
103 |
+
demo.launch(debug=True)
|