Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
-
from
|
5 |
-
import torch
|
6 |
-
from PIL import Image
|
7 |
-
import os
|
8 |
-
import uuid
|
9 |
-
import io
|
10 |
from threading import Thread
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
15 |
-
from reportlab.lib.units import inch
|
16 |
-
from reportlab.pdfbase import pdfmetrics
|
17 |
-
from reportlab.pdfbase.ttfonts import TTFont
|
18 |
-
import docx
|
19 |
-
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
20 |
|
21 |
# Define model options
|
22 |
MODEL_OPTIONS = {
|
@@ -26,318 +14,128 @@ MODEL_OPTIONS = {
|
|
26 |
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
27 |
}
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
model_id,
|
36 |
trust_remote_code=True,
|
37 |
torch_dtype=torch.float16
|
38 |
).to("cuda").eval()
|
39 |
-
|
40 |
-
|
41 |
-
image_extensions = Image.registered_extensions()
|
42 |
-
|
43 |
-
def identify_and_save_blob(blob_path):
|
44 |
-
"""Identifies if the blob is an image and saves it."""
|
45 |
-
try:
|
46 |
-
with open(blob_path, 'rb') as file:
|
47 |
-
blob_content = file.read()
|
48 |
-
try:
|
49 |
-
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
50 |
-
extension = ".png" # Default to PNG for saving
|
51 |
-
media_type = "image"
|
52 |
-
except (IOError, SyntaxError):
|
53 |
-
raise ValueError("Unsupported media type. Please upload a valid image.")
|
54 |
-
|
55 |
-
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
56 |
-
with open(filename, "wb") as f:
|
57 |
-
f.write(blob_content)
|
58 |
-
|
59 |
-
return filename, media_type
|
60 |
-
|
61 |
-
except FileNotFoundError:
|
62 |
-
raise ValueError(f"The file {blob_path} was not found.")
|
63 |
-
except Exception as e:
|
64 |
-
raise ValueError(f"An error occurred while processing the file: {e}")
|
65 |
|
66 |
@spaces.GPU
|
67 |
-
def
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
messages = [
|
83 |
{
|
84 |
"role": "user",
|
85 |
"content": [
|
86 |
-
{
|
87 |
-
|
88 |
-
media_type: media_path
|
89 |
-
},
|
90 |
-
{"type": "text", "text": text_input},
|
91 |
],
|
92 |
}
|
93 |
]
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
-
image_inputs, _ = process_vision_info(messages)
|
99 |
inputs = processor(
|
100 |
-
text=[
|
101 |
-
images=
|
102 |
-
padding=True,
|
103 |
return_tensors="pt",
|
|
|
104 |
).to("cuda")
|
105 |
|
106 |
-
streamer
|
107 |
-
|
108 |
-
)
|
109 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
110 |
|
|
|
111 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
112 |
thread.start()
|
113 |
|
|
|
114 |
buffer = ""
|
|
|
115 |
for new_text in streamer:
|
116 |
buffer += new_text
|
117 |
-
|
118 |
-
buffer = buffer.replace("<|im_end|>", "")
|
119 |
yield buffer
|
120 |
|
121 |
-
def format_plain_text(output_text):
|
122 |
-
"""Formats the output text as plain text without LaTeX delimiters."""
