prithivMLmods commited on
Commit
fc95e60
·
verified ·
1 Parent(s): c210b8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -84
app.py CHANGED
@@ -1,17 +1,13 @@
1
  import gradio as gr
2
- import spaces
3
  from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
4
  from transformers.image_utils import load_image
5
  from threading import Thread
6
  import time
7
  import torch
8
- from PIL import Image
9
- import uuid
10
- import io
11
- import os
12
 
13
  # Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
14
- MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
15
  processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
16
  model = Qwen2VLForConditionalGeneration.from_pretrained(
17
  MODEL_ID,
@@ -19,78 +15,25 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
19
  torch_dtype=torch.float16
20
  ).to("cuda").eval()
21
 
22
- # Supported media extensions
23
- image_extensions = Image.registered_extensions()
24
- video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
25
-
26
- def identify_and_save_blob(blob_path):
27
- """Identifies if the blob is an image or video and saves it accordingly."""
28
- try:
29
- with open(blob_path, 'rb') as file:
30
- blob_content = file.read()
31
-
32
- # Try to identify if it's an image
33
- try:
34
- Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
35
- extension = ".png" # Default to PNG for saving
36
- media_type = "image"
37
- except (IOError, SyntaxError):
38
- # If it's not a valid image, assume it's a video
39
- extension = ".mp4" # Default to MP4 for saving
40
- media_type = "video"
41
-
42
- # Create a unique filename
43
- filename = f"temp_{uuid.uuid4()}_media{extension}"
44
- with open(filename, "wb") as f:
45
- f.write(blob_content)
46
-
47
- return filename, media_type
48
-
49
- except FileNotFoundError:
50
- raise ValueError(f"The file {blob_path} was not found.")
51
- except Exception as e:
52
- raise ValueError(f"An error occurred while processing the file: {e}")
53
-
54
- def process_vision_info(messages):
55
- """Processes vision inputs (images and videos) from messages."""
56
- image_inputs = []
57
- video_inputs = []
58
- for message in messages:
59
- for content in message["content"]:
60
- if content["type"] == "image":
61
- image_inputs.append(load_image(content["image"]))
62
- elif content["type"] == "video":
63
- video_inputs.append(content["video"])
64
- return image_inputs, video_inputs
65
-
66
  @spaces.GPU
67
  def model_inference(input_dict, history):
68
  text = input_dict["text"]
69
  files = input_dict["files"]
70
 
71
- # Process media files (images or videos)
72
- media_paths = []
73
- media_types = []
74
- for file in files:
75
- if file.endswith(tuple([i for i, f in image_extensions.items()])):
76
- media_type = "image"
77
- elif file.endswith(video_extensions):
78
- media_type = "video"
79
- else:
80
- try:
81
- file, media_type = identify_and_save_blob(file)
82
- except Exception as e:
83
- gr.Error(f"Unsupported media type: {e}")
84
- return
85
- media_paths.append(file)
86
- media_types.append(media_type)
87
 
88
  # Validate input
89
- if text == "" and not media_paths:
90
- gr.Error("Please input a query and optionally image(s) or video(s).")
91
  return
92
- if text == "" and media_paths:
93
- gr.Error("Please input a text query along with the image(s) or video(s).")
94
  return
95
 
96
  # Prepare messages for the model
@@ -98,7 +41,7 @@ def model_inference(input_dict, history):
98
  {
99
  "role": "user",
100
  "content": [
101
- *[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)],
102
  {"type": "text", "text": text},
103
  ],
104
  }
@@ -106,18 +49,9 @@ def model_inference(input_dict, history):
106
 
107
  # Apply chat template and process inputs
108
  prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
109
-
110
- # Process vision inputs (images and videos)
111
- image_inputs, video_inputs = process_vision_info(messages)
112
-
113
- # Ensure video_inputs is not empty
114
- if not video_inputs:
115
- video_inputs = None
116
-
117
  inputs = processor(
118
  text=[prompt],
119
- images=image_inputs if image_inputs else None,
120
- videos=video_inputs if video_inputs else None,
121
  return_tensors="pt",
122
  padding=True,
123
  ).to("cuda")
@@ -142,7 +76,7 @@ def model_inference(input_dict, history):
142
 
143
  # Example inputs
144
  examples = [
145
- [{"text": "Describe the video.", "files": ["examples/demo.mp4"]}],
146
  [{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
147
  [{"text": "summarize the letter", "files": ["examples/1.png"]}],
148
  [{"text": "Describe the photo", "files": ["examples/3.png"]}],
@@ -153,16 +87,17 @@ examples = [
153
  [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
154
  [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
155
  [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
 
156
  ]
157
 
158
  demo = gr.ChatInterface(
159
  fn=model_inference,
160
  description="# **Multimodal OCR**",
161
  examples=examples,
162
- textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
163
  stop_btn="Stop Generation",
164
  multimodal=True,
165
  cache_examples=False,
166
  )
167
 
168
- demo.launch(debug=True, share=True)
 
1
  import gradio as gr
 
2
  from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
3
  from transformers.image_utils import load_image
4
  from threading import Thread
5
  import time
6
  import torch
7
+ import spaces
 
 
 
8
 
9
  # Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
10
+ MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
11
  processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
12
  model = Qwen2VLForConditionalGeneration.from_pretrained(
13
  MODEL_ID,
 
15
  torch_dtype=torch.float16
16
  ).to("cuda").eval()
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  @spaces.GPU
19
  def model_inference(input_dict, history):
20
  text = input_dict["text"]
21
  files = input_dict["files"]
22
 
23
+ # Load images if provided
24
+ if len(files) > 1:
25
+ images = [load_image(image) for image in files]
26
+ elif len(files) == 1:
27
+ images = [load_image(files[0])]
28
+ else:
29
+ images = []
 
 
 
 
 
 
 
 
 
30
 
31
  # Validate input
32
+ if text == "" and not images:
33
+ gr.Error("Please input a query and optionally image(s).")
34
  return
35
+ if text == "" and images:
36
+ gr.Error("Please input a text query along with the image(s).")
37
  return
38
 
39
  # Prepare messages for the model
 
41
  {
42
  "role": "user",
43
  "content": [
44
+ *[{"type": "image", "image": image} for image in images],
45
  {"type": "text", "text": text},
46
  ],
47
  }
 
49
 
50
  # Apply chat template and process inputs
51
  prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
 
 
 
 
 
 
 
 
52
  inputs = processor(
53
  text=[prompt],
54
+ images=images if images else None,
 
55
  return_tensors="pt",
56
  padding=True,
57
  ).to("cuda")
 
76
 
77
  # Example inputs
78
  examples = [
79
+
80
  [{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
81
  [{"text": "summarize the letter", "files": ["examples/1.png"]}],
82
  [{"text": "Describe the photo", "files": ["examples/3.png"]}],
 
87
  [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
88
  [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
89
  [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
90
+
91
  ]
92
 
93
  demo = gr.ChatInterface(
94
  fn=model_inference,
95
  description="# **Multimodal OCR**",
96
  examples=examples,
97
+ textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
98
  stop_btn="Stop Generation",
99
  multimodal=True,
100
  cache_examples=False,
101
  )
102
 
103
+ demo.launch(debug=True)