import spaces import gradio as gr import torch from PIL import Image from diffusers.utils import load_image from pipeline import FluxConditionalPipeline from transformer import FluxTransformer2DConditionalModel import os pipe = None CHECKPOINT = "primecai/dsd_model" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 transformer = FluxTransformer2DConditionalModel.from_pretrained( CHECKPOINT, subfolder="transformer", torch_dtype=dtype, low_cpu_mem_usage=False, ignore_mismatched_sizes=True, use_auth_token=os.getenv("HF_TOKEN"), ) pipe = FluxConditionalPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=dtype, use_auth_token=os.getenv("HF_TOKEN"), ) pipe.load_lora_weights( CHECKPOINT, weight_name="pytorch_lora_weights.safetensors", use_auth_token=os.getenv("HF_TOKEN"), ) pipe.to(device, dtype=dtype) @spaces.GPU def generate_image( image: Image.Image, text: str, gemini_prompt: bool = True, guidance: float = 3.5, i_guidance: float = 1.0, t_guidance: float = 1.0 ): w, h, min_size = image.size[0], image.size[1], min(image.size) image = image.crop( ((w - min_size) // 2, (h - min_size) // 2, (w + min_size) // 2, (h + min_size) // 2) ).resize((512, 512)) control_image = load_image(image) result_image = pipe( prompt=text.strip(), negative_prompt="", num_inference_steps=28, height=512, width=1024, guidance_scale=guidance, image=control_image, guidance_scale_real_i=i_guidance, guidance_scale_real_t=t_guidance, gemini_prompt=gemini_prompt, ).images[0] return result_image def get_samples(): sample_list = [ { "image": "assets/hf-logo.png", "text": "This item, holding a sign that reads 'DSD!', is placed on a shiny glass table.", }, { "image": "assets/seededit_example.png", "text": "an adorable small creature with big round orange eyes, fluffy brown fur, wearing a blue scarf with a golden charm, sitting atop a towering stack of colorful books in the middle of a vibrant futuristic city street with towering buildings and glowing neon signs, soft daylight illuminating the scene, detailed and whimsical 3D style.", }, { "image": "assets/wanrong_character.png", "text": "A chibi-style girl with pink hair, green eyes, wearing a black and gold ornate dress, dancing gracefully in a flower garden, anime art style with clean and detailed lines.", }, { "image": "assets/ben_character_squared.png", "text": "A confident green-eye young woman with platinum blonde hair in a high ponytail, wearing an oversized orange jacket and black pants, is striking a dynamic pose, anime-style with sharp details and vibrant colors.", }, { "image": "assets/action_hero_figure.jpeg", "text": "A cartoonish muscular action hero figure with long blue hair and red headband sits on a crowded sidewalk on a Christmas evening, covered in snow and wearing a Christmas hat, holding a sign that reads 'DSD!', dramatic cinematic lighting, close-up view, 3D-rendered in a stylized, vibrant art style.", }, { "image": "assets/anime_soldier.jpeg", "text": "An adorable cartoon goat soldier sits under a beach umbrella with 'DSD!' written on it, bright teal background with soft lighting, 3D-rendered in a playful and vibrant art style.", }, { "image": "assets/goat_logo.jpeg", "text": "A shirt with this logo on it.", }, { "image": "assets/cartoon_cat.png", "text": "A cheerful cartoon orange cat sits under a beach umbrella with 'DSD!' written on it under a sunny sky, simplistic and humorous comic art style.", }, ] return [ [ Image.open(sample["image"]), sample["text"], ] for sample in sample_list ] demo = gr.Blocks() with demo: gr.HTML( """

Diffusion Self-Distillation (beta)

""" ) iface = gr.Interface( fn=generate_image, inputs=[ gr.Image(type="pil", width=512), gr.Textbox(lines=2, label="text", info="Could be something as simple as 'this character playing soccer'."), gr.Checkbox(label="Gemini prompt", value=True, info="Use Gemini to enhance the prompt. This is recommended for most cases, unless you have a specific prompt similar to the examples in mind."), gr.Slider(minimum=1.0, maximum=6.0, step=0.5, value=3.5, label="guidance scale", info="Tip: start with 3.5, then gradually increase if the consistency is consistently off"), gr.Slider(minimum=1.0, maximum=2.0, step=0.05, value=1.5, label="real guidance scale for image", info="Tip: increase if the image is not consistent"), gr.Slider(minimum=1.0, maximum=2.0, step=0.05, value=1.0, label="real guidance scale for prompt", info="Tip: increase if the prompt is not consistent"), ], outputs=gr.Image(type="pil"), # examples=get_samples(), live=False, ) gr.Examples( examples=get_samples(), inputs=iface.input_components, outputs=iface.output_components, run_on_click=False # Prevents auto-submission ) gr.HTML( """
* We borrowed some prompts from the awesome OminiControl.
""" ) if __name__ == "__main__": demo.launch(debug=False, share=True)