|
123 |
-
# Remove LaTeX delimiters and convert to plain text
|
124 |
-
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "")
|
125 |
-
return plain_text
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
)
|
146 |
-
styles = getSampleStyleSheet()
|
147 |
-
styles["Normal"].fontName = font_choice
|
148 |
-
styles["Normal"].fontSize = int(font_size)
|
149 |
-
styles["Normal"].leading = int(font_size) * line_spacing
|
150 |
-
styles["Normal"].alignment = {
|
151 |
-
"Left": 0,
|
152 |
-
"Center": 1,
|
153 |
-
"Right": 2,
|
154 |
-
"Justified": 4
|
155 |
-
}[alignment]
|
156 |
-
|
157 |
-
# Register font
|
158 |
-
font_path = f"font/{font_choice}"
|
159 |
-
pdfmetrics.registerFont(TTFont(font_choice, font_path))
|
160 |
-
|
161 |
-
story = []
|
162 |
-
|
163 |
-
# Add image with size adjustment
|
164 |
-
image_sizes = {
|
165 |
-
"Small": (200, 200),
|
166 |
-
"Medium": (400, 400),
|
167 |
-
"Large": (600, 600)
|
168 |
-
}
|
169 |
-
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])
|
170 |
-
story.append(img)
|
171 |
-
story.append(Spacer(1, 12))
|
172 |
|
173 |
-
#
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
"Medium": docx.shared.Inches(4),
|
189 |
-
"Large": docx.shared.Inches(6)
|
190 |
-
}
|
191 |
-
doc.add_picture(media_path, width=image_sizes[image_size])
|
192 |
-
doc.add_paragraph()
|
193 |
-
|
194 |
-
# Add plain text output
|
195 |
-
paragraph = doc.add_paragraph()
|
196 |
-
paragraph.paragraph_format.line_spacing = line_spacing
|
197 |
-
paragraph.paragraph_format.alignment = {
|
198 |
-
"Left": WD_ALIGN_PARAGRAPH.LEFT,
|
199 |
-
"Center": WD_ALIGN_PARAGRAPH.CENTER,
|
200 |
-
"Right": WD_ALIGN_PARAGRAPH.RIGHT,
|
201 |
-
"Justified": WD_ALIGN_PARAGRAPH.JUSTIFY
|
202 |
-
}[alignment]
|
203 |
-
run = paragraph.add_run(plain_text)
|
204 |
-
run.font.name = font_choice
|
205 |
-
run.font.size = docx.shared.Pt(int(font_size))
|
206 |
-
|
207 |
-
doc.save(filename)
|
208 |
-
return filename
|
209 |
-
|
210 |
-
# CSS for output styling
|
211 |
-
css = """
|
212 |
-
#output {
|
213 |
-
height: 500px;
|
214 |
-
overflow: auto;
|
215 |
-
border: 1px solid #ccc;
|
216 |
-
}
|
217 |
-
.submit-btn {
|
218 |
-
background-color: #cf3434 !important;
|
219 |
-
color: white !important;
|
220 |
-
}
|
221 |
-
.submit-btn:hover {
|
222 |
-
background-color: #ff2323 !important;
|
223 |
-
}
|
224 |
-
.download-btn {
|
225 |
-
background-color: #35a6d6 !important;
|
226 |
-
color: white !important;
|
227 |
-
}
|
228 |
-
.download-btn:hover {
|
229 |
-
background-color: #22bcff !important;
|
230 |
-
}
|
231 |
-
"""
|
232 |
-
|
233 |
-
# Gradio app setup
|
234 |
-
with gr.Blocks(css=css) as demo:
|
235 |
-
gr.Markdown("# Qwen2VL Models: Vision and Language Processing")
|
236 |
-
|
237 |
-
with gr.Tab(label="Image Input"):
|
238 |
-
|
239 |
-
with gr.Row():
|
240 |
-
with gr.Column():
|
241 |
-
model_choice = gr.Dropdown(
|
242 |
-
label="Model Selection",
|
243 |
-
choices=list(MODEL_OPTIONS.keys()),
|
244 |
-
value="Latex OCR"
|
245 |
-
)
|
246 |
-
input_media = gr.File(
|
247 |
-
label="Upload Image📸", type="filepath"
|
248 |
-
)
|
249 |
-
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...")
