# Copyright 2023 Databricks, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from functools import partial from pathlib import Path from typing import Any, Dict, List, Tuple, Union import click import numpy as np from datasets import Dataset, load_dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling, PreTrainedTokenizer, Trainer, TrainingArguments, set_seed, ) from .consts import ( DEFAULT_INPUT_MODEL, DEFAULT_SEED, PROMPT_WITH_INPUT_FORMAT, PROMPT_NO_INPUT_FORMAT, END_KEY, INSTRUCTION_KEY, RESPONSE_KEY_NL, ) logger = logging.getLogger(__name__) ROOT_PATH = Path(__file__).parent.parent DATABRICKS_DOLLY_15K_PATH = ROOT_PATH / "data" / "databricks-dolly-15k.jsonl" class DataCollatorForCompletionOnlyLM(DataCollatorForLanguageModeling): def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]: batch = super().torch_call(examples) # The prompt ends with the response key plus a newline. We encode this and then try to find it in the # sequence of tokens. This should just be a single token. response_token_ids = self.tokenizer.encode(RESPONSE_KEY_NL) labels = batch["labels"].clone() for i in range(len(examples)): response_token_ids_start_idx = None for idx in np.where(batch["labels"][i] == response_token_ids[0])[0]: response_token_ids_start_idx = idx break if response_token_ids_start_idx is None: raise RuntimeError( f'Could not find response key {response_token_ids} in token IDs {batch["labels"][i]}' ) response_token_ids_end_idx = response_token_ids_start_idx + 1 # Make pytorch loss function ignore all tokens up through the end of the response key labels[i, :response_token_ids_end_idx] = -100 batch["labels"] = labels return batch def preprocess_batch(batch: Dict[str, List], tokenizer: AutoTokenizer, max_length: int) -> dict: return tokenizer( batch["text"], max_length=max_length, truncation=True, ) def load_training_dataset() -> Dataset: logger.info(f"Loading dataset from {DATABRICKS_DOLLY_15K_PATH}") dataset = load_dataset("json", data_files=str(DATABRICKS_DOLLY_15K_PATH))["train"] logger.info("Found %d rows", dataset.num_rows) def _add_text(rec): instruction = rec["instruction"] response = rec["response"] context = rec.get("context") if not instruction: raise ValueError(f"Expected an instruction in: {rec}") if not response: raise ValueError(f"Expected a response in: {rec}") # For some instructions there is an input that goes along with the instruction, providing context for the # instruction. For example, the input might be a passage from Wikipedia and the instruction says to extract # some piece of information from it. The response is that information to extract. In other cases there is # no input. For example, the instruction might be open QA such as asking what year some historic figure was # born. if context: rec["text"] = PROMPT_WITH_INPUT_FORMAT.format(instruction=instruction, response=response, input=context) else: rec["text"] = PROMPT_NO_INPUT_FORMAT.format(instruction=instruction, response=response) return rec dataset = dataset.map(_add_text) return dataset def load_tokenizer(pretrained_model_name_or_path: str = DEFAULT_INPUT_MODEL) -> PreTrainedTokenizer: logger.info(f"Loading tokenizer for {pretrained_model_name_or_path}") tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) tokenizer.pad_token = tokenizer.eos_token tokenizer.add_special_tokens({"additional_special_tokens": [END_KEY, INSTRUCTION_KEY, RESPONSE_KEY_NL]}) return tokenizer def load_model( pretrained_model_name_or_path: str = DEFAULT_INPUT_MODEL, *, gradient_checkpointing: bool = False ) -> AutoModelForCausalLM: logger.info(f"Loading model for {pretrained_model_name_or_path}") model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path, trust_remote_code=True, use_cache=False if gradient_checkpointing else True ) return model def get_model_tokenizer( pretrained_model_name_or_path: str = DEFAULT_INPUT_MODEL, *, gradient_checkpointing: bool = False ) -> Tuple[AutoModelForCausalLM, PreTrainedTokenizer]: tokenizer = load_tokenizer(pretrained_model_name_or_path) model = load_model(pretrained_model_name_or_path, gradient_checkpointing=gradient_checkpointing) model.resize_token_embeddings(len(tokenizer)) return model, tokenizer def preprocess_dataset(tokenizer: AutoTokenizer, max_length: int, seed=DEFAULT_SEED) -> Dataset: """Loads the training dataset and tokenizes it so it is ready for training. Args: tokenizer (AutoTokenizer): Tokenizer tied to the model. max_length (int): Maximum number of tokens to emit from tokenizer. Returns: Dataset: HuggingFace dataset """ dataset = load_training_dataset() logger.info("Preprocessing dataset") _preprocessing_function = partial(preprocess_batch, max_length=max_length, tokenizer=tokenizer) dataset = dataset.map( _preprocessing_function, batched=True, remove_columns=["instruction", "context", "response", "text", "category"], ) # Make sure we don't have any truncated records, as this would mean the end keyword is missing. logger.info("Processed dataset has %d rows", dataset.num_rows) dataset = dataset.filter(lambda rec: len(rec["input_ids"]) < max_length) logger.info("Processed