{ "cells": [ { "cell_type": "markdown", "id": "1f41db61-4f75-4696-84a8-2a906dca3e3e", "metadata": {}, "source": [ "# Heart Failure analysis and detection using Machine Learning techniques\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "b7897612-92c7-41bc-99ed-0f19a23d16ae", "metadata": {}, "outputs": [], "source": [ "# import the libraries\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import classification_report\n", "from sklearn.preprocessing import LabelEncoder\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, classification_report, confusion_matrix, RocCurveDisplay\n", "from sklearn import metrics\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestClassifier" ] }, { "cell_type": "code", "execution_count": 2, "id": "d59970e5-184f-4b1e-a269-71223a49dba9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeSexChestPainTypeRestingBPCholesterolFastingBSRestingECGMaxHRExerciseAnginaOldpeakST_SlopeHeartDisease
040MATA1402890Normal172N0.0Up0
149FNAP1601800Normal156N1.0Flat1
237MATA1302830ST98N0.0Up0
348FASY1382140Normal108Y1.5Flat1
454MNAP1501950Normal122N0.0Up0
\n", "
" ], "text/plain": [ " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n", "0 40 M ATA 140 289 0 Normal 172 \n", "1 49 F NAP 160 180 0 Normal 156 \n", "2 37 M ATA 130 283 0 ST 98 \n", "3 48 F ASY 138 214 0 Normal 108 \n", "4 54 M NAP 150 195 0 Normal 122 \n", "\n", " ExerciseAngina Oldpeak ST_Slope HeartDisease \n", "0 N 0.0 Up 0 \n", "1 N 1.0 Flat 1 \n", "2 N 0.0 Up 0 \n", "3 Y 1.5 Flat 1 \n", "4 N 0.0 Up 0 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## Read the data\n", "data = pd.read_csv(\"heart.csv\")\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 3, "id": "992daf53-ba71-44ee-93f9-bf9f74af90fc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 918 entries, 0 to 917\n", "Data columns (total 12 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Age 918 non-null int64 \n", " 1 Sex 918 non-null object \n", " 2 ChestPainType 918 non-null object \n", " 3 RestingBP 918 non-null int64 \n", " 4 Cholesterol 918 non-null int64 \n", " 5 FastingBS 918 non-null int64 \n", " 6 RestingECG 918 non-null object \n", " 7 MaxHR 918 non-null int64 \n", " 8 ExerciseAngina 918 non-null object \n", " 9 Oldpeak 918 non-null float64\n", " 10 ST_Slope 918 non-null object \n", " 11 HeartDisease 918 non-null int64 \n", "dtypes: float64(1), int64(6), object(5)\n", "memory usage: 86.2+ KB\n" ] } ], "source": [ "# Basic information about the dataset\n", "data.info()" ] }, { "cell_type": "code", "execution_count": 4, "id": "df134866-a405-434d-8603-4cefd3181e4e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(918, 12)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.shape" ] }, { "cell_type": "markdown", "id": "effd23f1-8bc0-42a8-9dc4-1f1c9f4c3b6f", "metadata": {}, "source": [ "There are 918 rows and 12 columns\r\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "f9b33bee-56a3-4448-ab53-9132732929c9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "11016" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.size" ] }, { "cell_type": "code", "execution_count": 6, "id": "ce154df8-9364-4988-b840-a8cd3d493c21", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Age 0\n", "Sex 0\n", "ChestPainType 0\n", "RestingBP 0\n", "Cholesterol 0\n", "FastingBS 0\n", "RestingECG 0\n", "MaxHR 0\n", "ExerciseAngina 0\n", "Oldpeak 0\n", "ST_Slope 0\n", "HeartDisease 0\n", "dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.isna().sum()" ] }, { "cell_type": "code", "execution_count": 7, "id": "5c13c288-af55-498c-a5bb-edf9d289b569", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABLIAAAL2CAYAAABVBb+5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3e0lEQVR4nOzdeVjV1fr//9cGZCMIW2XmqEhqTjhrjhmmoeRxaHDKyPyYR0+OkKY0fLROSnqorGNampqeMv00YJxSFFNJc0hRSsvUHDINJIdAoLYC+/dHP/e3HaBu2JwN8nxc17quWO/1Xute7v66r3utt8FisVgEAAAAAAAAVHIuzg4AAAAAAAAAuBkksgAAAAAAAFAlkMgCAAAAAABAlUAiCwAAAAAAAFUCiSwAAAAAAABUCSSyAAAAAAAAUCWQyAIAAAAAAECVQCILAAAAAAAAVQKJLAAAAAAAAFQJJLIAAAAAAABQJTg1kbVo0SKFhYXJw8NDHTp00Pbt250ZDgAAAAAAACoxpyWy1q5dq6lTp+rpp5/WgQMHdOeddyoqKkqnT592VkgAAAAAAABVkj3FQhkZGXrooYfUtGlTubi4aOrUqSWO+/DDD9WiRQsZjUa1aNFCiYmJ5VrXEZyWyHr55Zc1ZswYPfbYY2revLkWLFig+vXra/Hixc4KCQAAAAAAoMqxt1jIbDbL399fTz/9tNq0aVPimF27dmnYsGGKjo7WV199pejoaA0dOlR79uwp87qOYLBYLJYKm70UV65ckaenp95//33dd9991v4pU6YoPT1dqamp/+2QAAAAAAAAqqTOnTurffv2NsVBzZs31+DBgxUfH3/ddyMiItS2bVstWLDApn/YsGHKycnRhg0brH39+vVTnTp19N5775V73bJySkXW+fPnVVhYqMDAQJv+wMBAZWZmFhtvNpuVk5Nj08xm838rXAAAAAAAgP8ae/IgV65cUVpamiIjI236IyMjtXPnzjLHsGvXrmJz9u3b1zpnRa17I24VNvNNMBgMNn9bLJZifZIUHx+v5557zqYv7qmn9PTTT1dofAAAAAAAVHdenp7ODsEpDHe2c9ras3oPKpYHmTVrlmbPnl1srL3FQjcrMzPzunNW1Lo34pRElp+fn1xdXYttLCsrq9g/gCTFxcUpNjbWpq+gsLBCYwQAAAAAAHCGkvIgRqPxuu/cbLGQPW5mzopY93qccrTQ3d1dHTp0UEpKik1/SkqKunXrVmy80WiUj4+PTbvRDwgAAAAAAFAV2ZMHsbdY6GYFBQVdd86KWvdGnPbVwtjYWL311ltavny5Dh8+rJiYGJ0+fVrjx493VkgAAAAAAAC/c3FxXrODvcVCN6tr167F5ty0aZN1zopa90acdkfWsGHDdOHCBT3//PPKyMhQeHi41q9fr9DQUGeFBAAAAAAAUOXExsYqOjpaHTt2VNeuXbVkyRKbYqG4uDidPXtWq1atsr6Tnp4uScrNzdXPP/+s9PR0ubu7q0WLFpKkKVOmqGfPnpo3b54GDRqkjz/+WJs3b9aOHTtuet2KYLBYLJYKm70C5eXnOzsEAAAAAABuedX2sveITk5b27Jtr93vLFq0SPPnz7cWC73yyivq2bOnJOnRRx/VqVOntG3bNuv4ku6xCg0N1alTp6x/f/DBB3rmmWd04sQJNWrUSHPmzNH9999/0+tWBBJZAAAAAACgVCSy/vvKksiqLpx2tBAAAAAAAKDScqm4L++h7Jx22TsAAAAAAABgD4cnsuLj49WpUyd5e3srICBAgwcP1pEjR2zGfPTRR+rbt6/8/PxkMBisF4wBAAAAAAAApXF4Iis1NVUTJkzQ7t27lZKSooKCAkVGRiovL886Ji8vT927d9eLL77o6OUBAAAAAADKz8XFeQ2lcvgdWcnJyTZ/r1ixQgEBAUpLS7PeWh8dHS1JNjfhAwAAAAAAANdT4Ze9Z2dnS5Lq1q1b0UsBAAAAAAA4hoHKqMqoQn8Vi8Wi2NhY9ejRQ+Hh4RW5FAAAAAAAAG5xFVqRNXHiRH399dfasWNHueYxm80ym802fQWFhTIajeWaFwAAAAAAAFVHhVVkTZo0SUlJSdq6davq1atXrrni4+NlMplsWkJCgoMiBQAAAAAA+BMue6+UHF6RZbFYNGnSJCUmJmrbtm0KCwsr95xxcXGKjY216SsoLCz3vAAAAAAAAKg6HJ7ImjBhglavXq2PP/5Y3t7eyszMlCSZTCbVrFlTknTx4kWdPn1aP/30kyTpyJEjkqSgoCAFBQUVm9NoNBY7RpiXn+/o0AEAAAAAAH5HZVSlZLBYLBaHTmgwlNi/YsUKPfroo5Kkt99+W6NHjy42ZtasWZo9e/ZNrUMiCwAAAACAiufl6ensEJzCENXTaWtbNnzutLUrO4cnsv5bSGQBAAAAAFDxqm0i6967nLa2ZX2q09au7KiTAwAAAAAAQJVAIgsAAAAAAABVgsMvewcAAAAAAKjyuOy9UqrwXyU+Pl4Gg0FTp06VJF29elUzZsxQq1at5OXlpZCQED3yyCPWLxgCAAAAAAAAJanQRNbevXu1ZMkStW7d2tqXn5+v/fv369lnn9X+/fv10Ucf6ejRoxo4cGBFhgIAAAAAAHDzDC7OayhVhR0tzM3N1ciRI7V06VK98MIL1n6TyaSUlBSbsf/61790xx136PTp02rQoEFFhQQAAAAAAIAqrMLSfBMmTFD//v3Vp0+fG47Nzs6WwWBQ7dq1KyocAAAAAAAAVHEVUpG1Zs0a7d+/X3v37r3h2N9++00zZ87UQw89JB8fn4oIBwAAAAAAwD5c9l4pOTyR9eOPP2rKlCnatGmTPDw8rjv26tWrGj58uIqKirRo0aJSx5nNZpnNZpu+gsJCGY1Gh8QMAAAAAACAys/h6cW0tDRlZWWpQ4cOcnNzk5ubm1JTU/Xaa6/Jzc1NhYWFkn5PYg0dOlQnT55USkrKdaux4uPjZTKZbFpCQoKjQwcAAAAAAPidi4vzGkplsFgsFkdOePnyZf3www82faNHj1azZs00Y8YMhYeHW5NYx44d09atW+Xv73/dOanIAgAAAADAObw8PZ0dglMY7uvrtLUtiRudtnZl5/Cjhd7e3goPD7fp8/Lykq+vr8LDw1VQUKAHH3xQ+/fv1yeffKLCwkJlZmZKkurWrSt3d/dicxqNxmJJq7z8fEeHDgAAAAAAIEkyGAzODgElqJDL3q/nzJkzSkpKkiS1bdvW5tnWrVsVERHx3w4JAAAAAAAAVcB/JZG1bds26383bNhQDj7NCAAAAAAAgGrgv16RBQAAAAAAUOlx6XqlxK8CAAAAAACAKoGKLAAAAAAAgD+jIqtSqpBf5ezZs3r44Yfl6+srT09PtW3bVmlpadbns2fPVrNmzeTl5aU6deqoT58+2rNnT0WEAgAAAAAAgFuEwxNZly5dUvfu3VWjRg1t2LBB3377rV566SXVrl3bOub222/XwoULdfDgQe3YsUMNGzZUZGSkfv75Z0eHAwAAAAAAgFuEweLgTwjOnDlTX3zxhbZv337T7+Tk5MhkMmnz5s3q3bv3Tb2Tl59f1hABAAAAAMBN8vL0dHYITuEybKDT1i5am+S0tSs7h1dkJSUlqWPHjhoyZIgCAgLUrl07LV26tNTxV65c0ZIlS2QymdSmTRtHhwMAAAAAAIBbhMMTWSdOnNDixYvVpEkTbdy4UePHj9fkyZO1atUqm3GffPKJatWqJQ8PD73yyitKSUmRn5+fo8MBAAAAAACwn4uL8xpK5fCjhe7u7urYsaN27txp7Zs8ebL27t2rXbt2Wfvy8vKUkZGh8+fPa+nSpdqyZYv27NmjgICAYnOazWaZzWabvoLCQhmNRkeGDgAAAAAA/qTaHi0cMdhpaxe9t85pa1d2Dk/zBQcHq0WLFjZ9zZs31+nTp236vLy81LhxY3Xp0kXLli2Tm5ubli1bVuKc8fHxMplMNi0hIcHRoQMAAAAAAPzOxeC8hlK5OXrC7t2768iRIzZ9R48eVWho6HXfs1gsxaquromLi1NsbKxNX0FhYfkCBQAAAAAAQJXi8ERWTEyMunXrprlz52ro0KH68ssvtWTJEi1ZskTS70cK58yZo4EDByo4OFgXLlzQokWLdObMGQ0ZMqTEOY1GY7FjhHy1EAAAAAAAoHpxeCKrU6dOSkxMVFxcnJ5//nmFhYVpwYIFGjlypCTJ1dVV3333nVauXKnz58/L19dXnTp10vbt29WyZUtHhwMAAAAAAGA/A5euV0YOv+z9v4WKLAAAAAAAKl61vez94QectnbROx86be3KzuEVWQAAAAAAAFWeCxVZlRG/CgAAAAAAAKoEElkAAAAAAACoEhyeyCooKNAzzzyjsLAw1axZU7fddpuef/55FRUVlTh+3LhxMhgMWrBggaNDAQAAAAAAKBsXF+c1lMrhd2TNmzdPb7zxhlauXKmWLVtq3759Gj16tEwmk6ZMmWIzdt26ddqzZ49CQkIcHQYAAAAAAABuMQ5PZO3atUuDBg1S//79JUkNGzbUe++9p3379tmMO3v2rCZOnKiNGzdaxwIAAAAAAFQKBiqjKiOH/yo9evTQZ599pqNHj0qSvvrqK+3YsUP33nuvdUxRUZGio6M1ffp0tWzZ0tEhAAAAAAAA4Bbk8IqsGTNmKDs7W82aNZOrq6sKCws1Z84cjRgxwjpm3rx5cnNz0+TJkx29PAAAAAAAQPm5GJwdAUrg8ETW2rVr9c4772j16tVq2bKl0tPTNXXqVIWEhGjUqFFKS0vTq6++qv3798tguLn/Kcxms8xms01fQWGhjEajo8MHAAAAAABAJeXwo4XTp0/XzJkzNXz4cLVq1UrR0dGKiYlRfHy8JGn79u3KyspSgwYN5ObmJjc3N/3www964okn1LBhwxLnjI+Pl8lksmkJCQmODh0AAAAAAACVmMMrsvLz8+Xyp09Furq6qqioSJIUHR2tPn362Dzv27evoqOjNXr06BLnjIuLU2xsrE1fQWGhA6MGAAAAAAD4Axcue6+MHJ7IGjBggObMmaMGDRqoZcuWOnDggF5++WX9z//8jyTJ19dXvr6+Nu/UqFFDQUFBatq0aYlzGo3GYscI8/LzHR06AAAAAAAAKjGHJ7L+9a9/6dlnn9Xjjz+urKwshYSEaNy4cfrf//1fRy8FAAAAAABQMQxUZFVGBovFYnF2EGVBRRYAAAAAABXPy9PT2SE4hcvfHnHa2kVLVjlt7cqO9CIAAAAAAACqBIcfLQQAAAAAAKjqDFz2XinxqwAAAAAAAKBKsDuR9fnnn2vAgAEKCQmRwWDQunXrbJ5bLBbNnj1bISEhqlmzpiIiIvTNN9/YjImIiJDBYLBpw4cPL9dGAAAAAAAAHMXFxcVpDaWz+18nLy9Pbdq00cKFC0t8Pn/+fL388stauHCh9u7dq6CgIN1zzz26fPmyzbixY8cqIyPD2t58882y7QAAAAAAAADVgt13ZEVFRSkqKqrEZxaLRQsWLNDTTz+t+++/X5K0cuVKBQYGavXq1Ro3bpx1rKenp4KCgsoYNgAAAAAAAKobh9arnTx5UpmZmYqMjLT2GY1G3XXXXdq5c6fN2HfffVd+fn5q2bKlpk2bVqxiCwAAAAAAwFk4Wlg5OfSrhZmZmZKkwMBAm/7AwED98MMP1r9HjhypsLAwBQUF6dChQ4qLi9NXX32llJQUR4YDAAAAAACAW4hDE1nXGAwGm78tFotN39ixY63/HR4eriZNmqhjx47av3+/2rdvX2w+s9kss9ls01dQWCij0ejgyAEAAAAAAERlVCXl0F/l2p1X1yqzrsnKyipWpfVH7du3V40aNXTs2LESn8fHx8tkMtm0hIQExwUOAAAAAACASs+hFVnXjgumpKSoXbt2kqQrV64oNTVV8+bNK/W9b775RlevXlVwcHCJz+Pi4hQbG2vTV1BY6LjAAQAAAAAA/oCKrMrJ7l8lNzdX6enpSk9Pl/T7Be/p6ek6ffq0DAaDpk6dqrlz5yoxMVGHDh3So48+Kk9PTz300EOSpOPHj+v555/Xvn37dOrUKa1fv15DhgxRu3bt1L179xLXNBqN8vHxsWkcKwQAAAAAAPjdokWLFBYWJg8PD3Xo0EHbt2+/7vjU1FR16NBBHh4euu222/TGG2/YPI+IiJDBYCjW+vfvbx0ze/bsYs+vndarKHZXZO3bt0+9evWy/n2tUmrUqFF6++239eSTT+rXX3/V448/rkuXLqlz587atGmTvL29JUnu7u767LPP9Oqrryo3N1f169dX//79NWvWLLm6ujpoWwAAAAAAANXD2rVrNXXqVC1atEjdu3fXm2++qaioKH377bdq0KBBsfEnT57Uvffeq7Fjx+qdd97RF198occff1z+/v564IEHJEkfffSRrly5Yn3nwoULatOmjYYMGWIzV8uWLbV582br3xWd2zFYLBZLha5QQfLy850dAgAAAAAAtzwvT09nh+AU3rGPO23tyy8vsmt8586d1b59ey1evNja17x5cw0ePFjx8fHFxs+YMUNJSUk6fPiwtW/8+PH66quvtGvXrhLXWLBggf73f/9XGRkZ8vLykvR7Rda6deusp/b+GzjwCQAAAAAAUImYzWbl5OTYNLPZXOLYK1euKC0tTZGRkTb9kZGR2rlzZ4nv7Nq1q9j4vn37at++fbp69WqJ7yxbtkzDhw+3JrGuOXbsmEJCQhQWFqbhw4frxIkTN7vNMiGRBQAAAAAA8CcuBoPTWnx8vEwmk00rqbJKks6fP6/CwkIFBgba9AcGBiozM7PEdzIzM0scX1BQoPPnzxcb/+WXX+rQoUN67LHHbPo7d+6sVatWaePGjVq6dKkyMzPVrVs3XbhwwZ5/ars49KuFAAAAAAAAKJ+4uDjrneTX3OijdwaDweZvi8VSrO9G40vql36vxgoPD9cdd9xh0x8VFWX971atWqlr165q1KiRVq5cWSx+RyGRBQAAAAAAUIkYjcYbJq6u8fPzk6ura7Hqq6ysrGJVV9cEBQWVON7NzU2+vr42/fn5+VqzZo2ef/75G8bi5eWlVq1a6dixYzcVe1nYfbTw888/14ABAxQSEiKDwaB169ZZn129elUzZsxQq1at5OXlpZCQED3yyCP66aefis2za9cu3X333fLy8lLt2rUVERGhX3/9tVybAQAAAAAAcAQXFxenNXu4u7urQ4cOSklJselPSUlRt27dSnyna9euxcZv2rRJHTt2VI0aNWz6/+///k9ms1kPP/zwDWMxm806fPiwgoOD7dqDPexOZOXl5alNmzZauHBhsWf5+fnav3+/nn32We3fv18fffSRjh49qoEDB9qM27Vrl/r166fIyEh9+eWX2rt3ryZOnGj3jwUAAAAAAFDdxcbG6q233tLy5ct1+PBhxcTE6PTp0xo/fryk348qPvLII9bx48eP1w8//KDY2FgdPnxYy5cv17JlyzRt2rRicy9btkyDBw8uVqklSdOmTVNqaqpOnjypPXv26MEHH1ROTo5GjRpVYXu1+2hhVFSUzRnIPzKZTMUyev/61790xx136PTp02rQoIEkKSYmRpMnT9bMmTOt45o0aWJvKAAAAAAAABWiKhXbDBs2TBcuXNDzzz+vjIwMhYeHa/369QoNDZUkZWRk6PTp09bxYWFhWr9+vWJiYvT6668rJCREr732mh544AGbeY8ePaodO3Zo06ZNJa575swZjRgxQufPn5e/v7+6dOmi3bt3W9etCAbLtdu8yvKywaDExEQNHjy41DGbN29WZGSkfvnlF/n4+FjPaL722mt67733dPz4cTVr1kxz5sxRjx49bnrtvPz8soYNAAAAAABukpenp7NDcArfGVOctvaFea86be3KrkIve//tt980c+ZMPfTQQ/Lx8ZEknThxQpI0e/ZsJSQkqG3btlq1apV69+6tQ4cOlViZZTabZTabbfoKCgtv+uIzAAAAAAAAe1SliqzqpMJ+latXr2r48OEqKirSokWLrP1FRUWSpHHjxmn06NFq166dXnnlFTVt2lTLly8vca74+HiZTCablpCQUFGhAwAAAAAAoBKqkIqsq1evaujQoTp58qS2bNlircaSZL25vkWLFjbvNG/e3Oa85h/FxcUpNjbWpq+gsNDBUQMAAAAAAKAyc3gi61oS69ixY9q6dWuxW+0bNmyokJAQHTlyxKb/6NGjpV4ibzQaix0j5I4sAAAAAABQUThaWDnZncjKzc3V999/b/375MmTSk9PV926dRUSEqIHH3xQ+/fv1yeffKLCwkJlZmZKkurWrSt3d3cZDAZNnz5ds2bNUps2bdS2bVutXLlS3333nT744APH7QwAAAAAAAC3FLsTWfv27VOvXr2sf1878jdq1CjNnj1bSUlJkqS2bdvavLd161ZFRERIkqZOnarffvtNMTExunjxotq0aaOUlBQ1atSojNsAAAAAAABwHCqyKieDxWKxODuIsuBoIQAAAAAAFc/L09PZIThF8LPTnbZ2xj/+6bS1KzvSiwAAAAAAAKgSKuSrhQAAAAAAAFUZRwsrJ34VAAAAAAAAVAl2J7I+//xzDRgwQCEhITIYDFq3bl2pY8eNGyeDwaAFCxZY+06dOiWDwVBie//998uyBwAAAAAAAIdydXFxWkPp7P7XycvLU5s2bbRw4cLrjlu3bp327NmjkJAQm/769esrIyPDpj333HPy8vJSVFSUveEAAAAAAACgmrD7jqyoqKgbJpzOnj2riRMnauPGjerfv7/NM1dXVwUFBdn0JSYmatiwYapVq5a94QAAAAAAADgcd2RVTg7/VYqKihQdHa3p06erZcuWNxyflpam9PR0jRkzxtGhAAAAAAAA4Bbi8K8Wzps3T25ubpo8efJNjV+2bJmaN2+ubt26lTrGbDbLbDbb9BUUFspoNJYrVgAAAAAAAFQdDq3ISktL06uvvqq3335bBoPhhuN//fVXrV69+obVWPHx8TKZTDYtISHBUWEDAAAAAADYcHFxcVpD6Rz6r7N9+3ZlZWWpQYMGcnNzk5ubm3744Qc98cQTatiwYbHxH3zwgfLz8/XII49cd964uDhlZ2fbtGnTpjkydAAAAAAAAFRyDj1aGB0drT59+tj09e3bV9HR0Ro9enSx8cuWLdPAgQPl7+9/3XmNRmOxY4R5+fnlDxgAAAAAAKAEVEZVTnYnsnJzc/X9999b/z558qTS09NVt25dNWjQQL6+vjbja9SooaCgIDVt2tSm//vvv9fnn3+u9evXlzF0AAAAAAAAVCd2J7L27dunXr16Wf+OjY2VJI0aNUpvv/32Tc+zfPly/eUvf1FkZKS9IQAAAAAAAKAaMlgsFouzgygLjhYCAAAAAFDxvDw9nR2CU9w+7zmnrX10xiynrV3ZceATAAAAAAAAVYJDL3sHAAAAAAC4FXDZe+XErwIAAAAAAIAqwe5E1ueff64BAwYoJCREBoNB69atKzbm8OHDGjhwoEwmk7y9vdWlSxedPn3a+jwzM1PR0dEKCgqSl5eX2rdvrw8++KBcGwEAAAAAAHAUF4PBaQ2lszuRlZeXpzZt2mjhwoUlPj9+/Lh69OihZs2aadu2bfrqq6/07LPPysPDwzomOjpaR44cUVJSkg4ePKj7779fw4YN04EDB8q+EwAAAAAAANzSyvXVQoPBoMTERA0ePNjaN3z4cNWoUUP//ve/S32vVq1aWrx4saKjo619vr6+mj9/vsaMGXNTa/PVQgAAAAAAKl51/Wphi4QXnLb2t9OecdralZ1D78gqKirSp59+qttvv119+/ZVQECAOnfuXOz4YY8ePbR27VpdvHhRRUVFWrNmjcxmsyIiIhwZDgAAAAAAQJm4uLg4raF0Dv3XycrKUm5url588UX169dPmzZt0n333af7779fqamp1nFr165VQUGBfH19ZTQaNW7cOCUmJqpRo0Ylzms2m5WTk2PTzGazI0MHAAAAAABAJefwiixJGjRokGJiYtS2bVvNnDlTf/3rX/XGG29Yxz3zzDO6dOmSNm/erH379ik2NlZDhgzRwYMHS5w3Pj5eJpPJpiUkJDgydAAAAAAAACsqsionN0dO5ufnJzc3N7Vo0cKmv3nz5tqxY4ek3y+DX7hwoQ4dOqSWLVtKktq0aaPt27fr9ddft0l4XRMXF6fY2FibvoLCQkeGDgAAAAAAgErOoYksd3d3derUSUeOHLHpP3r0qEJDQyVJ+f//Je1/zjC6urpaK7r+zGg0ymg02vRx2TsAAAAAAED1YnciKzc3V99//73175MnTyo9PV1169ZVgwYNNH36dA0bNkw9e/ZUr169lJycrP/85z/atm2bJKlZs2Zq3Lixxo0bp4SEBPn6+mrdunVKSUnRJ5984rCNAQAAAAAAlBVH/Cong8VisdjzwrZt29SrV69i/aNGjdLbb78tSVq+fLni4+N15swZNW3aVM8995wGDRpkHXvs2DHNnDlTO3bsUG5urho3bqxp06YpOjr6puOgIgsAAAAAgIrn5enp7BCcou1r8522dvrkJ522dmVndyKrsiCRBQAAAABAxauuiaz2C533kbn9E6c5be3Kjjo5AAAAAAAAVAkOvewdAAAAAADgVsAdWZUTvwoAAAAAAACqBLsTWZ9//rkGDBigkJAQGQwGrVu3zuZ5bm6uJk6cqHr16qlmzZpq3ry5Fi9ebDPm+PHjuu++++Tv7y8fHx8NHTpU586dK9dGAAAAAAAAcGuzO5GVl5enNm3aaOHChSU+j4mJUXJyst555x0dPnxYMTExmjRpkj7++GPr+5GRkTIYDNqyZYu++OILXblyRQMGDFBRUVH5dgMAAAAAAOAALi4uTmsond13ZEVFRSkqKqrU57t27dKoUaMUEREhSfrb3/6mN998U/v27dOgQYP0xRdf6NSpUzpw4IB8fHwkSStWrFDdunW1ZcsW9enTp2w7AQAAAAAAwC3N4Wm+Hj16KCkpSWfPnpXFYtHWrVt19OhR9e3bV5JkNptlMBhkNBqt73h4eMjFxUU7duxwdDgAAAAAAAB2c3VxcVpD6Rz+r/Paa6+pRYsWqlevntzd3dWvXz8tWrRIPXr0kCR16dJFXl5emjFjhvLz85WXl6fp06erqKhIGRkZJc5pNpuVk5Nj08xms6NDBwAAAAAAQCVWIYms3bt3KykpSWlpaXrppZf0+OOPa/PmzZIkf39/vf/++/rPf/6jWrVqyWQyKTs7W+3bt5erq2uJc8bHx8tkMtm0hIQER4cOAAAAAACASszuO7Ku59dff9VTTz2lxMRE9e/fX5LUunVrpaenKyEhwXr/VWRkpI4fP67z58/Lzc1NtWvXVlBQkMLCwkqcNy4uTrGxsTZ9BYWFjgwdAAAAAADAiiN+lZNDE1lXr17V1atXi92w7+rqWuIXCf38/CRJW7ZsUVZWlgYOHFjivEaj0eZOLUnKy893UNQAAAAAAACoCuxOZOXm5ur777+3/n3y5Emlp6erbt26atCgge666y5Nnz5dNWvWVGhoqFJTU7Vq1Sq9/PLL1ndWrFih5s2by9/fX7t27dKUKVMUExOjpk2bOmZXAAAAAAAA5UBFVuVkdyJr37596tWrl/Xva0f+Ro0apbfffltr1qxRXFycRo4cqYsXLyo0NFRz5szR+PHjre8cOXJEcXFxunjxoho2bKinn35aMTExDtgOAAAAAAAAblUGi8VicXYQZcHRQgAAAAAAKp6Xp6ezQ3CKu99+w2lrb3l0/I0HVVPUyQEAAAAAAKBKIJEFAAAAAACAKsGhXy0EAAAAAAC4Fbi6UvtTGdn1q8THx6tTp07y9vZWQECABg8erCNHjtiM+eijj9S3b1/5+fnJYDAoPT292Dxms1mTJk2Sn5+fvLy8NHDgQJ05c6ZcGwEAAAAAAMCtza5EVmpqqiZMmKDdu3crJSVFBQUFioyMVF5ennVMXl6eunfvrhdffLHUeaZOnarExEStWbNGO3bsUG5urv7617+qsLCw7DsBAAAAAABwEFcXF6c1lK5cXy38+eefFRAQoNTUVPXs2dPm2alTpxQWFqYDBw6obdu21v7s7Gz5+/vr3//+t4YNGyZJ+umnn1S/fn2tX79effv2vam1+WohAAAAAAAVr7p+tbDfu285be3kkY85be3KrlxpvuzsbElS3bp1b/qdtLQ0Xb16VZGRkda+kJAQhYeHa+fOneUJBwAAAAAAALewMl/2brFYFBsbqx49eig8PPym38vMzJS7u7vq1Klj0x8YGKjMzMwS3zGbzTKbzTZ9BYWFMhqN9gcOAAAAAABwAxzxq5zK/KtMnDhRX3/9td577z2HBGKxWGQwGEp8Fh8fL5PJZNMSEhIcsi4AAAAAAACqhjJVZE2aNElJSUn6/PPPVa9ePbveDQoK0pUrV3Tp0iWbqqysrCx169atxHfi4uIUGxtr01fAxfAAAAAAAKCCUJFVOdn1q1gsFk2cOFEfffSRtmzZorCwMLsX7NChg2rUqKGUlBRrX0ZGhg4dOlRqIstoNMrHx8emcawQAAAAAACgerGrImvChAlavXq1Pv74Y3l7e1vvtDKZTKpZs6Yk6eLFizp9+rR++uknSdKRI0ck/V6JFRQUJJPJpDFjxuiJJ56Qr6+v6tatq2nTpqlVq1bq06ePI/cGAAAAAACAW4hdiazFixdLkiIiImz6V6xYoUcffVSSlJSUpNGjR1ufDR8+XJI0a9YszZ49W5L0yiuvyM3NTUOHDtWvv/6q3r176+2335arq2sZtwEAAAAAAOA4LhwtrJQMFovF4uwgyiIvP9/ZIQAAAAAAcMvz8vR0dghOMfj9VU5be92QR5y2dmVXpsveAQAAAAAAbmVc9l458asAAAAAAACgSqAiCwAAAAAA4E+oyKqc7PpV4uPj1alTJ3l7eysgIECDBw+2fpXwmtmzZ6tZs2by8vJSnTp11KdPH+3Zs8dmzJIlSxQRESEfHx8ZDAb98ssv5d4IAAAAAABAdbVo0SKFhYXJw8NDHTp00Pbt2687PjU1VR06dJCHh4duu+02vfHGGzbP3377bRkMhmLtt99+K9e65WVXIis1NVUTJkzQ7t27lZKSooKCAkVGRiovL8865vbbb9fChQt18OBB7dixQw0bNlRkZKR+/vln65j8/Hz169dPTz31lON2AgAAAAAAUA2tXbtWU6dO1dNPP60DBw7ozjvvVFRUlE6fPl3i+JMnT+ree+/VnXfeqQMHDuipp57S5MmT9eGHH9qM8/HxUUZGhk3z8PAo87qOUK6vFv78888KCAhQamqqevbsWeKYnJwcmUwmbd68Wb1797Z5tm3bNvXq1UuXLl1S7dq17VqbrxYCAAAAAFDxqutXC0d8vMZpa783aLhd4zt37qz27dtr8eLF1r7mzZtr8ODBio+PLzZ+xowZSkpK0uHDh61948eP11dffaVdu3ZJ+r0ia+rUqdc9RWfvuo5QrgOf2dnZkqS6deuW+PzKlStasmSJTCaT2rRpU56lAAAAAAAAqgWz2aycnBybZjabSxx75coVpaWlKTIy0qY/MjJSO3fuLPGdXbt2FRvft29f7du3T1evXrX25ebmKjQ0VPXq1dNf//pXHThwoFzrOkKZE1kWi0WxsbHq0aOHwsPDbZ598sknqlWrljw8PPTKK68oJSVFfn5+ZQ7Snh8QAAAAAACgvFxdDU5r8fHxMplMNq20Cqfz58+rsLBQgYGBNv2BgYHKzMws8Z3MzMwSxxcUFOj8+fOSpGbNmuntt99WUlKS3nvvPXl4eKh79+46duxYmdd1hDInsiZOnKivv/5a7733XrFnvXr1Unp6unbu3Kl+/fpp6NChysrKKnOQJf2ACQkJZZ4PAAAAAACgsoqLi1N2drZNi4uLu+47BoPB5m+LxVKs70bj/9jfpUsXPfzww2rTpo3uvPNO/d///Z9uv/12/etf/yrXuuXlVpaXJk2apKSkJH3++eeqV69esedeXl5q3LixGjdurC5duqhJkyZatmzZDf/RSxMXF6fY2FibvoLCwjLNBQAAAAAAUJkZjUYZjcabGuvn5ydXV9diVVBZWVnFqqWuCQoKKnG8m5ubfH19S3zHxcVFnTp1slZklWVdR7CrIstisWjixIn66KOPtGXLFoWFhd30e+U5Cmg0GuXj42PTbvYHBQAAAAAAsJeri4vTmj3c3d3VoUMHpaSk2PSnpKSoW7duJb7TtWvXYuM3bdqkjh07qkaNGiW+Y7FYlJ6eruDg4DKv6wh2VWRNmDBBq1ev1scffyxvb29r1s1kMqlmzZrKy8vTnDlzNHDgQAUHB+vChQtatGiRzpw5oyFDhljnyczMVGZmpr7//ntJ0sGDB+Xt7a0GDRqUenE8AAAAAAAAiouNjVV0dLQ6duyorl27asmSJTp9+rTGjx8v6feTbmfPntWqVask/f6FwoULFyo2NlZjx47Vrl27tGzZMpvro5577jnrKbucnBy99tprSk9P1+uvv37T61YEuxJZ1z6nGBERYdO/YsUKPfroo3J1ddV3332nlStX6vz58/L19VWnTp20fft2tWzZ0jr+jTfe0HPPPWf9u2fPnjbzAAAAAAAAOJO9lVHONGzYMF24cEHPP/+8MjIyFB4ervXr1ys0NFSSlJGRodOnT1vHh4WFaf369YqJidHrr7+ukJAQvfbaa3rggQesY3755Rf97W9/U2Zmpkwmk9q1a6fPP/9cd9xxx02vWxEMlmu3eVUxefn5zg4BAAAAAIBbnpenp7NDcIr/Sf7QaWsv7/fAjQdVU2W67B0AAAAAAOBWVpUqsqoTfhUAAAAAAABUCSSyAAAAAAAAUCXYlciKj49Xp06d5O3trYCAAA0ePFhHjhyxGfPoo4/KYDDYtC5dulifX7x4UZMmTVLTpk3l6empBg0aaPLkycrOznbMjgAAAAAAAMrJ1cXFaQ2ls+tfJzU1VRMmTNDu3buVkpKigoICRUZGKi8vz2Zcv379lJGRYW3r16+3Pvvpp5/0008/KSEhQQcPHtTbb7+t5ORkjRkzxjE7AgAAAAAAwC3Jrsvek5OTbf5esWKFAgIClJaWpp49e1r7jUajgoKCSpwjPDxcH374/27+b9SokebMmaOHH35YBQUFcnPj/nkAAAAAAOBcVEZVTuX6Va4dB6xbt65N/7Zt2xQQEKDbb79dY8eOVVZW1g3n8fHxIYkFAAAAAACAUpU5kWWxWBQbG6sePXooPDzc2h8VFaV3331XW7Zs0UsvvaS9e/fq7rvvltlsLnGeCxcu6B//+IfGjRtX1lAAAAAAAABQDZS5BGrixIn6+uuvtWPHDpv+YcOGWf87PDxcHTt2VGhoqD799FPdf//9NmNzcnLUv39/tWjRQrNmzSp1LbPZXCwRVlBYKKPRWNbwAQAAAAAASsXRwsqpTL/KpEmTlJSUpK1bt6pevXrXHRscHKzQ0FAdO3bMpv/y5cvq16+fatWqpcTERNWoUaPUOeLj42UymWxaQkJCWUIHAAAAAABAFWVXRZbFYtGkSZOUmJiobdu2KSws7IbvXLhwQT/++KOCg4OtfTk5Oerbt6+MRqOSkpLk4eFx3Tni4uIUGxtr01dQWGhP6AAAAAAAADeNiqzKya5E1oQJE7R69Wp9/PHH8vb2VmZmpiTJZDKpZs2ays3N1ezZs/XAAw8oODhYp06d0lNPPSU/Pz/dd999kn6vxIqMjFR+fr7eeecd5eTkKCcnR5Lk7+8vV1fXYusajcZixwjz8vPLtGEAAAAAAABUTXYlshYvXixJioiIsOlfsWKFHn30Ubm6uurgwYNatWqVfvnlFwUHB6tXr15au3atvL29JUlpaWnas2ePJKlx48Y285w8eVINGzYs41YAAAAAAAAcg4qsysnuo4XXU7NmTW3cuPG6YyIiIm44DwAAAAAAAPBnpBcBAAAAAABQJdhVkQUAAAAAAFAduLpS+1MZ8asAAAAAAACgSrArkRUfH69OnTrJ29tbAQEBGjx4sI4cOWIzxmAwlNj++c9/WseMGzdOjRo1Us2aNeXv769Bgwbpu+++c8yOAAAAAAAAysnVxcVpDaWz618nNTVVEyZM0O7du5WSkqKCggJFRkYqLy/POiYjI8OmLV++XAaDQQ888IB1TIcOHbRixQodPnxYGzdulMViUWRkpAoLCx23MwAAAAAAANxSDJZyfELw559/VkBAgFJTU9WzZ88SxwwePFiXL1/WZ599Vuo8X3/9tdq0aaPvv/9ejRo1uqm18/LzyxQzAAAAAAC4eV6ens4OwSme2lN6HqOize3c22lrV3bluuw9OztbklS3bt0Sn587d06ffvqpVq5cWeoceXl5WrFihcLCwlS/fv3yhAMAAAAAAOAQHPGrnMr8q1gsFsXGxqpHjx4KDw8vcczKlSvl7e2t+++/v9izRYsWqVatWqpVq5aSk5OVkpIid3f3soYDAAAAAACAW1yZK7ImTpyor7/+Wjt27Ch1zPLlyzVy5Eh5eHgUezZy5Ejdc889ysjIUEJCgoYOHaovvviixLFms1lms9mmr6CwUEajsazhAwAAAAAAlIqKrMqpTL/KpEmTlJSUpK1bt6pevXoljtm+fbuOHDmixx57rMTnJpNJTZo0Uc+ePfXBBx/ou+++U2JiYolj4+PjZTKZbFpCQkJZQgcAAAAAAEAVZVdFlsVi0aRJk5SYmKht27YpLCys1LHLli1Thw4d1KZNm5ue+89VV9fExcUpNjbWpq+ALxwCAAAAAIAK4kJFVqVkVyJrwoQJWr16tT7++GN5e3srMzNT0u/VVTVr1rSOy8nJ0fvvv6+XXnqp2BwnTpzQ2rVrFRkZKX9/f509e1bz5s1TzZo1de+995a4rtFoLHaMkK8WAgAAAAAAVC92pRcXL16s7OxsRUREKDg42NrWrl1rM27NmjWyWCwaMWJEsTk8PDy0fft23XvvvWrcuLGGDh0qLy8v7dy5UwEBAeXbDQAAAAAAAG5ZBovFYnF2EGVBRRYAAAAAABXPy9PT2SE4xZz00j9uV9GebtvDaWtXdhz4BAAAAAAAQJVg1x1ZAAAAAAAA1YGrgdqfyohfBQAAAAAAAFWCXYms+Ph4derUSd7e3goICNDgwYN15MgRmzHnzp3To48+qpCQEHl6eqpfv346duxYifNZLBZFRUXJYDBo3bp1Zd4EAAAAAAAAbn12JbJSU1M1YcIE7d69WykpKSooKFBkZKTy8vIk/Z6YGjx4sE6cOKGPP/5YBw4cUGhoqPr06WMd80cLFiyQwWBwzE4AAAAAAAAcxNVgcFpD6ey6Iys5Odnm7xUrViggIEBpaWnq2bOnjh07pt27d+vQoUNq2bKlJGnRokUKCAjQe++9p8cee8z67ldffaWXX35Ze/fuVXBwsAO2AgAAAAAAgFtZue7Iys7OliTVrVtXkmQ2myVJHh4e1jGurq5yd3fXjh3/77OV+fn5GjFihBYuXKigoKDyhAAAAAAAAOBwVGRVTmVOZFksFsXGxqpHjx4KDw+XJDVr1kyhoaGKi4vTpUuXdOXKFb344ovKzMxURkaG9d2YmBh169ZNgwYNKv8OAAAAAAAAUC3YdbTwjyZOnKivv/7aptKqRo0a+vDDDzVmzBjVrVtXrq6u6tOnj6KioqxjkpKStGXLFh04cOCm1zKbzdZqr2sKCgtlNBrLGj4AAAAAAECpXAzlOsSGClKmX2XSpElKSkrS1q1bVa9ePZtnHTp0UHp6un755RdlZGQoOTlZFy5cUFhYmCRpy5YtOn78uGrXri03Nze5uf2eS3vggQcUERFR4nrx8fEymUw2LSEhoSyhAwAAAAAAoIoyWCwWy80OtlgsmjRpkhITE7Vt2zY1adLkhu8cO3ZMzZo104YNGxQZGanMzEydP3/eZkyrVq306quvasCAAdaE1x9RkQUAAAAAgHN4eXo6OwSnWHDoS6etPTX8DqetXdnZdbRwwoQJWr16tT7++GN5e3srMzNTkmQymVSzZk1J0vvvvy9/f381aNBABw8e1JQpUzR48GBFRkZKkoKCgkq84L1BgwYlJrEkyWg0Fkta5eXn2xM6AAAAAADATePS9crJrkTW4sWLJanYEcAVK1bo0UcflSRlZGQoNjZW586dU3BwsB555BE9++yzDgkWAAAAAAAA1ZddRwsrEyqyAAAAAACoeNX1aOGiw2lOW/vx5h2ctnZlxxX8AAAAAAAAqBJIZAEAAAAAAKBKsOuOLAAAAAAAgOqAy94rJ7sqshYvXqzWrVvLx8dHPj4+6tq1qzZs2GB9/tFHH6lv377y8/OTwWBQenp6sTkiIiJkMBhs2vDhw8u9EQAAAAAAANza7KrIqlevnl588UU1btxYkrRy5UoNGjRIBw4cUMuWLZWXl6fu3btryJAhGjt2bKnzjB07Vs8//7z175o1a5YxfAAAAAAAAMdzoSKrUrIrkTVgwACbv+fMmaPFixdr9+7datmypaKjoyVJp06duu48np6eCgoKsi9SAAAAAAAAVGtlvuy9sLBQa9asUV5enrp27WrXu++++678/PzUsmVLTZs2TZcvXy5rGAAAAAAAAA7nanBxWkPp7L7s/eDBg+ratat+++031apVS4mJiWrRosVNvz9y5EiFhYUpKChIhw4dUlxcnL766iulpKTYGwoAAAAAAACqEbsTWU2bNlV6erp++eUXffjhhxo1apRSU1NvOpn1x7uzwsPD1aRJE3Xs2FH79+9X+/btS3zHbDbLbDbb9BUUFspoNNobPgAAAAAAAKoou+vV3N3d1bhxY3Xs2FHx8fFq06aNXn311TIH0L59e9WoUUPHjh0rdUx8fLxMJpNNS0hIKPOaAAAAAAAA1+NqMDitoXR2V2T9mcViKVYtZY9vvvlGV69eVXBwcKlj4uLiFBsba9NXUFhY5jUBAAAAAABQ9diVyHrqqacUFRWl+vXr6/Lly1qzZo22bdum5ORkSdLFixd1+vRp/fTTT5KkI0eOSJKCgoIUFBSk48eP691339W9994rPz8/ffvtt3riiSfUrl07de/evdR1jUZjsWOEefn5dm0UAAAAAADgZnHpeuVkVyLr3Llzio6OVkZGhkwmk1q3bq3k5GTdc889kqSkpCSNHj3aOn748OGSpFmzZmn27Nlyd3fXZ599pldffVW5ubmqX7+++vfvr1mzZsnV1dWB2wIAAAAAAMCtxmCxWCzODqIsqMgCAAAAAKDieXl6OjsEp3jn+0NOW/vhxuFOW7uyK/cdWQAAAAAAALcaLl2vnDjwCQAAAAAAgCqBiiwAAAAAAIA/caEiq1KyqyJr8eLFat26tXx8fOTj46OuXbtqw4YN1uezZ89Ws2bN5OXlpTp16qhPnz7as2dPsXl27dqlu+++W15eXqpdu7YiIiL066+/ln83AAAAAAAAuGXZlciqV6+eXnzxRe3bt0/79u3T3XffrUGDBumbb76RJN1+++1auHChDh48qB07dqhhw4aKjIzUzz//bJ1j165d6tevnyIjI/Xll19q7969mjhxolxcOOUIAAAAAACA0pX7q4V169bVP//5T40ZM6bYs5ycHJlMJm3evFm9e/eWJHXp0kX33HOP/vGPf5RnWb5aCAAAAADAf0F1/WrhB6e+c9raDzZs5rS1K7syl0EVFhZqzZo1ysvLU9euXYs9v3LlipYsWSKTyaQ2bdpIkrKysrRnzx4FBASoW7duCgwM1F133aUdO3aUfQcAAAAAAACoFuy+7P3gwYPq2rWrfvvtN9WqVUuJiYlq0aKF9fknn3yi4cOHKz8/X8HBwUpJSZGfn58k6cSJE5J+v0srISFBbdu21apVq9S7d28dOnRITZo0cdC2AAAAAAAAys6Vy94rJbsrspo2bar09HTt3r1bf//73zVq1Ch9++231ue9evVSenq6du7cqX79+mno0KHKysqSJBUVFUmSxo0bp9GjR6tdu3Z65ZVX1LRpUy1fvrzUNc1ms3Jycmya2Wy2N3QAAAAAAABUYXYnstzd3dW4cWN17NhR8fHxatOmjV599VXrcy8vLzVu3FhdunTRsmXL5ObmpmXLlkmSgoODJcmmgkuSmjdvrtOnT5e6Znx8vEwmk01LSEiwN3QAAAAAAICb4mpwcVpD6cr9r2OxWK5bHfXH5w0bNlRISIiOHDliM+bo0aMKDQ0tdY64uDhlZ2fbtGnTppU3dAAAAAAAgFvCokWLFBYWJg8PD3Xo0EHbt2+/7vjU1FR16NBBHh4euu222/TGG2/YPF+6dKnuvPNO1alTR3Xq1FGfPn305Zdf2oyZPXu2DAaDTQsKCnL43v7IrjuynnrqKUVFRal+/fq6fPmy1qxZo23btik5OVl5eXmaM2eOBg4cqODgYF24cEGLFi3SmTNnNGTIEEmSwWDQ9OnTNWvWLLVp00Zt27bVypUr9d133+mDDz4odV2j0Sij0WjTx1cLAQAAAAAApLVr12rq1KlatGiRunfvrjfffFNRUVH69ttv1aBBg2LjT548qXvvvVdjx47VO++8oy+++EKPP/64/P399cADD0iStm3bphEjRqhbt27y8PDQ/PnzFRkZqW+++UZ/+ctfrHO1bNlSmzdvtv7t6upaoXu1K5F17tw5RUdHKyMjQyaTSa1bt1ZycrLuuece/fbbb/ruu++0cuVKnT9/Xr6+vurUqZO2b9+uli1bWueYOnWqfvvtN8XExOjixYtq06aNUlJS1KhRI4dvDgAAAAAAoCyq0mXvL7/8ssaMGaPHHntMkrRgwQJt3LhRixcvVnx8fLHxb7zxhho0aKAFCxZI+v3Kp3379ikhIcGayHr33Xdt3lm6dKk++OADffbZZ3rkkUes/W5ubhVehfVHdiWyrt11VRIPDw999NFHNzXPzJkzNXPmTHuWBgAAAAAAqBbMZnOxa5xKOq0mSVeuXFFaWlqxPEtkZKR27txZ4vy7du1SZGSkTV/fvn21bNkyXb16VTVq1Cj2Tn5+vq5evaq6deva9B87dkwhISEyGo3q3Lmz5s6dq9tuu+2m9lkW3CAGAAAAAADwJy4GF6e1kj56V1JllSSdP39ehYWFCgwMtOkPDAxUZmZmie9kZmaWOL6goEDnz58v8Z2ZM2fqL3/5i/r06WPt69y5s1atWqWNGzdq6dKlyszMVLdu3XThwgV7/qntYldFFgAAAAAAACpWXFycYmNjbfpKqsb6I8OfjkJaLJZifTcaX1K/JM2fP1/vvfeetm3bJg8PD2t/VFSU9b9btWqlrl27qlGjRlq5cmWx+B2FRBYAAAAAAEAlUtoxwpL4+fnJ1dW1WPVVVlZWsaqra4KCgkoc7+bmJl9fX5v+hIQEzZ07V5s3b1br1q2vG4uXl5datWqlY8eO3VTsZcHRQgAAAAAAgD9xNRic1uzh7u6uDh06KCUlxaY/JSVF3bp1K/Gdrl27Fhu/adMmdezY0eZ+rH/+85/6xz/+oeTkZHXs2PGGsZjNZh0+fFjBwcF27cEediWyFi9erNatW8vHx0c+Pj7q2rWrNmzYYH3+6KOPymAw2LQuXbpYn586darY82vt/fffd9yuAAAAAAAAqonY2Fi99dZbWr58uQ4fPqyYmBidPn1a48ePl/T7UcU/fmlw/Pjx+uGHHxQbG6vDhw9r+fLlWrZsmaZNm2YdM3/+fD3zzDNavny5GjZsqMzMTGVmZio3N9c6Ztq0aUpNTdXJkye1Z88ePfjgg8rJydGoUaMqbK92HS2sV6+eXnzxRTVu3FiStHLlSg0aNEgHDhxQy5YtJUn9+vXTihUrrO+4u7tb/7t+/frKyMiwmXPJkiWaP3++zblKAAAAAAAAZ7K3MsqZhg0bpgsXLuj5559XRkaGwsPDtX79eoWGhkqSMjIydPr0aev4sLAwrV+/XjExMXr99dcVEhKi1157TQ888IB1zKJFi3TlyhU9+OCDNmvNmjVLs2fPliSdOXNGI0aM0Pnz5+Xv768uXbpo9+7d1nUrgsFy7TavMqpbt67++c9/asyYMXr00Uf1yy+/aN26dTf9frt27dS+fXstW7bMrnXz8vPtjBQAAAAAANjLy9PT2SE4xWc/nXLa2r1DGjpt7cquzJe9FxYW6v3331deXp66du1q7d+2bZsCAgJUu3Zt3XXXXZozZ44CAgJKnCMtLU3p6el6/fXXyxoGAAAAAACAw7m6cK14ZWR3IuvgwYPq2rWrfvvtN9WqVUuJiYlq0aKFpN8/uzhkyBCFhobq5MmTevbZZ3X33XcrLS2txNv2ly1bpubNm5d6+dg1ZrNZZrPZpq+gsPCmb/AHAAAAAABA1Wd3erFp06ZKT0/X7t279fe//12jRo3St99+K+n3M5n9+/dXeHi4BgwYoA0bNujo0aP69NNPi83z66+/avXq1RozZswN14yPj5fJZLJpCQkJ9oYOAAAAAACAKqzcd2T16dNHjRo10ptvvlni8yZNmuixxx7TjBkzbPr//e9/a8yYMTp79qz8/f2vuwYVWQAAAAAAOEd1vSPr83M/Om3tnoH1nbZ2ZVfmO7KusVgsxZJM11y4cEE//vijgoODiz1btmyZBg4ceMMkliQZjcZiSSsuewcAAAAAAKhe7EpkPfXUU4qKilL9+vV1+fJlrVmzRtu2bVNycrJyc3M1e/ZsPfDAAwoODtapU6f01FNPyc/PT/fdd5/NPN9//70+//xzrV+/3qGbAQAAAAAAcARXA5e9V0Z2JbLOnTun6OhoZWRkyGQyqXXr1kpOTtY999yjX3/9VQcPHtSqVav0yy+/KDg4WL169dLatWvl7e1tM8/y5cv1l7/8RZGRkQ7dDAAAAAAAAG5d5b4jy1k4WggAAAAAQMWrrndkfZF11mlrdw/4i9PWruzKfUcWAAAAAADArcbVYHB2CCgBBz4BAAAAAABQJVCRBQAAAAAA8CcuoiKrMrKrImvx4sVq3bq1fHx85OPjo65du2rDhg3W5waDocT2z3/+0zomMzNT0dHRCgoKkpeXl9q3b68PPvjAcTsCAAAAAADALcmuiqx69erpxRdfVOPGjSVJK1eu1KBBg3TgwAG1bNlSGRkZNuM3bNigMWPG6IEHHrD2RUdHKzs7W0lJSfLz89Pq1as1bNgw7du3T+3atXPAlgAAAAAAAMrHhYKsSqncXy2sW7eu/vnPf2rMmDHFng0ePFiXL1/WZ599Zu2rVauWFi9erOjoaGufr6+v5s+fX+IcpeGrhQAAAAAAVLzq+tXCfeczbjyognT0C3ba2pVdmS97Lyws1Jo1a5SXl6euXbsWe37u3Dl9+umnxZJTPXr00Nq1a3Xx4kUVFRVpzZo1MpvNioiIKGsoAAAAAAAAqAbsvuz94MGD6tq1q3777TfVqlVLiYmJatGiRbFxK1eulLe3t+6//36b/rVr12rYsGHy9fWVm5ubPD09lZiYqEaNGpW6ptlsltlstukrKCyU0Wi0N3wAAAAAAIAbMnDZe6Vkd0VW06ZNlZ6ert27d+vvf/+7Ro0apW+//bbYuOXLl2vkyJHy8PCw6X/mmWd06dIlbd68Wfv27VNsbKyGDBmigwcPlrpmfHy8TCaTTUtISLA3dAAAAAAAAFRh5b4jq0+fPmrUqJHefPNNa9/27dvVs2dPpaenq02bNtb+48ePq3Hjxjp06JBatmxpM0fjxo31xhtvlLgGFVkAAAAAADhHdb0j68CFc05bu51voNPWruzsPlr4ZxaLpViSadmyZerQoYNNEkuS8v//C9pdXGwLwVxdXVVUVFTqGkajsVjSisveAQAAAAAAqhe7EllPPfWUoqKiVL9+fV2+fFlr1qzRtm3blJycbB2Tk5Oj999/Xy+99FKx95s1a6bGjRtr3LhxSkhIkK+vr9atW6eUlBR98skn5d8NAAAAAAAAbll2JbLOnTun6OhoZWRkyGQyqXXr1kpOTtY999xjHbNmzRpZLBaNGDGi2Ps1atTQ+vXrNXPmTA0YMEC5ublq3LixVq5cqXvvvbf8uwEAAAAAAHAAuy8Vx39Fue/IchaOFgIAAAAAUPGq6x1ZXznxjqw23JFVqnLfkQUAAAAAAHCrcTEYnB0CSkClHAAAAAAAAKoEKrIAAAAAAAD+hMqfysmu32Xx4sVq3bq1fHx85OPjo65du2rDhg3W5+fOndOjjz6qkJAQeXp6ql+/fjp27JjNHMePH9d9990nf39/+fj4aOjQoTp3znnnTgEAAAAAAFA12JXIqlevnl588UXt27dP+/bt0913361Bgwbpm2++kcVi0eDBg3XixAl9/PHHOnDggEJDQ9WnTx/l5eVJkvLy8hQZGSmDwaAtW7boiy++0JUrVzRgwAAVFRVVyAYBAAAAAABwayj3Vwvr1q2rf/7zn7rzzjvVtGlTHTp0SC1btpQkFRYWKiAgQPPmzdNjjz2mTZs2KSoqSpcuXZKPj48k6dKlS6pbt65SUlLUp0+fm16XrxYCAAAAAFDxqutXC7+9+LPT1m5R199pa1d2ZT7yWVhYqDVr1igvL09du3aV2WyWJHl4eFjHuLq6yt3dXTt27JAkmc1mGQwGGY1G6xgPDw+5uLhYxwAAAAAAAAAlsTuRdfDgQdWqVUtGo1Hjx49XYmKiWrRooWbNmik0NFRxcXG6dOmSrly5ohdffFGZmZnKyMiQJHXp0kVeXl6aMWOG8vPzlZeXp+nTp6uoqMg6piRms1k5OTk27VriDAAAAAAAwNFcDAanNZTO7kRW06ZNlZ6ert27d+vvf/+7Ro0apW+//VY1atTQhx9+qKNHj6pu3bry9PTUtm3bFBUVJVdXV0mSv7+/3n//ff3nP/9RrVq1ZDKZlJ2drfbt21vHlCQ+Pl4mk8mmJSQklH3XAAAAAAAAqHLKfUdWnz591KhRI7355pvWvuzsbF25ckX+/v7q3LmzOnbsqNdff93mvfPnz8vNzU21a9dWUFCQnnjiCU2fPr3ENcxmc7EKrILCQpsjigAAAAAAwPGq6x1Z310677S1m9Xxc9ralZ1beSewWCzFkkwmk0mSdOzYMe3bt0//+Mc/ir3n5/f7j7JlyxZlZWVp4MCBpa5hNBqLJa247B0AAAAAAFSUMl8qjgplVyLrqaeeUlRUlOrXr6/Lly9rzZo12rZtm5KTkyVJ77//vvz9/dWgQQMdPHhQU6ZM0eDBgxUZGWmdY8WKFWrevLn8/f21a9cuTZkyRTExMWratKljdwYAAAAAAIBbil2JrHPnzik6OloZGRkymUxq3bq1kpOTdc8990iSMjIyFBsbq3Pnzik4OFiPPPKInn32WZs5jhw5ori4OF28eFENGzbU008/rZiYGMftCAAAAAAAoJy4dL1yKvcdWc7C0UIAAAAAACpedb0j6/tfLjht7ca1fZ22dmVX7juyAAAAAAAAbjUuoiKrMuLuMgAAAAAAAFQJJLIAAAAAAABQJZQrkRUfHy+DwaCpU6dKkq5evaoZM2aoVatW8vLyUkhIiB555BH99NNPNu+ZzWZNmjRJfn5+8vLy0sCBA3XmzJnyhAIAAAAAAOAwBoPzGkpX5kTW3r17tWTJErVu3dral5+fr/379+vZZ5/V/v379dFHH+no0aMaOHCgzbtTp05VYmKi1qxZox07dig3N1d//etfVVhYWPadAAAAAAAA4JZWpq8W5ubmqn379lq0aJFeeOEFtW3bVgsWLChx7N69e3XHHXfohx9+UIMGDZSdnS1/f3/9+9//1rBhwyRJP/30k+rXr6/169erb9++NxUDXy0EAAAAAKDiVdevFv6Qfclpa4ea6jht7cquTBVZEyZMUP/+/dWnT58bjs3OzpbBYFDt2rUlSWlpabp69aoiIyOtY0JCQhQeHq6dO3eWJRwAAAAAAABUA272vrBmzRrt379fe/fuveHY3377TTNnztRDDz0kHx8fSVJmZqbc3d1Vp45tdjEwMFCZmZklzmM2m2U2m236CgoLZTQa7Q0fAAAAAAAAVZRdFVk//vijpkyZonfeeUceHh7XHXv16lUNHz5cRUVFWrRo0Q3ntlgsMpRyo1l8fLxMJpNNS0hIsCd0AAAAAACAm+bixIbS2XVH1rp163TffffJ1dXV2ldYWCiDwSAXFxeZzWa5urrq6tWrGjp0qE6cOKEtW7bI19fXOn7Lli3q3bu3Ll68aFOV1aZNGw0ePFjPPfdcsXWpyAIAAAAAwDmq6x1ZPzrxjqz63JFVKruOFvbu3VsHDx606Rs9erSaNWumGTNm2CSxjh07pq1bt9oksSSpQ4cOqlGjhlJSUjR06FBJUkZGhg4dOqT58+eXuK7RaCyWtOKydwAAAAAAUFFcSjk1BueyK5Hl7e2t8PBwmz4vLy/5+voqPDxcBQUFevDBB7V//3598sknKiwstN57VbduXbm7u8tkMmnMmDF64okn5Ovrq7p162ratGlq1arVTV0eDwAAAAAAgOrJ7sver+fMmTNKSkqSJLVt29bm2datWxURESFJeuWVV+Tm5qahQ4fq119/Ve/evfX222/bHFkEAAAAAABwFhdRkVUZ2XVHVmXC0UIAAAAAACpedb0jKyMn22lrB/uYnLZ2Zcdl+AAAAAAAAKgSHHq0EAAAAAAA4FbAXe+VExVZAAAAAAAAqBLKlciKj4+XwWDQ1KlTS3w+btw4GQwGLViwwKZ/yZIlioiIkI+PjwwGg3755ZfyhAEAAAAAAOBQLjI4raF0ZU5k7d27V0uWLFHr1q1LfL5u3Trt2bNHISEhxZ7l5+erX79+euqpp8q6PAAAAAAAAKqZMiWycnNzNXLkSC1dulR16tQp9vzs2bOaOHGi3n33XdWoUaPY86lTp2rmzJnq0qVLWZYHAAAAAABANVSmRNaECRPUv39/9enTp9izoqIiRUdHa/r06WrZsmW5AwQAAAAAAPhvczEYnNZQOru/WrhmzRrt379fe/fuLfH5vHnz5ObmpsmTJ5c7uGvMZrPMZrNNX0FhoYxGo8PWAAAAAAAAQOVmV0XWjz/+qClTpuidd96Rh4dHsedpaWl69dVX9fbbb8vgwAxifHy8TCaTTUtISHDY/AAAAAAAAH/k4sSG0hksFovlZgevW7dO9913n1xdXa19hYWFMhgMcnFx0bx58zR9+nS5uLjYPHdxcVH9+vV16tQpm/m2bdumXr166dKlS6pdu3ap61KRBQAAAACAc3h5ejo7BKe4mHvZaWvXreXttLUrO7uOFvbu3VsHDx606Rs9erSaNWumGTNmKDg4WH379rV53rdvX0VHR2v06NFlDtJoNBZLWuXl55d5PgAAAAAAAFQ9diWyvL29FR4ebtPn5eUlX19fa7+vr6/N8xo1aigoKEhNmza19mVmZiozM1Pff/+9JOngwYPy9vZWgwYNVLdu3TJtBAAAAAAAwFFcxKXrlZFTjl6+8cYbateuncaOHStJ6tmzp9q1a6ekpCRnhAMAAAAAAIAqwK47sioTjhYCAAAAAFDxqusdWdl5uU5b2+RVy2lrV3Zchg8AAAAAAIAqwa47sgAAAAAAAKoD7siqnKjIAgAAAAAAqOIWLVqksLAweXh4qEOHDtq+fft1x6empqpDhw7y8PDQbbfdpjfeeKPYmA8//FAtWrSQ0WhUixYtlJiYWO51y6tciaz4+HgZDAZNnTrVpv/w4cMaOHCgTCaTvL291aVLF50+fVqSdPHiRU2aNElNmzaVp6enGjRooMmTJys7O7s8oQAAAAAAAFRLa9eu1dSpU/X000/rwIEDuvPOOxUVFWXNxfzZyZMnde+99+rOO+/UgQMH9NRTT2ny5Mn68MMPrWN27dqlYcOGKTo6Wl999ZWio6M1dOhQ7dmzp8zrOkKZL3vfu3evhg4dKh8fH/Xq1UsLFiyQJB0/flx33HGHxowZoxEjRshkMunw4cPq1KmTAgICdOjQIc2aNUuPPvqoWrRooR9++EHjx49X69at9cEHH9z0+lz2DgAAAABAxauul707M+9g7795586d1b59ey1evNja17x5cw0ePFjx8fHFxs+YMUNJSUk6fPiwtW/8+PH66quvtGvXLknSsGHDlJOTow0bNljH9OvXT3Xq1NF7771XpnUdoUwVWbm5uRo5cqSWLl2qOnXq2Dx7+umnde+992r+/Plq166dbrvtNvXv318BAQGSpPDwcH344YcaMGCAGjVqpLvvvltz5szRf/7zHxUUFJR/RwAAAAAAAFWY2WxWTk6OTTObzSWOvXLlitLS0hQZGWnTHxkZqZ07d5b4zq5du4qN79u3r/bt26erV69ed8y1OcuyriOUKZE1YcIE9e/fX3369LHpLyoq0qeffqrbb79dffv2VUBAgDp37qx169Zdd77s7Gz5+PjIzY275wEAAAAAgPMZZHFai4+Pl8lksmmlVTidP39ehYWFCgwMtOkPDAxUZmZmie9kZmaWOL6goEDnz5+/7phrc5ZlXUewO5G1Zs0a7d+/v8R/wKysLOXm5urFF19Uv379tGnTJt133326//77lZqaWuJ8Fy5c0D/+8Q+NGzfO/ugBAAAAAABuMXFxccrOzrZpcXFx133HYLD9yqLFYinWd6Pxf+6/mTntXbe87CqB+vHHHzVlyhRt2rRJHh4exZ4XFRVJkgYNGqSYmBhJUtu2bbVz50698cYbuuuuu2zG5+TkqH///mrRooVmzZpV6rpms7lYCV1BYaGMRqM94QMAAAAAAFR6RqPxpnMefn5+cnV1LVYFlZWVVaxa6pqgoKASx7u5ucnX1/e6Y67NWZZ1HcGuiqy0tDRlZWWpQ4cOcnNzk5ubm1JTU/Xaa69ZN+vm5qYWLVrYvNe8efNiN9ZfvnxZ/fr1U61atZSYmKgaNWqUum5JJXUJCQn2hA4AAAAAAHDzLEXOa3Zwd3dXhw4dlJKSYtOfkpKibt26lfhO165di43ftGmTOnbsaM3PlDbm2pxlWdcR7KrI6t27tw4ePGjTN3r0aDVr1kwzZsyQ0WhUp06ddOTIEZsxR48eVWhoqPXvnJwc9e3bV0ajUUlJSSVWd/1RXFycYmNjbfoKCgvtCR0AAAAAAOCWFBsbq+joaHXs2FFdu3bVkiVLdPr0aY0fP17S73mVs2fPatWqVZJ+/0LhwoULFRsbq7Fjx2rXrl1atmyZ9WuEkjRlyhT17NlT8+bN06BBg/Txxx9r8+bN2rFjx02vWxHsSmR5e3srPDzcps/Ly0u+vr7W/unTp2vYsGHq2bOnevXqpeTkZP3nP//Rtm3bJP1eiRUZGan8/Hy988471tv3Jcnf31+urq7F1i2ppM6Zn8EEAAAAAAC3Ovsqo5xp2LBhunDhgp5//nllZGQoPDxc69evtxYVZWRk2JyUCwsL0/r16xUTE6PXX39dISEheu211/TAAw9Yx3Tr1k1r1qzRM888o2effVaNGjXS2rVr1blz55tetyIYLNdu8yqjiIgItW3bVgsWLLD2LV++XPHx8Tpz5oyaNm2q5557ToMGDZIkbdu2Tb169SpxrpMnT6phw4Y3tS6JLAAAAAAAKp6Xp6ezQ3CK/Lxsp63t6WVy2tqVXbkTWc5CIgsAAAAAgIpXbRNZuZectrZnrTpOW7uys+uydwAAAAAAAMBZSGQBAAAAAACgSrDrsncAAAAAAIDqoepc9l6dlKsiKz4+XgaDQVOnTrX25ebmauLEiapXr55q1qyp5s2ba/HixTbvjRs3To0aNVLNmjXl7++vQYMG6bvvvitPKAAAAAAAALjFlTmRtXfvXi1ZskStW7e26Y+JiVFycrLeeecdHT58WDExMZo0aZI+/vhj65gOHTpoxYoVOnz4sDZu3CiLxaLIyEgVFhaWfScAAAAAAACOYilyXkOpypTIys3N1ciRI7V06VLVqWN7k/6uXbs0atQoRUREqGHDhvrb3/6mNm3aaN++fdYxf/vb39SzZ081bNhQ7du31wsvvKAff/xRp06dKtdmAAAAAAAAcOsqUyJrwoQJ6t+/v/r06VPsWY8ePZSUlKSzZ8/KYrFo69atOnr0qPr27VviXHl5eVqxYoXCwsJUv379soQDAAAAAACAasDuy97XrFmj/fv3a+/evSU+f+211zR27FjVq1dPbm5ucnFx0VtvvaUePXrYjFu0aJGefPJJ5eXlqVmzZkpJSZG7u3vZdgEAAAAAAOBQHPGrjOyqyPrxxx81ZcoUvfPOO/Lw8ChxzGuvvabdu3crKSlJaWlpeumll/T4449r8+bNNuNGjhypAwcOKDU1VU2aNNHQoUP122+/lTin2WxWTk6OTTObzfaEDgAAAAAAgCrOYLFYLDc7eN26dbrvvvvk6upq7SssLJTBYJCLi4uys7NVp04dJSYmqn///tYxjz32mM6cOaPk5OQS571y5Yrq1Kmjt956SyNGjCj2fPbs2Xruueds+uKeekpPP/30zYYOAAAAAADKwMvT09khOEV+TobT1vb0CXba2pWdXUcLe/furYMHD9r0jR49Ws2aNdOMGTNUWFioq1evysXFttDL1dVVRUXXL8mzWCylVlnFxcUpNjbWpq+ALxwCAAAAAABUK3Ylsry9vRUeHm7T5+XlJV9fX2v/XXfdpenTp6tmzZoKDQ1VamqqVq1apZdfflmSdOLECa1du1aRkZHy9/fX2bNnNW/ePNWsWVP33ntviesajUYZjUabvrz8fHtCBwAAAAAAsAN3ZFVGdl/2fiNr1qxRXFycRo4cqYsXLyo0NFRz5szR+PHjJUkeHh7avn27FixYoEuXLikwMFA9e/bUzp07FRAQ4OhwAAAAAAAAcIuw646syoSKLAAAAAAAKl71vSPrrNPW9vT5i9PWruwcXpEFAAAAAABQ5Vk4WlgZudx4CAAAAAAAAOB8VGQBAAAAAAAUQ0VWZWRXRdbs2bNlMBhsWlBQkPW5xWLR7NmzFRISopo1ayoiIkLffPNNiXNZLBZFRUXJYDBo3bp15doEAAAAAAAAbn12Hy1s2bKlMjIyrO3gwYPWZ/Pnz9fLL7+shQsXau/evQoKCtI999yjy5cvF5tnwYIFMhgM5YseAAAAAAAA1YbdRwvd3NxsqrCusVgsWrBggZ5++mndf//9kqSVK1cqMDBQq1ev1rhx46xjv/rqK7388svau3evgoODyxE+AAAAAABABeCy90rJ7oqsY8eOKSQkRGFhYRo+fLhOnDghSTp58qQyMzMVGRlpHWs0GnXXXXdp586d1r78/HyNGDFCCxcuLDEhBgAAAAAAAJTErkRW586dtWrVKm3cuFFLly5VZmamunXrpgsXLigzM1OSFBgYaPNOYGCg9ZkkxcTEqFu3bho0aJADwgcAAAAAAKgIRU5sKI1dRwujoqKs/92qVSt17dpVjRo10sqVK9WlSxdJKnbvlcVisfYlJSVpy5YtOnDggF1Bms1mmc1mm76CwkIZjUa75gEAAAAAAEDVZffRwj/y8vJSq1atdOzYMesxwT9WX0lSVlaWtUpry5YtOn78uGrXri03Nze5uf2eR3vggQcUERFR6jrx8fEymUw2LSEhoTyhAwAAAAAAlMpgsTitoXTlSmSZzWYdPnxYwcHBCgsLU1BQkFJSUqzPr1y5otTUVHXr1k2SNHPmTH399ddKT0+3Nkl65ZVXtGLFilLXiYuLU3Z2tk2bNm1aeUIHAAAAAABAFWPX0cJp06ZpwIABatCggbKysvTCCy8oJydHo0aNksFg0NSpUzV37lw1adJETZo00dy5c+Xp6amHHnpIkhQUFFTiBe8NGjRQWFhYqesajcZixwjz8vPtCR0AAAAAAABVnF2JrDNnzmjEiBE6f/68/P391aVLF+3evVuhoaGSpCeffFK//vqrHn/8cV26dEmdO3fWpk2b5O3tXSHBAwAAAAAAVAwuXa+MDBZL1Tx8SUUWAAAAAAAVz8vT09khOMWvl446be2adW532tqVnV0VWQAAAAAAANWChYqsyqhcl70DAAAAAAAA/y0ksgAAAAAAAFAl2JXImj17tgwGg0279hXCq1evasaMGWrVqpW8vLwUEhKiRx55RD/99JPNHBEREcXmGD58uON2BAAAAAAAUG5FTmwojd13ZLVs2VKbN2+2/u3q6ipJys/P1/79+/Xss8+qTZs2unTpkqZOnaqBAwdq3759NnOMHTtWzz//vPXvmjVrljV+AAAAAAAAVBN2J7Lc3NysVVh/ZDKZlJKSYtP3r3/9S3fccYdOnz6tBg0aWPs9PT1LnAMAAAAAAKBS4LL3SsnuO7KOHTumkJAQhYWFafjw4Tpx4kSpY7Ozs2UwGFS7dm2b/nfffVd+fn5q2bKlpk2bpsuXL9sdOAAAAAAAAKoXg8Visdzs4A0bNig/P1+33367zp07pxdeeEHfffedvvnmG/n6+tqM/e2339SjRw81a9ZM77zzjrV/6dKlCgsLU1BQkA4dOqS4uDg1bty4WDXXjeTl59s1HgAAAAAA2M/L09PZITjFrxe+dtraNX1bO23tys6uRNaf5eXlqVGjRnryyScVGxtr7b969aqGDBmi06dPa9u2bfLx8Sl1jrS0NHXs2FFpaWlq3759iWPMZrPMZrNNX0FhoYxGY1lDBwAAAAAAN4FE1n8fiazS2X208I+8vLzUqlUrHTt2zNp39epVDR06VCdPnlRKSsp1k1iS1L59e9WoUcNmjj+Lj4+XyWSyaQkJCeUJHQAAAAAAAFWM3Ze9/5HZbNbhw4d15513Svp/Saxjx45p69atxY4bluSbb77R1atXFRwcXOqYuLg4m4ov6feKLAAAAAAAgArBZe+Vkl2JrGnTpmnAgAFq0KCBsrKy9MILLygnJ0ejRo1SQUGBHnzwQe3fv1+ffPKJCgsLlZmZKUmqW7eu3N3ddfz4cb377ru699575efnp2+//VZPPPGE2rVrp+7du5e6rtFoLHaMkDuyAAAAAAAAqhe7EllnzpzRiBEjdP78efn7+6tLly7avXu3QkNDderUKSUlJUmS2rZta/Pe1q1bFRERIXd3d3322Wd69dVXlZubq/r166t///6aNWuWXF1dHbYpAAAAAACA8qEiqzIq12XvzkRFFgAAAAAAFa/aXvZ+fr/T1q7pV/LH8FDOy94BAAAAAACA/5ZyXfYOAAAAAABwS+Ky90qJiiwAAAAAAABUCXYlsmbPni2DwWDTgoKCShw7btw4GQwGLViwoNizXbt26e6775aXl5dq166tiIgI/frrr2XaAAAAAAAAgOMVObGhNHYfLWzZsqU2b95s/bukrw2uW7dOe/bsUUhISLFnu3btUr9+/RQXF6d//etfcnd311dffSUXF4rDAAAAAAAAUDq7E1lubm6lVmFJ0tmzZzVx4kRt3LhR/fv3L/Y8JiZGkydP1syZM619TZo0sTcMAAAAAACAisMdWZWS3WVQx44dU0hIiMLCwjR8+HCdOHHC+qyoqEjR0dGaPn26WrZsWezdrKws7dmzRwEBAerWrZsCAwN11113aceOHeXbBQAAAAAAAG55diWyOnfurFWrVmnjxo1aunSpMjMz1a1bN124cEGSNG/ePLm5uWny5Mklvn8t6TV79myNHTtWycnJat++vXr37q1jx46VcysAAAAAAAC4ldl1tDAqKsr6361atVLXrl3VqFEjrVy5UnfddZdeffVV7d+/XwaDocT3i4p+L8sbN26cRo8eLUlq166dPvvsMy1fvlzx8fElvmc2m2U2m236CgoLZTQa7QkfAAAAAADgJnG0sDIq1w3rXl5eatWqlY4dO6bt27crKytLDRo0kJubm9zc3PTDDz/oiSeeUMOGDSVJwcHBkqQWLVrYzNO8eXOdPn261HXi4+NlMplsWkJCQnlCBwAAAAAAQBVj92Xvf2Q2m3X48GHdeeedio6OVp8+fWye9+3bV9HR0dbqq4YNGyokJERHjhyxGXf06FGbaq8/i4uLU2xsrE1fQWFheUIHAAAAAAAoHZe9V0p2JbKmTZumAQMGqEGDBsrKytILL7ygnJwcjRo1Sr6+vvL19bUZX6NGDQUFBalp06aSJIPBoOnTp2vWrFlq06aN2rZtq5UrV+q7777TBx98UOq6RqOx2DHCvPx8e0IHAAAAAABAFWdXIuvMmTMaMWKEzp8/L39/f3Xp0kW7d+9WaGjoTc8xdepU/fbbb4qJidHFixfVpk0bpaSkqFGjRnYHDwAAAAAAgOrDYLFYLM4OoiyoyAIAAAAAoOJ5eXo6OwSnyM9MddrankF3OW3tyq5cl70DAAAAAAAA/y3luuwdAAAAAADgVmQp4rL3yoiKLAAAAAAAAFQJdiWyZs+eLYPBYNOCgoJsxhw+fFgDBw6UyWSSt7e3unTpotOnT0uSTp06Vez9a+3999933K4AAAAAAABwy7H7aGHLli21efNm69+urq7W/z5+/Lh69OihMWPG6LnnnpPJZNLhw4fl4eEhSapfv74yMjJs5luyZInmz5+vqKiosu4BAAAAAADAoSyWQmeHgBLYnchyc3MrVoV1zdNPP617771X8+fPt/bddttt1v92dXUt9m5iYqKGDRumWrVq2RsKAAAAAAAAqhG778g6duyYQkJCFBYWpuHDh+vEiROSpKKiIn366ae6/fbb1bdvXwUEBKhz585at25dqXOlpaUpPT1dY8aMKfMGAAAAAAAAHM1SVOi0htLZlcjq3LmzVq1apY0bN2rp0qXKzMxUt27ddOHCBWVlZSk3N1cvvvii+vXrp02bNum+++7T/fffr9TU1BLnW7ZsmZo3b65u3bo5ZDMAAAAAAAC4dRksFoulrC/n5eWpUaNGevLJJzV8+HD95S9/0YgRI7R69WrrmIEDB8rLy0vvvfeezbu//vqrgoOD9eyzz+qJJ5647jpms1lms9mmr6CwUEajsayhAwAAAACAm+Dl6ensEJwi5/R6p63t0+Bep61d2dl9tPCPvLy81KpVKx07dkx+fn5yc3NTixYtbMY0b97c+tXCP/rggw+Un5+vRx555IbrxMfHy2Qy2bSEhITyhA4AAAAAAFCtXLp0SdHR0dbcSnR0tH755ZfrvmOxWDR79myFhISoZs2aioiI0DfffGN9fvHiRU2aNElNmzaVp6enGjRooMmTJys7O9tmnoYNG8pgMNi0mTNn2r2HciWyzGazDh8+rODgYLm7u6tTp046cuSIzZijR48qNDS02LvLli3TwIED5e/vf8N14uLilJ2dbdOmTZtWntABAAAAAACqlYceekjp6elKTk5WcnKy0tPTFR0dfd135s+fr5dfflkLFy7U3r17FRQUpHvuuUeXL1+WJP3000/66aeflJCQoIMHD+rtt99WcnJyifehP//888rIyLC2Z555xu492PXVwmnTpmnAgAFq0KCBsrKy9MILLygnJ0ejRo2SJE2fPl3Dhg1Tz5491atXLyUnJ+s///mPtm3bZjPP999/r88//1zr199cmZ7RaCx2jDAvP9+e0AEAAAAAAG5eUZGzI3Cow4cPKzk5Wbt371bnzp0lSUuXLlXXrl115MgRNW3atNg7FotFCxYs0NNPP637779fkrRy5UoFBgZq9erVGjdunMLDw/Xhhx9a32nUqJHmzJmjhx9+WAUFBXJz+3+pJ29vbwUFBZVrH3ZVZJ05c0YjRoxQ06ZNdf/998vd3V27d++2Vlzdd999euONNzR//ny1atVKb731lj788EP16NHDZp7ly5frL3/5iyIjI8sVPAAAAAAAwK3GbDYrJyfHpv357nB77dq1SyaTyZrEkqQuXbrIZDJp586dJb5z8uRJZWZm2uRvjEaj7rrrrlLfkaTs7Gz5+PjYJLEkad68efL19VXbtm01Z84cXblyxe592FWRtWbNmhuO+Z//+R/9z//8z3XHzJ07V3PnzrVnaQAAAAAAgP8ai6XQaWvHx8frueees+mbNWuWZs+eXeY5MzMzFRAQUKw/ICBAmZmZpb4jSYGBgTb9gYGB+uGHH0p858KFC/rHP/6hcePG2fRPmTJF7du3V506dfTll18qLi5OJ0+e1FtvvWXXPuxKZAEAAAAAAKBixcXFKTY21qbvz1cuXTN79uxiSa8/27t3ryTJYDAUe2axWErs/6M/Py/tnZycHPXv318tWrTQrFmzbJ7FxMRY/7t169aqU6eOHnzwQWuV1s0ikQUAAAAAAFCJlHRXeGkmTpyo4cOHX3dMw4YN9fXXX+vcuXPFnv3888/FKq6uuXafVWZmpoKDg639WVlZxd65fPmy+vXrp1q1aikxMVE1atS4bkxdunSR9Ps96iSyAAAAAAAAysFS5Lyjhfbw8/OTn5/fDcd17dpV2dnZ+vLLL3XHHXdIkvbs2aPs7Gx169atxHfCwsIUFBSklJQUtWvXTpJ05coVpaamat68edZxOTk56tu3r4xGo5KSkuTh4XHDeA4cOCBJNgmym0EiCwAAAAAA4BbXvHlz9evXT2PHjtWbb74pSfrb3/6mv/71rzZfLGzWrJni4+N13333yWAwaOrUqZo7d66aNGmiJk2aaO7cufL09NRDDz0k6fdKrMjISOXn5+udd96xXk4vSf7+/nJ1ddWuXbu0e/du9erVSyaTSXv37lVMTIwGDhyoBg0a2LUPu75aOHv2bBkMBpv2x88m5ubmauLEiapXr55q1qyp5s2ba/HixTZzZGZmKjo6WkFBQfLy8lL79u31wQcf2BU0AAAAAABARbJYCp3WKsq7776rVq1aKTIyUpGRkWrdurX+/e9/24w5cuSIsrOzrX8/+eSTmjp1qh5//HF17NhRZ8+e1aZNm+Tt7S1JSktL0549e3Tw4EE1btxYwcHB1vbjjz9K+v2o5Nq1axUREaEWLVrof//3fzV27Fi99957du/BYLFYLDc7ePbs2frggw+0efNma5+rq6v8/f0lSWPHjtXWrVv11ltvqWHDhtq0aZMef/xxffjhhxo0aJAk6Z577lF2drYWLlwoPz8/rV69WrNmzdK+ffusZWo3Iy8//6bHAgAAAACAsvHy9HR2CE5x6fv3nbZ2ncZDnLZ2ZWdXRZYkubm5KSgoyNquJbEkadeuXRo1apQiIiLUsGFD/e1vf1ObNm20b98+mzGTJk3SHXfcodtuu03PPPOMateurf379ztmRwAAAAAAAOVkKSpyWkPp7E5kHTt2TCEhIQoLC9Pw4cN14sQJ67MePXooKSlJZ8+elcVi0datW3X06FH17dvXZszatWt18eJFFRUVac2aNTKbzYqIiHDIhgAAAAAAAHBrsuuy986dO2vVqlW6/fbbde7cOb3wwgvq1q2bvvnmG/n6+uq1117T2LFjVa9ePbm5ucnFxUVvvfWWevToYZ1j7dq1GjZsmHx9feXm5iZPT08lJiaqUaNGpa5rNptlNptt+goKC2/6U5QAAAAAAACo+uyqyIqKitIDDzygVq1aqU+fPvr0008lSStXrpQkvfbaa9q9e7eSkpKUlpaml156SY8//rjNnVrPPPOMLl26pM2bN2vfvn2KjY3VkCFDdPDgwVLXjY+Pl8lksmkJCQll2S8AAAAAAMAN3YqXvd8K7LrsvST33HOPGjdurJdfflkmk0mJiYnq37+/9fljjz2mM2fOKDk5WcePH1fjxo116NAhtWzZ0jqmT58+aty4sd54440S16AiCwAAAAAA56iul71fOLLaaWv7Nn3IaWtXdnYdLfwzs9msw4cP684779TVq1d19epVubjYFnm5urqq6P+/qCz////S4PXGlMRoNBZLWvHVQgAAAAAAUFEsRVRGVUZ2JbKmTZumAQMGqEGDBsrKytILL7ygnJwcjRo1Sj4+Prrrrrs0ffp01axZU6GhoUpNTdWqVav08ssvS5KaNWumxo0ba9y4cUpISJCvr6/WrVunlJQUffLJJxWyQQAAAAAAANwa7EpknTlzRiNGjND58+fl7++vLl26aPfu3QoNDZUkrVmzRnFxcRo5cqQuXryo0NBQzZkzR+PHj5ck1ahRQ+vXr9fMmTM1YMAA5ebmqnHjxlq5cqXuvfdex+8OAAAAAAAAt4xy35HlLBwtBAAAAACg4lXXO7J+/vZtp63t3+JRp61d2dn11UIAAAAAAADAWcp12TsAAAAAAMCtyHKdj9LBeajIAgAAAAAAQJVgdyLr7Nmzevjhh+Xr6ytPT0+1bdtWaWlp1ucWi0WzZ89WSEiIatasqYiICH3zzTc2cxw/flz33Xef/P395ePjo6FDh+rcuXPl3w0AAAAAAIADWCyFTmsonV2JrEuXLql79+6qUaOGNmzYoG+//VYvvfSSateubR0zf/58vfzyy1q4cKH27t2roKAg3XPPPbp8+bIkKS8vT5GRkTIYDNqyZYu++OILXblyRQMGDFARZXsAAAAAAAAohV1fLZw5c6a++OILbd++vcTnFotFISEhmjp1qmbMmCFJMpvNCgwM1Lx58zRu3Dht2rRJUVFRunTpknx8fCT9niCrW7euUlJS1KdPn5uKha8WAgAAAABQ8arrVwvPHVzqtLUDW4112tqVnV0VWUlJSerYsaOGDBmigIAAtWvXTkuX/r8f9uTJk8rMzFRkZKS1z2g06q677tLOnTsl/Z7YMhgMMhqN1jEeHh5ycXHRjh07yrsfAAAAAACA8isqdF5DqexKZJ04cUKLFy9WkyZNtHHjRo0fP16TJ0/WqlWrJEmZmZmSpMDAQJv3AgMDrc+6dOkiLy8vzZgxQ/n5+crLy9P06dNVVFSkjIyMEtc1m83KycmxaWaz2e7NAgAAAAAAoOqyK5FVVFSk9u3ba+7cuWrXrp3GjRunsWPHavHixTbjDAaDzd8Wi8Xa5+/vr/fff1//+c9/VKtWLZlMJmVnZ6t9+/ZydXUtcd34+HiZTCablpCQYE/oAAAAAAAAN43L3isnN3sGBwcHq0WLFjZ9zZs314cffihJCgoKkvR7ZVZwcLB1TFZWlk2VVmRkpI4fP67z58/Lzc1NtWvXVlBQkMLCwkpcNy4uTrGxsTZ9BYX8sAAAAAAAANWJXRVZ3bt315EjR2z6jh49qtDQUElSWFiYgoKClJKSYn1+5coVpaamqlu3bsXm8/PzU+3atbVlyxZlZWVp4MCBJa5rNBrl4+Nj0/54xxYAAAAAAABufXZVZMXExKhbt26aO3euhg4dqi+//FJLlizRkiVLJP1+pHDq1KmaO3eumjRpoiZNmmju3Lny9PTUQw89ZJ1nxYoVat68ufz9/bVr1y5NmTJFMTExatq0qWN3BwAAAAAAUAaWoiJnh4AS2JXI6tSpkxITExUXF6fnn39eYWFhWrBggUaOHGkd8+STT+rXX3/V448/rkuXLqlz587atGmTvL29rWOOHDmiuLg4Xbx4UQ0bNtTTTz+tmJgYx+0KAAAAAAAAtxyDxWKxODuIssjLz3d2CAAAAAAA3PK8PD2dHYJT/JS2wGlrh3SY6rS1Kzu77sgCAAAAAAAAnMWuo4UAAAAAAADVgaWo0NkhoARUZAEAAAAAAKBKsDuRdfbsWT388MPy9fWVp6en2rZtq7S0NOvz2bNnq1mzZvLy8lKdOnXUp08f7dmzx2YOs9msSZMmyc/PT15eXho4cKDOnDlT/t0AAAAAAADglmVXIuvSpUvq3r27atSooQ0bNujbb7/VSy+9pNq1a1vH3H777Vq4cKEOHjyoHTt2qGHDhoqMjNTPP/9sHTN16lQlJiZqzZo12rFjh3Jzc/XXv/5VhYWU7QEAAAAAAOezWAqd1lA6u75aOHPmTH3xxRfavn37TS+Qk5Mjk8mkzZs3q3fv3srOzpa/v7/+/e9/a9iwYZKkn376SfXr19f69evVt2/fm5qXrxYCAAAAAFDxqutXC898Od9pa9e740mnrV3Z2VWRlZSUpI4dO2rIkCEKCAhQu3bttHTp0lLHX7lyRUuWLJHJZFKbNm0kSWlpabp69aoiIyOt40JCQhQeHq6dO3eWcRsAAAAAAACOYykqclpD6exKZJ04cUKLFy9WkyZNtHHjRo0fP16TJ0/WqlWrbMZ98sknqlWrljw8PPTKK68oJSVFfn5+kqTMzEy5u7urTp06Nu8EBgYqMzOzxHXNZrNycnJsmtlstid0AAAAAAAAVHF2JbKKiorUvn17zZ07V+3atdO4ceM0duxYLV682GZcr169lJ6erp07d6pfv34aOnSosrKyrju3xWKRwWAo8Vl8fLxMJpNNS0hIsCd0AAAAAAAAVHF2JbKCg4PVokULm77mzZvr9OnTNn1eXl5q3LixunTpomXLlsnNzU3Lli2TJAUFBenKlSu6dOmSzTtZWVkKDAwscd24uDhlZ2fbtGnTptkTOgAAAAAAwE3jsvfKya5EVvfu3XXkyBGbvqNHjyo0NPS671ksFutRwA4dOqhGjRpKSUmxPs/IyNChQ4fUrVu3Et83Go3y8fGxaUaj0Z7QAQAAAAAAUMW52TM4JiZG3bp109y5czV06FB9+eWXWrJkiZYsWSJJysvL05w5czRw4EAFBwfrwoULWrRokc6cOaMhQ4ZIkkwmk8aMGaMnnnhCvr6+qlu3rqZNm6ZWrVqpT58+jt8hAAAAAACAnSxFVEZVRnYlsjp16qTExETFxcXp+eefV1hYmBYsWKCRI0dKklxdXfXdd99p5cqVOn/+vHx9fdWpUydt375dLVu2tM7zyiuvyM3NTUOHDtWvv/6q3r176+2335arq6tjdwcAAAAAAIBbhsFisVicHURZ5OXnOzsEAAAAAABueV6ens4OwSlO7ZjltLUb9njOaWtXdnbdkQUAAAAAAAA4C4ksAAAAAAAAVAl23ZEFAAAAAABQHXDZe+Vkd0XW2bNn9fDDD8vX11eenp5q27at0tLSrM8fffRRGQwGm9alSxebOZYsWaKIiAj5+PjIYDDol19+KfdGAAAAAAAAcGuzqyLr0qVL6t69u3r16qUNGzYoICBAx48fV+3atW3G9evXTytWrLD+7e7ubvM8Pz9f/fr1U79+/RQXF1f26AEAAAAAACqApZCKrMrIrkTWvHnzVL9+fZskVcOGDYuNMxqNCgoKKnWeqVOnSpK2bdtmz/IAAAAAAACoxuw6WpiUlKSOHTtqyJAhCggIULt27bR06dJi47Zt26aAgADdfvvtGjt2rLKyshwWMAAAAAAAAKonuyqyTpw4ocWLFys2NlZPPfWUvvzyS02ePFlGo1GPPPKIJCkqKkpDhgxRaGioTp48qWeffVZ333230tLSZDQayxSk2WyW2Wy26SsoLCzzfAAAAAAAANfDZe+Vk10VWUVFRWrfvr3mzp2rdu3aady4cRo7dqwWL15sHTNs2DD1799f4eHhGjBggDZs2KCjR4/q008/LXOQ8fHxMplMNi0hIaHM8wEAAAAA/r/27jysxvz/H/jztJdyRDvaLClr2Zexq+yGj132fV/G0pgRYwmTZTD2JNsw1sEQEUa2imQpRSFLibQpSp3794ef850zFZ3E3ann47ru6+q87+15zhzT6XXeCxGR6lGqR5a5uTkcHBwU2uzt7XHw4MFPnmNlZYX79+8XLiEAd3d3TJ8+XaEtm5OuEREREREREdFXwsneiyelClnNmzdHZGSkQltUVBSsrKzyPScxMRFPnjyBubl54RLiw+Tx/x1GmJ6RUejrERERERERERGR6lGqkDVt2jQ0a9YMS5YsQZ8+fRAUFITNmzdj8+bNAIA3b95g/vz56NWrF8zNzfHo0SP8+OOPMDIywvfffy+/Tnx8POLj4/HgwQMAwO3bt2FgYABLS0uUL1++CJ8eEREREREREZHyZJwjq1hSao6shg0b4vDhw/jjjz9Qq1YtLFy4EKtXr8bAgQMBAOrq6rh9+za6d++O6tWrY8iQIahevTquXLkCAwMD+XU2btwIR0dHjBo1CgDQsmVLODo64ujRo0X41IiIiIiIiIiIqCSRCIIgiB2iMDi0kIiIiIiIiOjrK6OnJ3YEUUT5TRXt3tVdV4t27+JOqaGFRERERERERESlASd7L56UGlpIREREREREREQkFvbIIiIiIiIiIiL6D/bIKp6U7pH17NkzDBo0CBUqVICenh7q1auH69evy/dLJJI8t19//RUA8Pr1a0yaNAl2dnbQ09ODpaUlJk+ejJSUlKJ7VkREREREREREVOIo1SMrKSkJzZs3R5s2bXDy5EmYmJggOjoa5cqVkx8TFxencM7JkycxYsQI9OrVCwDw/PlzPH/+HF5eXnBwcMDjx48xduxYPH/+HAcOHPjyZ0RERERERERERCWSUqsWzpkzB5cuXcLFixcLfIMePXogLS0NZ8+ezfeY/fv3Y9CgQUhPT4eGRsFqa1y1kIiIiIiIiOjrK62rFkYcGS3ave17bBbt3sWdUkMLjx49igYNGqB3794wMTGBo6MjtmzZku/xL168wN9//40RI0Z88ropKSkoW7ZsgYtYRERERERERERU+ihVOYqJicGGDRswffp0/PjjjwgKCsLkyZOhra2NwYMH5zre19cXBgYG6NmzZ77XTExMxMKFCzFmzJh8j8nMzERmZqZCW3ZODrS1tZWJT0RERERERERUIDJO9l4sKdUjSyaTwcnJCUuWLIGjoyPGjBmDUaNGYcOGDXkev23bNgwcOBA6Ojp57k9NTUXnzp3h4OAADw+PfO/r6ekJqVSqsHl5eSkTnYiIiIiIiIiIVJxSPbLMzc3h4OCg0GZvb4+DBw/mOvbixYuIjIzEvn378rxWWloaXF1doa+vj8OHD0NTUzPf+7q7u2P69OkKbdmsjBIRERERERERlSpKFbKaN2+OyMhIhbaoqChYWVnlOtbb2xv169dH3bp1c+1LTU2Fi4sLtLW1cfTo0Xx7bH2kra2daxghJ3snIiIiIiIioq9FkLEDTXGk1NDCadOm4erVq1iyZAkePHiAPXv2YPPmzZgwYYLCcampqdi/fz9GjhyZ6xppaWlwdnZGeno6vL29kZqaivj4eMTHxyOHvayIiIiIiIiIiCgfSvXIatiwIQ4fPgx3d3f88ssvsLGxwerVqzFw4ECF4/bu3QtBENC/f/9c17h+/TquXbsGAKhatarCvocPH8La2lrJp0BEREREREREVLQEdrYpliSCIAhihygMDi0kIiIiIiIi+vrK6OmJHUEUt/e6iXbv2v12inbv4k6pHllERERERERERKUB58gqnpSaI4uIiIiIiIiIiFRTUlIS3NzcIJVKIZVK4ebmhuTk5E+eIwgC5s+fDwsLC+jq6qJ169a4e/euwjGtW7eGRCJR2Pr16/fF984LC1lERERERERERKXAgAEDcPPmTfj5+cHPzw83b96Em9unh1AuX74cK1euxLp16xAcHAwzMzN06NABaWlpCseNGjUKcXFx8m3Tpk1ffO+8KF3IevbsGQYNGoQKFSpAT08P9erVw/Xr1+X7X7x4gaFDh8LCwgJ6enpwdXXF/fv3Fa4xZswYVKlSBbq6ujA2Nkb37t1x7949pcMTEREREREREX0Nspwc0bavISIiAn5+fti6dSuaNm2Kpk2bYsuWLTh+/DgiIyPzPEcQBKxevRpz585Fz549UatWLfj6+iIjIwN79uxROFZPTw9mZmbyTSqVftG986NUISspKQnNmzeHpqYmTp48ifDwcKxYsQLlypWTP8EePXogJiYGf/31F0JDQ2FlZYX27dsjPT1dfp369evDx8cHEREROHXqFARBgLOzM3K4IgARERERERERlXKZmZlITU1V2DIzM7/omleuXIFUKkXjxo3lbU2aNIFUKsXly5fzPOfhw4eIj4+Hs7OzvE1bWxutWrXKdc7u3bthZGSEmjVr4ocfflDosVWYe+dHqcnely1bhsqVK8PHx0feZm1tLf/5/v37uHr1Ku7cuYOaNWsCANavXw8TExP88ccfGDlyJABg9OjRCucvWrQIdevWxaNHj1ClShWlngARERERERERUVETc7J3T09PLFiwQKHNw8MD8+fPL/Q14+PjYWJikqvdxMQE8fHx+Z4DAKampgrtpqamePz4sfzxwIEDYWNjAzMzM9y5cwfu7u4ICwuDv79/oe+dH6V6ZB09ehQNGjRA7969YWJiAkdHR2zZskW+/2N1UEdHR96mrq4OLS0tBAYG5nnN9PR0+Pj4wMbGBpUrV1YqPBERERERERFRSePu7o6UlBSFzd3dPc9j58+fn2ui9f9uISEhAACJRJLrfEEQ8mz/t//u/+85o0aNQvv27VGrVi3069cPBw4cwJkzZ3Djxo18r1HQe/+XUoWsmJgYbNiwAdWqVcOpU6cwduxYTJ48GTt27AAA1KhRA1ZWVnB3d0dSUhKysrKwdOlSxMfHIy4uTuFa69evh76+PvT19eHn5wd/f39oaWkpFZ6IiIiIiIiIqKTR1tZG2bJlFTZtbe08j504cSIiIiI+udWqVQtmZmZ48eJFrvNfvnyZq8fVR2ZmZgCQq9dUQkJCvucAgJOTEzQ1NeVzphfm3vlRamihTCZDgwYNsGTJEgCAo6Mj7t69iw0bNmDw4MHQ1NTEwYMHMWLECJQvXx7q6upo3749OnbsmOtaAwcORIcOHRAXFwcvLy/06dMHly5dUujN9VFmZmausaDZOTn5/kckIiIiIiIiIvoSgorM421kZAQjI6PPHte0aVOkpKQgKCgIjRo1AgBcu3YNKSkpaNasWZ7nfBwu6O/vD0dHRwBAVlYWLly4gGXLluV7r7t37+L9+/cwNzcv9L3zo1SPLHNzczg4OCi02dvbIzY2Vv64fv36uHnzJpKTkxEXFwc/Pz8kJibCxsZG4TypVIpq1aqhZcuWOHDgAO7du4fDhw/neV9PT09IpVKFzcvLS5noRERERERERESllr29PVxdXTFq1ChcvXoVV69exahRo9ClSxfY2dnJj6tRo4a8PiORSDB16lQsWbIEhw8fxp07dzB06FDo6elhwIABAIDo6Gj88ssvCAkJwaNHj3DixAn07t0bjo6OaN68uVL3LgilemQ1b94817KIUVFRsLKyynXsx2UW79+/j5CQECxcuPCT1xYEId8Z+N3d3TF9+nSFtmwVqYwSERERERERkeoRcrLFjlDkdu/ejcmTJ8tXIezWrRvWrVuncExkZCRSUlLkj2fNmoW3b99i/PjxSEpKQuPGjXH69GkYGBgAALS0tHD27Fn89ttvePPmDSpXrozOnTvDw8MD6urqSt27ICSCIAgFPTg4OBjNmjXDggUL0KdPHwQFBWHUqFHYvHkzBg4cCADYv38/jI2NYWlpidu3b2PKlCmoX78+Dh48CODDPFv79u2Ds7MzjI2N8ezZMyxbtgwXL15EREREnrPY5yU9I0PpJ0tEREREREREyimjpyd2BFFc39JVtHvXH3VMtHsXd0r1yGrYsCEOHz4Md3d3/PLLL7CxscHq1avlRSwAiIuLw/Tp0/HixQuYm5tj8ODB+Pnnn+X7dXR0cPHiRaxevRpJSUkwNTVFy5Ytcfny5QIXsYiIiIiIiIiIviaZjCPBiiOlemQVJ+yRRURERERERPT1ldYeWcGbOol274ZjToh27+JOqcneiYiIiIiIiIiIxKLU0EIiIiIiIiIiotJA4CJzxRJ7ZBERERERERERkUpQqpBlbW0NiUSSa5swYQIA4NChQ3BxcYGRkREkEglu3ryZ77UEQUDHjh0hkUhw5MiRL3kORERERERERERFSpDliLZR/pQqZAUHByMuLk6++fv7AwB69+4NAEhPT0fz5s2xdOnSz15r9erVkEgkhYhMRERERERERESlkVJzZBkbGys8Xrp0KapUqYJWrVoBANzc3AAAjx49+uR1wsLCsHLlSgQHB8Pc3FyZCEREREREREREVEoVerL3rKws7Nq1C9OnT1eqZ1VGRgb69++PdevWwczMrLC3JyIiIiIiIiL6ajjZe/FU6Mnejxw5guTkZAwdOlSp86ZNm4ZmzZqhe/fuhb01ERERERERERGVQoXukeXt7Y2OHTvCwsKiwOccPXoUAQEBCA0NVepemZmZyMzMVGjLzsmBtra2UtchIiIiIiIiIioIGSddL5YK1SPr8ePHOHPmDEaOHKnUeQEBAYiOjka5cuWgoaEBDY0PdbRevXqhdevW+Z7n6ekJqVSqsHl5eRUmOhERERERERERqahC9cjy8fGBiYkJOnfurNR5c+bMyVX8ql27NlatWoWuXbvme567uzumT5+u0JbNsapERERERERE9JVwjqziSelClkwmg4+PD4YMGSLvUfXR69evERsbi+fPnwMAIiMjAQBmZmYK239ZWlrCxsYm33tqa2vnGkaYnpGhbHQiIiIiIiIiIlJhSg8tPHPmDGJjYzF8+PBc+44ePQpHR0d5T61+/frB0dERGzdu/PKkRERERERERERUqkkEQRDEDlEY7JFFRERERERE9PWV0dMTO4IoApc3Fu3eLWZdE+3exV2hJnsnIiIiIiIiIiL61go12TsRERERERERUUnGyd6LJ/bIIiIiIiIiIiIilaBUIcva2hoSiSTXNmHCBADA/PnzUaNGDZQpUwaGhoZo3749rl1THNfZunXrXOf369ev6J4RERERERERERGVSEoNLQwODkbOv7rW3blzBx06dEDv3r0BANWrV8e6detga2uLt2/fYtWqVXB2dsaDBw9gbGwsP2/UqFH45Zdf5I91dXW/9HkQERERERERERUZmYxDC4sjpQpZ/y5GAcDSpUtRpUoVtGrVCgAwYMAAhf0rV66Et7c3bt26hXbt2snb9fT0YGZmVtjMRERERERERERUChV6jqysrCzs2rULw4cPh0QiyXP/5s2bIZVKUbduXYV9u3fvhpGREWrWrIkffvgBaWlphY1BRERERERERFTkhJwc0TbKX6FXLTxy5AiSk5MxdOhQhfbjx4+jX79+yMjIgLm5Ofz9/WFkZCTfP3DgQNjY2MDMzAx37tyBu7s7wsLC4O/vX+gnQUREREREREREJZ9EEAShMCe6uLhAS0sLx44dU2hPT09HXFwcXr16hS1btiAgIADXrl2DiYlJnte5fv06GjRogOvXr8PJySnPYzIzM5GZmanQlp2TA21t7cJEJyIiIiIiIqICKqOnJ3YEUQTMry3avdvOvy3avYu7Qg0tfPz4Mc6cOYORI0fm2lemTBlUrVoVTZo0gbe3NzQ0NODt7Z3vtZycnKCpqYn79+/ne4ynpyekUqnC5uXlVZjoRERERERERESkogo1tNDHxwcmJibo3LnzZ48VBCFXb6p/u3v3Lt6/fw9zc/N8j3F3d8f06dMV2rI5ZpSIiIiIiIiIqFRRupAlk8ng4+ODIUOGQEPj/05PT0/H4sWL0a1bN5ibmyMxMRHr16/H06dP0bt3bwBAdHQ0du/ejU6dOsHIyAjh4eGYMWMGHB0d0bx583zvqa2tnWsYYXpGhrLRiYiIiIiIiIgKRCaTiR2B8qB0IevMmTOIjY3F8OHDFdrV1dVx7949+Pr64tWrV6hQoQIaNmyIixcvombNmgAALS0tnD17Fr/99hvevHmDypUro3PnzvDw8IC6unrRPCMiIiIiIiIiIiqRCj3Zu9jYI4uIiIiIiIjo6yutk72f/slBtHs7LwoX7d7FXaEmeyciIiIiIiIiIvrWWMgiIiIiIiIiIiKVUKhVC4mIiIiIiIiISjKZTCVnYirxlOqRZW1tDYlEkmubMGECAGDo0KG59jVp0iTXda5cuYK2bduiTJkyKFeuHFq3bo23b98WzTMiIiIiIiIiIqISSakeWcHBwcjJyZE/vnPnDjp06IDevXvL21xdXeHj4yN/rKWlpXCNK1euwNXVFe7u7li7di20tLQQFhYGNTWOciQiIiIiIiKi4kEmyMSOQHlQqpBlbGys8Hjp0qWoUqUKWrVqJW/T1taGmZlZvteYNm0aJk+ejDlz5sjbqlWrpkwMIiIiIiIiIiIqhQrdDSorKwu7du3C8OHDIZFI5O3nz5+HiYkJqlevjlGjRiEhIUG+LyEhAdeuXYOJiQmaNWsGU1NTtGrVCoGBgV/2LIiIiIiIiIiIipBMJoi2Uf4KXcg6cuQIkpOTMXToUHlbx44dsXv3bgQEBGDFihUIDg5G27ZtkZmZCQCIiYkBAMyfPx+jRo2Cn58fnJyc0K5dO9y/f//LngkREREREREREZVohV610NvbGx07doSFhYW8rW/fvvKfa9WqhQYNGsDKygp///03evbsCZnsw/jSMWPGYNiwYQAAR0dHnD17Ftu2bYOnp2ee98rMzJQXwz7KzsmBtrZ2YeMTEREREREREZGKKVSPrMePH+PMmTMYOXLkJ48zNzeHlZWVvLeVubk5AMDBwUHhOHt7e8TGxuZ7HU9PT0ilUoXNy8urMNGJiIiIiIiIiD5LJpOJtlH+CtUjy8fHByYmJujcufMnj0tMTMSTJ0/kBSxra2tYWFggMjJS4bioqCh07Ngx3+u4u7tj+vTpCm3Z/1o9kYiIiIiIiIiISj6lC1kymQw+Pj4YMmQINDT+7/Q3b95g/vz56NWrF8zNzfHo0SP8+OOPMDIywvfffw8AkEgkmDlzJjw8PFC3bl3Uq1cPvr6+uHfvHg4cOJDvPbW1tXMNI0zPyFA2OhERERERERFRgXDS9eJJ6ULWmTNnEBsbi+HDhyu0q6ur4/bt29ixYweSk5Nhbm6ONm3aYN++fTAwMJAfN3XqVLx79w7Tpk3D69evUbduXfj7+6NKlSpf/myIiIiIiIiIiKjEkgiCoJIlRvbIIiIiIiIiIvr6yujpiR1BFEdmiNfhpseKaNHuXdwVetVCIiIiIiIiIqKSikMLi6dCrVpIRERERERERET0rbFHFhERERERERHRf8hkMrEjUB6U6pFlbW0NiUSSa5swYQIA5LlPIpHg119/BQA8evQo32P2799f9M+OiIiIiIiIiIhKDKV6ZAUHByMnJ0f++M6dO+jQoQN69+4NAIiLi1M4/uTJkxgxYgR69eoFAKhcuXKuYzZv3ozly5ejY8eOhXoCRERERERERERFjXNkFU9KFbKMjY0VHi9duhRVqlRBq1atAABmZmYK+//66y+0adMGtra2AAB1dfVcxxw+fBh9+/aFvr6+0uGJiIiIiIiIiKj0KPRk71lZWdi1axeGDx8OiUSSa/+LFy/w999/Y8SIEfle4/r167h58+YnjyEiIiIiIiIiIgK+YLL3I0eOIDk5GUOHDs1zv6+vLwwMDNCzZ898r+Ht7Q17e3s0a9assDGIiIiIiIiIiIochxYWT4UuZHl7e6Njx46wsLDIc/+2bdswcOBA6Ojo5Ln/7du32LNnD37++efP3iszMxOZmZkKbdk5OdDW1lY+OBERERERERERqaRCDS18/Pgxzpw5g5EjR+a5/+LFi4iMjMx3PwAcOHAAGRkZGDx48Gfv5+npCalUqrB5eXkVJjoRERERERER0WfJBJloG+VPIgiC0n3l5s+fj02bNuHJkyfQ0MjdqWvo0KG4c+cOQkJC8r1G69atYWRkhAMHDnz2fuyRRURERERERCSOMnp6YkcQxZ7xlUS794D1T0W7d3Gn9NBCmUwGHx8fDBkyJM8iVmpqKvbv348VK1bke40HDx7gn3/+wYkTJwp0T21t7VxFq/SMDOWCExERERERERGRSlO6kHXmzBnExsZi+PDhee7fu3cvBEFA//79873Gtm3bULFiRTg7Oyt7eyIiIiIiIiKir46TvRdPhRpaWBywRxYRERERERHR11dahxbuGltRtHsP2vhMtHsXd4VetZCIiIiIiIiIqKSSyTjpenFUqFULiYiIiIiIiIiIvjUWsoiIiIiIiIiISCUoVciytraGRCLJtU2YMAEA8OLFCwwdOhQWFhbQ09ODq6sr7t+/r3CN+Ph4uLm5wczMDGXKlIGTkxMOHDhQdM+IiIiIiIiIiOgLyWSCaBvlT6lCVnBwMOLi4uSbv78/AKB3794QBAE9evRATEwM/vrrL4SGhsLKygrt27dHenq6/Bpubm6IjIzE0aNHcfv2bfTs2RN9+/ZFaGho0T4zIiIiIiIiIiIqUb5o1cKpU6fi+PHjuH//Pu7fvw87OzvcuXMHNWvWBADk5OTAxMQEy5Ytw8iRIwEA+vr62LBhA9zc3OTXqVChApYvX44RI0YU+N5ctZCIiIiIiIjo6yutqxZuG24q2r2Hb3sh2r2Lu0LPkZWVlYVdu3Zh+PDhkEgkyMzMBADo6OjIj1FXV4eWlhYCAwPlbS1atMC+ffvw+vVryGQy7N27F5mZmWjdunXhnwUREREREREREZV4hS5kHTlyBMnJyRg6dCgAoEaNGrCysoK7uzuSkpKQlZWFpUuXIj4+HnFxcfLz9u3bh+zsbFSoUAHa2toYM2YMDh8+jCpVqnzxkyEiIiIiIiIiKgoymUy0jfJX6EKWt7c3OnbsCAsLCwCApqYmDh48iKioKJQvXx56eno4f/48OnbsCHV1dfl5P/30E5KSknDmzBmEhIRg+vTp6N27N27fvp3vvTIzM5GamqqwfewBRkREREREREREn5eUlAQ3NzdIpVJIpVK4ubkhOTn5k+cIgoD58+fDwsICurq6aN26Ne7evSvf/+jRozwXBpRIJNi/f7/8uLwWEJwzZ47Sz6FQhazHjx/jzJkz8nmvPqpfvz5u3ryJ5ORkxMXFwc/PD4mJibCxsQEAREdHY926ddi2bRvatWuHunXrwsPDAw0aNMDvv/+e7/08PT3lL/LHzcvLqzDRiYiIiIiIiIhKpQEDBuDmzZvw8/ODn58fbt68qTCHeV6WL1+OlStXYt26dQgODoaZmRk6dOiAtLQ0AEDlypUVFgaMi4vDggULUKZMGXTs2FHhWr/88ovCcT/99JPSz0FD6TMA+Pj4wMTEBJ07d85zv1QqBQDcv38fISEhWLhwIQAg4/9P0K6mplg/U1dX/2TXOXd3d0yfPl2hLTsnpzDRiYiIiIiIiIg+SyYr9Np4xVJERAT8/Pxw9epVNG7cGACwZcsWNG3aFJGRkbCzs8t1jiAIWL16NebOnYuePXsCAHx9fWFqaoo9e/ZgzJgxUFdXh5mZmcJ5hw8fRt++faGvr6/QbmBgkOtYZSndI0smk8HHxwdDhgyBhoZiHWz//v04f/48YmJi8Ndff6FDhw7o0aMHnJ2dAXyYR6tq1aoYM2YMgoKCEB0djRUrVsDf3x89evTI957a2tooW7aswqatra1sdCIiIiIiIiKiYu9rTLF05coVSKVSeRELAJo0aQKpVIrLly/nec7Dhw8RHx8vr+sAH2o0rVq1yvec69ev4+bNmxgxYkSufcuWLUOFChVQr149LF68GFlZWUo/D6ULWWfOnEFsbCyGDx+ea19cXBzc3NxQo0YNTJ48GW5ubvjjjz/k+zU1NXHixAkYGxuja9euqFOnDnbs2AFfX1906tRJ6fBERERERERERF+DTCaItuU1xZKnp+cXPZ/4+HiYmJjkajcxMUF8fHy+5wCAqampQrupqWm+53h7e8Pe3h7NmjVTaJ8yZQr27t2Lc+fOYeLEiVi9ejXGjx+v9PNQemihs7MzBCHv7nWTJ0/G5MmTP3l+tWrVcPDgQWVvS0RERERERERUKuQ1xVJ+I9Pmz5+PBQsWfPJ6wcHBAACJRJJrnyAIebb/23/353fO27dvsWfPHvz888+59k2bNk3+c506dWBoaIj//e9/8l5aBVWoObKIiIiIiIiIiOjr0NbWLvCUShMnTkS/fv0+eYy1tTVu3bqFFy9e5Nr38uXLXD2uPvo4n1V8fDzMzc3l7QkJCXmec+DAAWRkZGDw4MGfzd2kSRMAwIMHD1jIIiIiIiIiIiL6Ep9alK44MTIygpGR0WePa9q0KVJSUhAUFIRGjRoBAK5du4aUlJRcwwA/srGxgZmZGfz9/eHo6AgAyMrKwoULF7Bs2bJcx3t7e6Nbt24wNjb+bJ7Q0FAAUCiQFQQLWUREREREREREJZy9vT1cXV0xatQobNq0CQAwevRodOnSRWHFwho1asDT0xPff/89JBIJpk6diiVLlqBatWqoVq0alixZAj09PQwYMEDh+g8ePMA///yDEydO5Lr3lStXcPXqVbRp0wZSqRTBwcGYNm0aunXrBktLS6WeBwtZRERERERERET/IctnfnBVtnv3bkyePFm+CmG3bt2wbt06hWMiIyORkpIifzxr1iy8ffsW48ePR1JSEho3bozTp0/DwMBA4bxt27ahYsWKCiscfqStrY19+/ZhwYIFyMzMhJWVFUaNGoVZs2Yp/RwkQn4zt+chOzsb8+fPx+7du+XjI4cOHYqffvoJamofFkA8dOgQNm3ahOvXryMxMRGhoaGoV6+ewnWio6Pxww8/IDAwEJmZmXB1dcXatWvzHZOZl/SMjAIfS0RERERERESFU0ZPT+wIoljXv5xo9574R7Jo9y7u1JQ5eNmyZdi4cSPWrVuHiIgILF++HL/++ivWrl0rPyY9PR3NmzfH0qVL87xGeno6nJ2dIZFIEBAQgEuXLiErKwtdu3ZVmfGnRERERERERFSyyWQy0TbKn1JDC69cuYLu3bujc+fOAD7Mev/HH38gJCREfoybmxsA4NGjR3le49KlS3j06BFCQ0NRtmxZAICPjw/Kly+PgIAAtG/fvjDPg4iIiIiIiIiISjilemS1aNECZ8+eRVRUFAAgLCwMgYGB6NSpU4GvkZmZCYlEorCMpI6ODtTU1BAYGKhMHCIiIiIiIiIiKkWU6pE1e/ZspKSkoEaNGlBXV0dOTg4WL16M/v37F/gaTZo0QZkyZTB79mwsWbIEgiBg9uzZkMlkiIuLy/OczMxMZGZmKrRl5+QoFMOIiIiIiIiIiIqKTFbyJnsvCZTqkbVv3z7s2rULe/bswY0bN+Dr6wsvLy/4+voW+BrGxsbYv38/jh07Bn19fUilUqSkpMDJyQnq6up5nuPp6QmpVKqweXl5KROdiIiIiIiIiIhUnFI9smbOnIk5c+agX79+AIDatWvj8ePH8PT0xJAhQwp8HWdnZ0RHR+PVq1fQ0NBAuXLlYGZmBhsbmzyPd3d3x/Tp0xXasnNylIlORERERERERFRg7JFVPClVyMrIyICammInLnV19ULPqG9kZAQACAgIQEJCArp165bncdra2rmGEaZnZBTqnkREREREREREpJqUKmR17doVixcvhqWlJWrWrInQ0FCsXLkSw4cPlx/z+vVrxMbG4vnz5wCAyMhIAICZmRnMzMwAfFil0N7eHsbGxrhy5QqmTJmCadOmwc7OrqieFxERERERERERlTASQRAK3FcuLS0NP//8Mw4fPoyEhARYWFigf//+mDdvHrS0tAAA27dvx7Bhw3Kd6+Hhgfnz5wMA5syZg+3bt+P169ewtrbG2LFjMW3aNEgkkgIHZ48sIiIiIiIioq+vjJ6e2BFE4fV9GdHu/cPhdNHuXdwpVcgqTljIIiIiIiIiIvr6WMj69ljIyp9SQwuJiIiIiIiIiEoDzvVePKl9/hAiIiIiIiIiIiLxsUcWEREREREREdF/sEdW8aRUj6zs7Gz