|
250 |
-
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
|
251 |
-
|
252 |
-
with gr.Column():
|
253 |
-
output_text = gr.Textbox(label="Output Text", lines=10)
|
254 |
-
plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10)
|
255 |
-
|
256 |
-
submit_btn.click(
|
257 |
-
qwen_inference, [model_choice, input_media, text_input], [output_text]
|
258 |
-
).then(
|
259 |
-
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]
|
260 |
-
)
|
261 |
-
|
262 |
-
# Add examples directly usable by clicking
|
263 |
-
with gr.Row():
|
264 |
-
gr.Examples(
|
265 |
-
examples=[
|
266 |
-
["examples/1.png", "summarize the letter", "Text Analogy Ocrtest"],
|
267 |
-
["examples/2.jpg", "Summarize the full image in detail", "Latex OCR"],
|
268 |
-
["examples/3.png", "Describe the photo", "Qwen2VL Base"],
|
269 |
-
["examples/4.png", "summarize and solve the problem", "Math Prase"],
|
270 |
-
],
|
271 |
-
inputs=[input_media, text_input, model_choice],
|
272 |
-
outputs=[output_text, plain_text_output],
|
273 |
-
fn=lambda img, question, model: qwen_inference(model, img, question),
|
274 |
-
cache_examples=False,
|
275 |
-
)
|
276 |
-
|
277 |
-
with gr.Row():
|
278 |
-
with gr.Column():
|
279 |
-
line_spacing = gr.Dropdown(
|
280 |
-
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],
|
281 |
-
value=1.5,
|
282 |
-
label="Line Spacing"
|
283 |
-
)
|
284 |
-
font_size = gr.Dropdown(
|
285 |
-
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
|
286 |
-
value="18",
|
287 |
-
label="Font Size"
|
288 |
-
)
|
289 |
-
font_choice = gr.Dropdown(
|
290 |
-
choices=[
|
291 |
-
"DejaVuMathTeXGyre.ttf",
|
292 |
-
"FiraCode-Medium.ttf",
|
293 |
-
"InputMono-Light.ttf",
|
294 |
-
"JetBrainsMono-Thin.ttf",
|
295 |
-
"ProggyCrossed Regular Mac.ttf",
|
296 |
-
"SourceCodePro-Black.ttf",
|
297 |
-
"arial.ttf",
|
298 |
-
"calibri.ttf",
|
299 |
-
"mukta-malar-extralight.ttf",
|
300 |
-
"noto-sans-arabic-medium.ttf",
|
301 |
-
"times new roman.ttf",
|
302 |
-
"ANGSA.ttf",
|
303 |
-
"Book-Antiqua.ttf",
|
304 |
-
"CONSOLA.TTF",
|
305 |
-
"COOPBL.TTF",
|
306 |
-
"Rockwell-Bold.ttf",
|
307 |
-
"Candara Light.TTF",
|
308 |
-
"Carlito-Regular.ttf Carlito-Regular.ttf",
|
309 |
-
"Castellar.ttf",
|
310 |
-
"Courier New.ttf",
|
311 |
-
"LSANS.TTF",
|
312 |
-
"Lucida Bright Regular.ttf",
|
313 |
-
"TRTempusSansITC.ttf",
|
314 |
-
"Verdana.ttf",
|
315 |
-
"bell-mt.ttf",
|
316 |
-
"eras-itc-light.ttf",
|
317 |
-
"fonnts.com-aptos-light.ttf",
|
318 |
-
"georgia.ttf",
|
319 |
-
"segoeuithis.ttf",
|
320 |
-
"youyuan.TTF",
|
321 |
-
"TfPonetoneExpanded-7BJZA.ttf",
|
322 |
-
],
|
323 |
-
value="youyuan.TTF",
|
324 |
-
label="Font Choice"
|
325 |
-
)
|
326 |
-
alignment = gr.Dropdown(
|
327 |
-
choices=["Left", "Center", "Right", "Justified"],
|
328 |
-
value="Justified",
|
329 |
-
label="Text Alignment"
|
330 |
-
)
|
331 |
-
image_size = gr.Dropdown(
|
332 |
-
choices=["Small", "Medium", "Large"],
|
333 |
-
value="Small",
|
334 |
-
label="Image Size"
|
335 |
-
)
|
336 |
-
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf")
|
337 |
-
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn")
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
)
|
342 |
|
|
|
343 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
+
from transformers.image_utils import load_image
|
|
|
|
|
|
|
|
|
|
|
4 |
from threading import Thread
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Define model options
|
10 |
MODEL_OPTIONS = {
|
|
|
14 |
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
15 |
}
|
16 |
|
17 |
+
# Global variables for model and processor
|
18 |
+
model = None
|
19 |
+
processor = None
|
20 |
+
|
21 |
+
# Function to load the selected model
|
22 |
+
def load_model(model_name):
|
23 |
+
global model, processor
|
24 |
+
model_id = MODEL_OPTIONS[model_name]
|
25 |
+
print(f"Loading model: {model_id}")
|
26 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
27 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
28 |
model_id,
|
29 |
trust_remote_code=True,
|
30 |
torch_dtype=torch.float16
|
31 |
).to("cuda").eval()
|
32 |
+
print(f"Model {model_id} loaded successfully!")
|
33 |
+
return f"Model {model_name} loaded!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
@spaces.GPU
|
36 |
+
def model_inference(input_dict, history, model_choice):
|
37 |
+
global model, processor
|
38 |
+
|
39 |
+
# Load the selected model if not already loaded
|
40 |
+
if model is None or processor is None:
|
41 |
+
load_model(model_choice)
|
42 |
+
|
43 |
+
text = input_dict["text"]
|
44 |
+
files = input_dict["files"]
|
45 |
+
|
46 |
+
# Load images if provided
|
47 |
+
if len(files) > 1:
|
48 |
+
images = [load_image(image) for image in files]
|
49 |
+
elif len(files) == 1:
|
50 |
+
images = [load_image(files[0])]
|
51 |
+
else:
|
52 |
+
images = []
|
53 |
+
|
54 |
+
# Validate input
|
55 |
+
if text == "" and not images:
|
56 |
+
gr.Error("Please input a query and optionally image(s).")
|
57 |
+
return
|
58 |
+
if text == "" and images:
|
59 |
+
gr.Error("Please input a text query along with the image(s).")
|
60 |
+
return
|
61 |
+
|
62 |
+
# Prepare messages for the model
|
63 |
messages = [
|
64 |
{
|
65 |
"role": "user",
|
66 |
"content": [
|
67 |
+
*[{"type": "image", "image": image} for image in images],
|
68 |
+
{"type": "text", "text": text},
|
|
|
|
|
|
|
69 |
],
|
70 |
}
|
71 |
]
|
72 |
|
73 |
+
# Apply chat template and process inputs
|
74 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
75 |
inputs = processor(
|
76 |
+
text=[prompt],
|
77 |
+
images=images if images else None,
|
|
|
78 |
return_tensors="pt",
|
79 |
+
padding=True,
|
80 |
).to("cuda")
|
81 |
|
82 |
+
# Set up streamer for real-time output
|
83 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
|
|
84 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
85 |
|
86 |
+
# Start generation in a separate thread
|
87 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
88 |
thread.start()
|
89 |
|
90 |
+
# Stream the output
|
91 |
buffer = ""
|
92 |
+
yield "Thinking..."
|
93 |
for new_text in streamer:
|
94 |
buffer += new_text
|
95 |
+
time.sleep(0.01)
|
|
|
96 |
yield buffer
|
97 |
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
# Example inputs
|
100 |
+
examples = [
|
101 |
+
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
|
102 |
+
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
103 |
+
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
104 |
+
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
105 |
+
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
106 |
+
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
107 |
+
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
108 |
+
]
|
109 |
+
|
110 |
+
# Gradio interface
|
111 |
+
with gr.Blocks() as demo:
|
112 |
+
gr.Markdown("# **Qwen2.5-VL-3B-Instruct**")
|
113 |
+
|
114 |
+
# Model selection dropdown
|
115 |
+
model_choice = gr.Dropdown(
|
116 |
+
label="Model Selection",
|
117 |
+
choices=list(MODEL_OPTIONS.keys()),
|
118 |
+
value="Latex OCR"
|
119 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Load model button
|
122 |
+
load_model_btn = gr.Button("Load Model")
|
123 |
+
load_model_output = gr.Textbox(label="Model Load Status")
|
124 |
+
|
125 |
+
# Chat interface
|
126 |
+
chat_interface = gr.ChatInterface(
|
127 |
+
fn=model_inference,
|
128 |
+
description="Interact with the selected Qwen2-VL model.",
|
129 |
+
examples=examples,
|
130 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
131 |
+
stop_btn="Stop Generation",
|
132 |
+
multimodal=True,
|
133 |
+
cache_examples=False,
|
134 |
+
additional_inputs=[model_choice] # Pass model_choice as an additional input
|
135 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# Link the load model button to the load_model function
|
138 |
+
load_model_btn.click(load_model, inputs=model_choice, outputs=load_model_output)
|
|
|
139 |
|
140 |
+
# Launch the demo
|
141 |
demo.launch(debug=True)
|