dataset has %d rows after filtering for truncated records", dataset.num_rows) logger.info("Shuffling dataset") dataset = dataset.shuffle(seed=seed) logger.info("Done preprocessing") return dataset def train( *, input_model: str, local_output_dir: str, dbfs_output_dir: str, epochs: int, per_device_train_batch_size: int, per_device_eval_batch_size: int, lr: float, seed: int, deepspeed: str, gradient_checkpointing: bool, local_rank: str, bf16: bool, logging_steps: int, save_steps: int, eval_steps: int, test_size: Union[float, int], save_total_limit: int, warmup_steps: int, ): set_seed(seed) model, tokenizer = get_model_tokenizer( pretrained_model_name_or_path=input_model, gradient_checkpointing=gradient_checkpointing ) # Use the same max length that the model supports. Fall back to 1024 if the setting can't be found. # The configuraton for the length can be stored under different names depending on the model. Here we attempt # a few possible names we've encountered. conf = model.config max_length = None for length_setting in ["n_positions", "max_position_embeddings", "seq_length"]: max_length = getattr(model.config, length_setting, None) if max_length: logger.info(f"Found max lenth: {max_length}") break if not max_length: max_length = 1024 logger.info(f"Using default max length: {max_length}") processed_dataset = preprocess_dataset(tokenizer=tokenizer, max_length=max_length, seed=seed) split_dataset = processed_dataset.train_test_split(test_size=test_size, seed=seed) logger.info("Train data size: %d", split_dataset["train"].num_rows) logger.info("Test data size: %d", split_dataset["test"].num_rows) data_collator = DataCollatorForCompletionOnlyLM( tokenizer=tokenizer, mlm=False, return_tensors="pt", pad_to_multiple_of=8 ) if not dbfs_output_dir: logger.warn("Will NOT save to DBFS") training_args = TrainingArguments( output_dir=local_output_dir, per_device_train_batch_size=per_device_train_batch_size, per_device_eval_batch_size=per_device_eval_batch_size, fp16=False, bf16=bf16, learning_rate=lr, num_train_epochs=epochs, deepspeed=deepspeed, gradient_checkpointing=gradient_checkpointing, logging_dir=f"{local_output_dir}/runs", logging_strategy="steps", logging_steps=logging_steps, evaluation_strategy="steps", eval_steps=eval_steps, save_strategy="steps", save_steps=save_steps, save_total_limit=save_total_limit, load_best_model_at_end=False, report_to="tensorboard", disable_tqdm=True, remove_unused_columns=False, local_rank=local_rank, warmup_steps=warmup_steps, ) logger.info("Instantiating Trainer") trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=split_dataset["train"], eval_dataset=split_dataset["test"], data_collator=data_collator, ) logger.info("Training") trainer.train() logger.info(f"Saving Model to {local_output_dir}") trainer.save_model(output_dir=local_output_dir) if dbfs_output_dir: logger.info(f"Saving Model to {dbfs_output_dir}") trainer.save_model(output_dir=dbfs_output_dir) logger.info("Done.") @click.command() @click.option("--input-model", type=str, help="Input model to fine tune", default=DEFAULT_INPUT_MODEL) @click.option("--local-output-dir", type=str, help="Write directly to this local path", required=True) @click.option("--dbfs-output-dir", type=str, help="Sync data to this path on DBFS") @click.option("--epochs", type=int, default=3, help="Number of epochs to train for.") @click.option("--per-device-train-batch-size", type=int, default=8, help="Batch size to use for training.") @click.option("--per-device-eval-batch-size", type=int, default=8, help="Batch size to use for evaluation.") @click.option( "--test-size", type=int, default=1000, help="Number of test records for evaluation, or ratio of test records." ) @click.option("--warmup-steps", type=int, default=None, help="Number of steps to warm up to learning rate") @click.option("--logging-steps", type=int, default=10, help="How often to log") @click.option("--eval-steps", type=int, default=50, help="How often to run evaluation on test records") @click.option("--save-steps", type=int, default=400, help="How often to checkpoint the model") @click.option("--save-total-limit", type=int, default=10, help="Maximum number of checkpoints to keep on disk") @click.option("--lr", type=float, default=1e-5, help="Learning rate to use for training.") @click.option("--seed", type=int, default=DEFAULT_SEED, help="Seed to use for training.") @click.option("--deepspeed", type=str, default=None, help="Path to deepspeed config file.") @click.option( "--gradient-checkpointing/--no-gradient-checkpointing", is_flag=True, default=True, help="Use gradient checkpointing?", ) @click.option( "--local_rank", type=str, default=True, help="Provided by deepspeed to identify which instance this process is when performing multi-GPU training.", ) @click.option("--bf16", type=bool, default=True, help="Whether to use bf16 (preferred on A100's).") def main(**kwargs): train(**kwargs) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S" ) try: main() except Exception: logger.exception("main failed") raise