import torch import gradio as gr from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel device = 'cpu' # Load the pretrained model, feature extractor, and tokenizer model = VisionEncoderDecoderModel.from_pretrained("premanthcharan/Image_Captioning_Model").to(device) feature_extractor = ViTImageProcessor.from_pretrained("premanthcharan/Image_Captioning_Model") tokenizer = AutoTokenizer.from_pretrained("premanthcharan/Image_Captioning_Model") def predict(image, max_length=64, num_beams=4): # Process the input image image = image.convert('RGB') pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) # Generate the caption caption_ids = model.generate(pixel_values, max_length=max_length, num_beams=num_beams)[0] # Decode and clean the generated caption caption = tokenizer.decode(caption_ids, skip_special_tokens=True) return caption css = ''' h1#title { text-align: center; } h3#header { text-align: center; } img#overview { max-width: 800px; max-height: 600px; } img#style-image { max-width: 1000px; max-height: 600px; } ''' demo = gr.Blocks(css=css) with demo: gr.Markdown('''

Automated Image Captioning Using Generative AI: A Transformer based approach 🖼️

''') gr.Markdown('Contributed by : Charan Gudivada, Premanth Alahari') with gr.Column(): input_image = gr.Image(label="Upload your Image", type='pil') output_caption = gr.Textbox(label="Generated Caption") btn = gr.Button("Generate Caption") btn.click(fn=predict, inputs=input_image, outputs=output_caption) with demo: gr.Markdown('''

Features:

''') gr.Markdown("1. Drop the Image Here or Click on Upload\n2. Click to Access Webcam\n3. Paste from Clipboard") demo.launch()