import nltk import re import nltkmodules from nltk.tokenize import word_tokenize from sentence_transformers import SentenceTransformer import pandas as pd import numpy as np from pandas import ExcelWriter from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import * import logging import glob from datetime import datetime import sys from nltk.corpus import stopwords stop_words = stopwords.words('english') from sklearn.metrics.pairwise import cosine_similarity import scipy.spatial import networkx as nx from nltk.tokenize import sent_tokenize import scispacy import spacy import en_core_sci_lg from spacy import displacy from scispacy.abbreviation import AbbreviationDetector from scispacy.umls_linking import UmlsEntityLinker from transformers import AutoTokenizer, AutoModel import statistics import string from nltk.stem.wordnet import WordNetLemmatizer import gradio as gr nlp = en_core_sci_lg.load() sp = en_core_sci_lg.load() all_stopwords = sp.Defaults.stop_words def remove_stopwords(sen): sen_new = " ".join([i for i in sen if i not in stop_words]) return sen_new def keyphrase_generator(article, model_1, model_2, max_num_keywords): element=[] document=[] text=[] model_1 = SentenceTransformer(model_1) model_2 = SentenceTransformer(model_2) corpus=sent_tokenize(article) clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ").tolist() corpus_embeddings = model_1.encode(clean_sentences_new) sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)]) for i in range(len(clean_sentences_new)): for j in range(len(clean_sentences_new)): if i != j: sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0] nx_graph = nx.from_numpy_array(sim_mat) scores = nx.pagerank(nx_graph) ranked_sentences = sorted(((scores[i],s) for i,s in enumerate(corpus)), reverse=True) for elem in ranked_sentences: element.append(elem[1]) a=int((10*len(element))/100.0) if(a<5): total=5 else: total=int(a) for i in range(total): document.append(element[i]) doc=" ".join(document) for i in document: doc_1=nlp(i) text.append([X.text for X in doc_1.ents]) entity_list = [item for sublist in text for item in sublist] entity_list = [word for word in entity_list if not word in all_stopwords] entity_list=list(dict.fromkeys(entity_list)) doc_embedding = model_2.encode([doc]) candidates=entity_list candidate_embeddings = model_2.encode(candidates) distances = cosine_similarity(doc_embedding, candidate_embeddings) top_n = max_num_keywords keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]] keywords = '\n'.join(keyword_list) return keywords gr.Interface(keyphrase_generator, inputs=[gr.inputs.Textbox(lines=10, placeholder="Copy article text here",default="", label="article text"),gr.inputs.Textbox(lines=1, placeholder="SBERT model",default="all-mpnet-base-v2", label="Model for TextRank (e.g. all-mpnet-base-v2)"),gr.inputs.Textbox(lines=1, placeholder="SBERT model",default="all-distilroberta-v1",label="Model for keyphrases (e.g. all-distilroberta-v1)"),gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")], outputs="text", theme=None, title="Scientifc Article Keyphrase Generator", article="Generates the keyphrases from an article which best describes the article." "\t The work is part of the paper ""." "\t It uses the TextRank algorithm to first find the top sentences and then extracts the keyphrases from those sentences." "\t The list of SBERT models required in the textboxes can be found in https://www.sbert.net/docs/pretrained_models.html." "\t The default model names are provided which can be changed from the list of pretrained models. " "\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.").launch(share=True)