File size: 5,793 Bytes
3f03890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import torch
from PIL import Image

from diffusers.utils import load_image
from pipeline import FluxConditionalPipeline
from transformer import FluxTransformer2DConditionalModel

import os

pipe = None

CHECKPOINT = "primecai/dsd_model"

def init_pipeline():
    global pipe
    transformer = FluxTransformer2DConditionalModel.from_pretrained(
        os.path.join(CHECKPOINT, "transformer"),
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=False,
        ignore_mismatched_sizes=True,
    )
    pipe = FluxConditionalPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16
    )
    pipe.load_lora_weights(os.path.join(CHECKPOINT, "pytorch_lora_weights.safetensors"))
    pipe.to("cuda")


def process_image_and_text(image, text, gemini_prompt, guidance, i_guidance, t_guidance):
    w, h, min_size = image.size[0], image.size[1], min(image.size)
    image = image.crop(
        ((w - min_size) // 2, (h - min_size) // 2, (w + min_size) // 2, (h + min_size) // 2)
    ).resize((512, 512))

    if pipe is None:
        init_pipeline()

    control_image = load_image(image)
    result_image = pipe(
        prompt=text.strip(),
        negative_prompt="",
        num_inference_steps=28,
        height=512,
        width=1024,
        guidance_scale=guidance,
        image=control_image,
        guidance_scale_real_i=i_guidance,
        guidance_scale_real_t=t_guidance,
        gemini_prompt=gemini_prompt,
    ).images[0]

    return result_image


def get_samples():
    sample_list = [
        {
            "image": "assets/wanrong_character.png",
            "text": "A chibi-style girl with pink hair, green eyes, wearing a black and gold ornate dress, dancing gracefully in a flower garden, anime art style with clean and detailed lines.",
        },
        {
            "image": "assets/ben_character_squared.png",
            "text": "A confident green-eye young woman with platinum blonde hair in a high ponytail, wearing an oversized orange jacket and black pants, is striking a dynamic pose, anime-style with sharp details and vibrant colors.",
        },
        {
            "image": "assets/seededit_example.png",
            "text": "an adorable small creature with big round orange eyes, fluffy brown fur, wearing a blue scarf with a golden charm, sitting atop a towering stack of colorful books in the middle of a vibrant futuristic city street with towering buildings and glowing neon signs, soft daylight illuminating the scene, detailed and whimsical 3D style.",
        },
        {
            "image": "assets/action_hero_figure.jpeg",
            "text": "A cartoonish muscular action hero figure with long blue hair and red headband sits on a crowded sidewalk on a Christmas evening, covered in snow and wearing a Christmas hat, holding a sign that reads 'DSD!', dramatic cinematic lighting, close-up view, 3D-rendered in a stylized, vibrant art style.",
        },
        {
            "image": "assets/anime_soldier.jpeg",
            "text": "An adorable cartoon goat soldier sits under a beach umbrella with 'DSD!' written on it, bright teal background with soft lighting, 3D-rendered in a playful and vibrant art style.",
        },
        {
            "image": "assets/goat_logo.jpeg",
            "text": "A shirt with this logo on it.",
        },
        {
            "image": "assets/cartoon_cat.png",
            "text": "A cheerful cartoon orange cat sits under a beach umbrella with 'DSD!' written on it under a sunny sky, simplistic and humorous comic art style.",
        },
    ]
    return [[Image.open(sample["image"]), sample["text"]] for sample in sample_list]


demo = gr.Blocks()

with demo:
    gr.Markdown(
        f"""
        <div align="center">

        ## Diffusion Self-Distillation (beta)

        <a href="https://primecai.github.io/dsd/" target="_blank"><img src="https://img.shields.io/badge/Project-Website-blue" style="display:inline-block;"></a>
        <a href="https://github.com/primecai/diffusion-self-distillation" target="_blank"><img src="https://img.shields.io/github/stars/primecai/diffusion-self-distillation?label=GitHub%20%E2%98%85&logo=github&color=C8C" style="display:inline-block;"></a>
        <a href="https://huggingface.co./papers/2411.18616" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face%20-Space-yellow" style="display:inline-block;"></a>
        <a href="https://x.com/prime_cai?lang=en" target="_blank"><img src="https://shields.io/twitter/follow/:?label=Subscribe%20for%20updates!" style="display:inline-block;"></a>

        </div>
        """
    )

    iface = gr.Interface(
        fn=process_image_and_text,
        inputs=[
            gr.Image(type="pil"),
            gr.Textbox(lines=2, label="text", info="Could be something as simple as 'this character playing soccer'."),
            gr.Checkbox(label="Gemini prompt", value=True, info="Use Gemini to enhance the prompt. This is recommended for most cases, unless you have a specific prompt similar to the examples in mind."),
            gr.Slider(minimum=1.0, maximum=6.0, step=0.5, value=3.5, label="guidance scale (tip: start with 3.5, then gradually increase if the consistency is consistently off)"),
            gr.Slider(minimum=1.0, maximum=2.0, step=0.05, value=1.0, label="real guidance scale for image (tip: increase if the image is not consistent)"),
            gr.Slider(minimum=1.0, maximum=2.0, step=0.05, value=1.0, label="real guidance scale for prompt (tip: increase if the prompt is not consistent)"),
        ],
        outputs=gr.Image(type="pil"),
        examples=get_samples(),
    )

if __name__ == "__main__":
    init_pipeline()
    demo.launch(debug=False, share=True)