Spaces:
Sleeping
Sleeping
File size: 11,449 Bytes
4c2dd0f c13f1e2 db57198 4c2dd0f b2630ad 4c2dd0f 7d040e6 4c2dd0f 7d040e6 4c2dd0f 7d040e6 4c2dd0f b2630ad 4c2dd0f 7d040e6 4c2dd0f 7d040e6 b2630ad 4c2dd0f db57198 4c2dd0f db57198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Disclamer: This code is not written by me. Its taken from https://github.com/imartinez/privateGPT/pull/91.
# All credit goes to `vnk8071` as I mentioned in the video.
# As this code was still in the pull request while I was creating the video, did some modifications so that it works for me locally.
import os
os.system('pip install ./langchain')
import gradio as gr
from dotenv import load_dotenv
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import RetrievalQA
from langchain.embeddings import LlamaCppEmbeddings
# from langchain.llms import GPT4All, LlamaCpp
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings#, SentenceTransformerEmbeddings
from langchain.prompts.prompt import PromptTemplate
from langchain import PromptTemplate, LLMChain
from langchain.llms import HuggingFacePipeline
from instruct_pipeline import InstructionTextGenerationPipeline
from training.generate import load_model_tokenizer_for_generate
# from training.generate import InstructionTextGenerationPipeline, load_model_tokenizer_for_generate
# from googletrans import Translator
# translator = Translator()
load_dotenv()
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_type = os.environ.get('MODEL_TYPE')
model_path = os.environ.get('MODEL_PATH')
model_n_ctx = int(os.environ.get('MODEL_N_CTX'))
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
# PERSIST_DIRECTORY=db
# MODEL_TYPE=dolly-v2-3b
# MODEL_PATH=/media/siiva/DataStore/LLMs/cache/dolly-v2-3b
# EMBEDDINGS_MODEL_NAME=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
# MODEL_N_CTX=1000
# TARGET_SOURCE_CHUNKS=4
from constants import CHROMA_SETTINGS
# embeddings_model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# persist_directory = "db"
# model_type = "dolly-v2-3b"
# model_path = "/media/siiva/DataStore/LLMs/cache/dolly-v2-3b"
# target_source_chunks = 3
# model_n_ctx = 1000
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# Prepare the LLM
# callbacks = [StreamingStdOutCallbackHandler()]
match model_type:
case "dolly-v2-3b":
model, tokenizer = load_model_tokenizer_for_generate(model_path)
generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
llm = HuggingFacePipeline(pipeline=generate_text)
# llm = HuggingFacePipeline(
# pipeline=InstructionTextGenerationPipeline(
# # Return the full text, because this is what the HuggingFacePipeline expects.
# model=model, tokenizer=tokenizer, return_full_text=True, task="text-generation", max_new_tokens=model_n_ctx))#, max_new_tokens=model_n_ctx
# #))
# case "GPT4All":
# llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False)
case _default:
print(f"Model {model_type} not supported!")
exit;
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
def clear_history(request: gr.Request):
state = None
return ([], state, "")
def post_process_code(code):
sep = "\n```"
if sep in code:
blocks = code.split(sep)
if len(blocks) % 2 == 1:
for i in range(1, len(blocks), 2):
blocks[i] = blocks[i].replace("\\_", "_")
code = sep.join(blocks)
return code
def post_process_answer(answer, source):
answer += f"<br><br>Source: {source}"
answer = answer.replace("\n", "<br>")
return answer
def predict(
question: str,
# system_content: str,
# embeddings_model_name: str,
# persist_directory: str,
# model_type: str,
# model_path: str,
# model_n_ctx: int,
# target_source_chunks: int,
chatbot: list = [],
history: list = [],
):
# try:
# embeddings_model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# persist_directory = "db"
# model_type = "dolly-v2-3b"
# model_path = "/media/siiva/DataStore/LLMs/cache/dolly-v2-3b"
# target_source_chunks = 3
# model_n_ctx = 1000
# embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
# retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
# # Prepare the LLM
# callbacks = [StreamingStdOutCallbackHandler()]
# match model_type:
# case "dolly-v2-3b":
# model, tokenizer = load_model_tokenizer_for_generate(model_path)
# llm = HuggingFacePipeline(
# pipeline=InstructionTextGenerationPipeline(
# # Return the full text, because this is what the HuggingFacePipeline expects.
# model=model, tokenizer=tokenizer, return_full_text=True, task="text-generation", max_new_tokens=model_n_ctx
# ))
# case "GPT4All":
# llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False)
# case _default:
# print(f"Model {model_type} not supported!")
# exit;
# qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# Get the answer from the chain
# prompt = system_content + f"\n Question: {question}"
prompt = f"{question}"
# res = qa(prompt)
no_input_prompt = PromptTemplate(input_variables=[], template=prompt, dest_language='en')#src_language='id',
no_input_prompt.format()
query = no_input_prompt.translate()
# prompt_trans = translator.translate(prompt, src='en', dest='id')
# print(prompt_trans.text)
# result = qa({"question": query, "chat_history": chat_history})
llm_response = qa(query)
answer, docs = llm_response['result'], llm_response['source_documents']
no_input_prompt = PromptTemplate(input_variables=[], template=answer, dest_language='id')
no_input_prompt.format()
answer = no_input_prompt.translate()
# answer = post_process_answer(answer, docs)
history.append(question)
history.append(answer)
chatbot = [(history[i], history[i + 1]) for i in range(0, len(history), 2)]
return chatbot, history
# except Exception as e:
# history.append("")
# answer = server_error_msg + f" (error_code: 503)"
# history.append(answer)
# chatbot = [(history[i], history[i + 1]) for i in range(0, len(history), 2)]
# return chatbot, history
def reset_textbox():
return gr.update(value="")
title = """<h1 align="center">Chat with QuGPT π€</h1>"""
# def add_text(history, text):
# history = history + [(text, None)]
# return history, ""
def bot(history):
response = "**That's cool!**"
history[-1][1] = response
return history
with gr.Blocks(
css="""
footer .svelte-1lyswbr {display: none !important;}
#col_container {margin-left: auto; margin-right: auto;}
#chatbot .wrap.svelte-13f7djk {height: 70vh; max-height: 70vh}
#chatbot .message.user.svelte-13f7djk.svelte-13f7djk {width:fit-content; background:orange; border-bottom-right-radius:0}
#chatbot .message.bot.svelte-13f7djk.svelte-13f7djk {width:fit-content; padding-left: 16px; border-bottom-left-radius:0}
#chatbot .pre {border:2px solid white;}
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
) as demo:
gr.HTML(title)
with gr.Row():
# with gr.Column(elem_id="col_container", scale=0.3):
# with gr.Accordion("Prompt", open=True):
# system_content = gr.Textbox(value="You are QuGPT which built with LangChain and dolly-v2 and sentence-transformer.", show_label=False)
# with gr.Accordion("Config", open=True):
# embeddings_model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"#gr.Textbox(value="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", label="embeddings_model_name")
# persist_directory = "db" #gr.Textbox(value="db", label="persist_directory")
# model_type = "dolly-v2-3b" #gr.Textbox(value="dolly-v2-3b", label="model_type")
# model_path = "/media/siiva/DataStore/LLMs/cache/dolly-v2-3b" #gr.Textbox(value="/media/siiva/DataStore/LLMs/cache/dolly-v2-3b", label="model_path")
# target_source_chunks = 3
# # gr.Slider(
# # minimum=1,
# # maximum=5,
# # value=2,
# # step=1,
# # interactive=True,
# # label="target_source_chunks",
# # )
# model_n_ctx = 1000
# gr.Slider(
# minimum=32,
# maximum=4096,
# value=1000,
# step=32,
# interactive=True,
# label="model_n_ctx",
# )
with gr.Column(elem_id="col_container"):
chatbot = gr.Chatbot(elem_id="chatbot", label="QuGPT")
question = gr.Textbox(placeholder="Ask something", show_label=False, value="")
state = gr.State([])
with gr.Row():
with gr.Column():
submit_btn = gr.Button(value="π Send")
with gr.Column():
clear_btn = gr.Button(value="ποΈ Clear history")
question.submit(
predict,
# [question, system_content, embeddings_model_name, persist_directory, model_type, model_path, model_n_ctx, target_source_chunks, chatbot, state],
[question, chatbot, state],
[chatbot, state],
)
submit_btn.click(
predict,
# [question, system_content, embeddings_model_name, persist_directory, model_type, model_path, model_n_ctx, target_source_chunks, chatbot, state],
[question, chatbot, state],
[chatbot, state],
)
submit_btn.click(reset_textbox, [], [question])
clear_btn.click(clear_history, None, [chatbot, state, question])
question.submit(reset_textbox, [], [question])
# demo.queue(concurrency_count=10, status_update_rate="auto")
# question.submit(predict, [question, system_content, embeddings_model_name, persist_directory, model_type, model_path, model_n_ctx, target_source_chunks, chatbot, state], [chatbot, state]).then(
# predict, chatbot
# )
#demo.launch(server_name=args.server_name, server_port=args.server_port, share=args.share, debug=args.debug)
demo.launch()
|