89NNPsLGxga6uLmxtbfHLL79AJpPlefyYMWMgkUiwevVqhfbMzExMmjQJRkZGKFOmDLp164anT58W+kkQEREREREREVHJp1Qha9myZdi4cSPWrVuHiIgILF++HL/++ivWrl2b69gjR47g2rVrsLCwyLVv6tSpOHz4MPbu3YvAwEC8efMGXbp0QU5OTuGfCRERERERERERlWhKDS28cuUKunfvjs6dOwMArK2t8ccffyAkJEThuGfPnmHixIk4deqU/NiPUlJS4O3tjZ07d6J9+/YAgF27dqFy5co4c+YMXFxcvuT5EBERERERERF9sRyOLSyWlOqR1aJFC5w9exZRUVEAgLCwMAQGBqJTp07yY2QyGdzc3DBz5kzUrFkz1zWuX7+O9+/fw9nZWd5mYWGBWrVq4fLly4V9HkREREREREREVMIp1SNr9uzZSElJQY0aNaCuro6cnBwsXrwY/fv3lx+zbNkyaGhoYPLkyXleIz4+HlpaWjA0NFRoNzU1RXx8fJ7nZGZmIjMzU6EtOycH2traysQnIiIiIiIiIioQdsgqnpTqkbVv3z7s2rULe/bswY0bN+Dr6wsvLy/4+voC+NDb6rfffsP27dshkUiUCiIIQr7neHp6QiqVKmxeXl5KXZ+IiIiIiIiIiFSbUj2yZs6ciTlz5qBfv34AgNq1a+Px48fw9PTEkCFDcPHiRSQkJMDS0lJ+Tk5ODmbMmIHVq1fj0aNHMDMzQ1ZWFpKSkhR6ZSUkJKBZs2Z53tfd3R3Tp09XaMvmxPBERERERERERKWKUoWsjIwMqKkpduJSV1eHTCYDALi5uckncP/IxcUFbm5uGDZsGACgfv360NTUhL+/P/r06QMAiIuLw507d7B8+fI876utrZ1rGGF6RoYy0YmIiIiIiIiICoxDC4snpQpZXbt2xeLFi2FpaYmaNWsiNDQUK1euxPDhwwEAFSpUQIUKFRTO0dTUhJmZGezs7AAAUqkUI0aMwIwZM1ChQgWUL18eP/zwA2rXrp2rCEZERERERERERPSRUoWstWvX4ueff8b48eORkJAACwsLjBkzBvPmzVPqpqtWrYKGhgb69OmDt2/fol27dti+fTvU1dWVug4RERERERER0dfAHlnFk0QQBJX8T8OhhURERERERERfXxk9PbEjiMKjk3jPe8EJ1jzyo1SPLCIiIiIiIiKi0uD/TwdOxYza5w8hIiIiIiIiIiISHwtZRERERERERESkEpQqZGVnZ+Onn36CjY0NdHV1YWtri19++QWy//S3i4iIQLdu3SCVSmFgYIAmTZogNjZWvn/z5s1o3bo1ypYtC4lEguTk5CJ5MkRERERERERERSFHEETbKH9KzZG1bNkybNy4Eb6+vqhZsyZCQkIwbNgwSKVSTJkyBQAQHR2NFi1aYMSIEViwYAGkUikiIiKgo6Mjv05GRgZcXV3h6uoKd3f3on1GRERERERERERUIim1amGXLl1gamoKb29veVuvXr2gp6eHnTt3AgD69esHTU1N+eNPOX/+PNq0aYOkpCSUK1dOqeBctZCIiIiIiIjo6yutqxbOcdYV7d5LT78V7d7FnVJDC1u0aIGzZ88iKioKABAWFobAwEB06tQJACCTyfD333+jevXqcHFxgYmJCRo3bowjR44UeXAiIiIiIiIiIipdlCpkzZ49G/3790eNGjWgqakJR0dHTJ06Ff379wcAJCQk4M2bN1i6dClcXV1x+vRpfP/99+jZsycuXLhQ6JCZmZlITU1V2DIzMwt9PSIiIiIiIiIiUj1KFbL27duHXbt2Yc+ePbhx4wZ8fX3h5eUFX19fAJBP+t69e3dMmzYN9erVw5w5c9ClSxds3Lix0CE9PT0hlUoVNi8vr0Jfj4iIiIiIiIjoU2Qy8TbKn1KTvc+cORNz5sxBv379AAC1a9fG48eP4enpiSFDhsDIyAgaGhpwcHBQOM/e3h6BgYGFDunu7o7p06crtGXn5BT6ekREREREREREpHqUKmRlZGRATU2xE5e6urq8J5aWlhYaNmyIyMhIhWOioqJgZWVV6JDa2trQ1tZWaONk70RERERERET0tcgKvDQefUtKFbK6du2KxYsXw9LSEjVr1kRoaChWrlyJ4cOHy4+ZOXMm+vbti5YtW6JNmzbw8/PDsWPHcP78efkx8fHxiI+Px4MHDwAAt2/fhoGBASwtLVG+fPmieWZERERERERERFSiSARBKHCNMS0tDT///DMOHz6MhIQEWFhYoH///pg3bx60tLTkx23btg2enp54+vQp7OzssGDBAnTv3l2+f/78+ViwYEGu6/v4+GDo0KEFysIeWURERERERERfXxk9PbEjiGJ6W13R7r0y4K1o9y7ulCpkFScsZBERERERERF9fSxkfXssZOVPqVULiYiIiIiIiIiIxKLUHFlERERERERERKVBjmoOYCvx2COLiIiIiIiIiIhUglKFrOzsbPz000+wsbGBrq4ubG1t8csvv0Amk8mPefPmDSZOnIhKlSpBV1cX9vb22LBhg3z/69evMWnSJNjZ2UFPTw+WlpaYPHkyUlJSiu5ZERERERERERF9AZlMvI3yp9TQwmXLlmHjxo3w9fVFzZo1ERISgmHDhkEqlWLKlCkAgGnTpuHcuXPYtWsXrK2tcfr0aYwfPx4WFhbo3r07nj9/jufPn8PLywsODg54/Pgxxo4di+fPn+PAgQNf5UkSEREREREREZHqU2rVwi5dusDU1BTe3t7ytl69ekFPTw87d+4EANSqVQt9+/bFzz//LD+mfv366NSpExYuXJjndffv349BgwYhPT0dGhoFq61x1UIiIiIiIiKir6+0rlo4qZWOaPdee+GdaPcu7pQaWtiiRQucPXsWUVFRAICwsDAEBgaiU6dOCsccPXoUz549gyAIOHfuHKKiouDi4pLvdVNSUlC2bNkCF7GIiIiIiIiIiL4mmSDeRvlTqnI0e/ZspKSkoEaNGlBXV0dOTg4WL16M/v37y49Zs2YNRo0ahUqVKkFDQwNqamrYunUrWrRokec1ExMTsXDhQowZMybf+2ZmZiIzM1OhLTsnB9ra2srEJyIiIiIiIiIiFaZUj6x9+/Zh165d2LNnD27cuAFfX194eXnB19dXfsyaNWtw9epVHD16FNevX8eKFSswfvx4nDlzJtf1UlNT0blzZzg4OMDDwyPf+3p6ekIqlSpsXl5eykQnIiIiIiIiIiow9sgqnpSaI6ty5cqYM2cOJkyYIG9btGgRdu3ahXv37uHt27eQSqU4fPgwOnfuLD9m5MiRePr0Kfz8/ORtaWlpcHFxgZ6eHo4fPw4dnfzHnrJHFhEREREREZE4SuscWeO+E2+OrA0XOUdWfpQaWpiRkQE1NcVOXOrq6pD9/7Uh379/j/fv33/yGOBDTywXFxdoa2vj6NGjnyxiAYC2tnauohUneyciIiIiIiKir+VfZQwqRpQqZHXt2hWLFy+GpaUlatasidDQUKxcuRLDhw8HAJQtWxatWrXCzJkzoaurCysrK1y4cAE7duzAypUrAXzoieXs7IyMjAzs2rULqampSE1NBQAYGxtDXV29iJ8iERERERERERGVBEoNLUxLS8PPP/+Mw4cPIyEhARYWFujfvz/mzZsHLS0tAEB8fDzc3d1x+vRpvH79GlZWVhg9ejSmTZsGiUSC8+fPo02bNnle/+HDh7C2ti5QFvbIIiIiIiIiIvr6SuvQwjHNxRtauOkShxbmR6lCVnHCQhYRERERERHR11daC1kjm4k3L/fWy5mfP6iUUmrVQiIiIiIiIiIiIrEoNUcWEREREREREVFpIFPJ8WslH3tkERERERERERGRSlC6kJWWloapU6fCysoKurq6aNasGYKDg+X7BUHA/PnzYWFhAV1dXbRu3Rp3795VuMaYMWNQpUoV6OrqwtjYGN27d8e9e/e+/NkQEREREREREVGJpXQha+TIkfD398fOnTtx+/ZtODs7o3379nj27BkAYPny5Vi5ciXWrVuH4OBgmJmZoUOHDkhLS5Nfo379+vDx8UFERAROnToFQRDg7OyMnJycontmRERERERERESFJJOJt1H+lFq18O3btzAwMMBff/2Fzp07y9vr1auHLl26YOHChbCwsMDUqVMxe/ZsAEBmZiZMTU2xbNkyjBkzJs/r3rp1C3Xr1sWDBw9QpUqVAmXhqoVEREREREREX19pXbVwaGPxVi3cfo2rFuZHqR5Z2dnZyMnJgY6OjkK7rq4uAgMD8fDhQ8THx8PZ2Vm+T1tbG61atcLly5fzvGZ6ejp8fHxgY2ODypUrF+IpEBEREREREREVLZkg3kb5U6qQZWBggKZNm2LhwoV4/vw5cnJysGvXLly7dg1xcXGIj48HAJiamiqcZ2pqKt/30fr166Gvrw99fX34+fnB398fWlpaed43MzMTqampCltmJquTRERERERERESlidJzZO3cuROCIKBixYrQ1tbGmjVrMGDAAKirq8uPkUgkCucIgpCrbeDAgQgNDcWFCxdQrVo19OnTB+/evcvznp6enpBKpQqbl5eXstGJiIiIiIiIiEiFKTVH1r+lp6cjNTUV5ubm6Nu3L968eYO1a9eiSpUquHHjBhwdHeXHdu/eHeXKlYOvr2+e18rKyoKhoSG2bt2K/v3759qfmZmZqwdWdk4OtLXFG69KREREREREVBqU1jmyBjUUr+awK5ij0PKjdI+sj8qUKQNzc3MkJSXh1KlT6N69O2xsbGBmZgZ/f3/5cVlZWbhw4QKaNWv2yesJgpDvcEFtbW2ULVtWYWMRi4iIiIiIiIiodNFQ9oRTp05BEATY2dnhwYMHmDlzJuzs7DBs2DBIJBJMnToVS5YsQbVq1VCtWjUsWbIEenp6GDBgAAAgJiYG+/btg7OzM4yNjfHs2TMsW7YMurq66NSpU5E/QSIiIiIiIiIiZeUUbgAbfWVKF7JSUlLg7u6Op0+fonz58ujVqxcWL14MTU1NAMCsWbPw9u1bjB8/HklJSWjcuDFOnz4NAwMDAICOjg4uXryI1atXIykpCaampmjZsiUuX74MExOTon12RERERERERERUYhR6jiyxpWdkiB2BiIiIiIiIqMQrrXNk9XXSEu3e+25kiXbv4q7Qc2QREREREREREZHqSEpKgpubG6RSKaRSKdzc3JCcnPzJcw4dOgQXFxcYGRlBIpHg5s2buY7JzMzEpEmTYGRkhDJlyqBbt254+vTpF987LyxkERERERERERGVAgMGDMDNmzfh5+cHPz8/3Lx5E25ubp88Jz09Hc2bN8fSpUvzPWbq1Kk4fPgw9u7di8DAQLx58wZdunRBTk7OF907LxxaSERERERERET5Kq1DC3s7ije0cH9o0Q8tjIiIgIODA65evYrGjRsDAK5evYqmTZvi3r17sLOz++T5jx49go2NDUJDQ1GvXj15e0pKCoyNjbFz50707dsXAPD8+XNUrlwZJ06cgIuLyxff+9/YI4uIiIiIiIiIqBjJzMxEamqqwpaZmflF17xy5QqkUqm8kAQATZo0gVQqxeXLlwt93evXr+P9+/dwdnaWt1lYWKBWrVry6xblvZVetbC4UIWKcGZmJjw9PeHu7g5tbW2x46gsvo5Fh69l0eFrWTT4OhYdvpZFh69l0eDrWHT4WhYdvpZFg69j0eFrWbx9jV5RBTV//nwsWLBAoc3DwwPz588v9DXj4+NhYmKSq93ExATx8fFfdF0tLS0YGhoqtJuamsqvW5T3Zo+srygzMxMLFiz44qppacfXsejwtSw6fC2LBl/HosPXsujwtSwafB2LDl/LosPXsmjwdSw6fC0pP+7u7khJSVHY3N3d8zx2/vz5kEgkn9xCQkIAABKJJNf5giDk2f6l/nvdorq3yvbIIiIiIiIiIiIqibS1tQvcS2/ixIno16/fJ4+xtrbGrVu38OLFi1z7Xr58CVNT00LlBAAzMzNkZWUhKSlJoVdWQkICmjVrJj+mqO7NQhYRERERERERkYoyMjKCkZHRZ49r2rQpUlJSEBQUhEaNGgEArl27hpSUFHnBqTDq168PTU1N+Pv7o0+fPgCAuLg43LlzB8uXLy/ye7OQRURERERERERUwtnb28PV1RWjRo3Cpk2bAACjR49Gly5dFFYNrFGjBjw9PfH9998DAF6/fo3Y2Fg8f/4cABAZGQngQy8rMzMzSKVSjBgxAjNmzECFChVQvnx5/PDDD6hduzbat2+v1L0LgnNkfUXa2trw8PDgpH1fiK9j0eFrWXT4WhYNvo5Fh69l0eFrWTT4OhYdvpZFh69l0eDrWHT4WtK3tnv3btSuXRvOzs5wdnZGnTp1sHPnToVjIiMjkZKSIn989OhRODo6onPnzgCAfv36wdHRERs3bpQfs2rVKvTo0QN9+vRB8+bNoaenh2PHjkFdXV2pexeERBAEQemziIiIiIiIiIiIvjH2yCIiIiIiIiIiIpXAQhYREREREREREakEFrKIiIiIiIiIiEglsJBFREREREREREQqgYUsIiIiIiIiIiJSCSxkfQVZWVmIjIxEdna22FGI5Pi+JCIiotLmyZMn+e67evXqN0xScvAzJRGJjYWsIpSRkYERI0ZAT08PNWvWRGxsLABg8uTJWLp0qcjpVMuZM2fy3bdp06ZvmET18X1ZNNLS0uDv748TJ07g1atXYsdROampqQXeiKjkOnDggNgRqJTp0KEDEhMTc7VfunQJrq6uIiRSXfxMSUTFBQtZRcjd3R1hYWE4f/48dHR05O3t27fHvn37REymejp37owZM2YgKytL3vby5Ut07doV7u7uIiZTPXxffrlbt26hRo0acHV1RZcuXVC1atVPFlspt3LlysHQ0PCT28dj6PMePHiA69evK7SdPXsWbdq0QaNGjbBkyRKRkqmeuLg4zJ07V/64RYsWcHJykm8NGzbEs2fPREyoWrKzs3H37l1ERUUptP/111+oW7cuBg4cKFIyKq2+++47ODs7Iy0tTd72zz//oFOnTvDw8BAxmerhZ8qilZycjK1bt8Ld3R2vX78GANy4cYO/c4gKQEPsACXJkSNHsG/fPjRp0gQSiUTe7uDggOjoaBGTqZ5//vkHbm5uOHPmDPbs2YNHjx5h+PDhcHBwQFhYmNjxVArfl19uzpw5sLS0xP79+6Gjo4MFCxZg4sSJuHfvntjRVMa5c+fEjlCizJw5E7Vq1UL9+vUBAA8fPkTXrl3x3XffoU6dOvD09ISenh6mTp0qblAVsH79eiQnJ8sfh4WFYfjw4ShfvjwA4OTJk1i1ahW8vLxESqg6wsPD0aVLFzx+/BgA0L17d2zYsAF9+vRBWFgYRo4ciePHj4ucUrUcOHAAf/75J2JjYxW+3AM+/MFLn7d582b07t0bnTt3xunTp3HlyhV069YNixYtwpQpU8SOp1L4mbLo3Lp1C+3bt4dUKsWjR48watQolC9fHocPH8bjx4+xY8cOsSMSFW8CFRldXV0hOjpaEARB0NfXl/988+ZNoWzZsmJGU0lv3rwRBg0aJGhrawuamprCsmXLBJlMJnYslcP35ZczNjYWgoOD5Y9fvXolqKmpCWlpaSKmotKsUqVKwuXLl+WPFy5cKNStW1f+eOvWrQqPKX9169YVTp8+LX/87/9PCoIg+Pn5CQ4ODmJEUzldu3YV2rZtKxw7dkzo16+fIJFIhGrVqgkLFiwQUlNTxY6ncn777TdBX19fmDBhgqClpSWMGTNGaN++vSCVSoUff/xR7HgqJSsrS+jQoYPQrFkzQV9fX1i7dq3YkVQSP1MWnXbt2gkzZ84UBEHxtbx06ZJgZWUlYjIi1cChhUWoYcOG+Pvvv+WPP35TsWXLFjRt2lSsWCorMjISwcHBqFSpEjQ0NHDv3j1kZGSIHUvl8H355V69egVLS0v54woVKkBPTw8vX74UMZVqS05OxooVKzBy5EiMGjUKq1atQkpKitixVMarV69QqVIl+eNz586ha9eu8setW7fGo0ePREimeh49eoQqVarIH3fo0AFlypSRP7azs8PDhw/FiKZygoKC8Ouvv6JLly7YsGEDgA+9B+fNmwcDAwOR06me9evXY/PmzVi3bh20tLQwa9Ys+Pv7Y/Lkyfz/5WfcunVLYYuIiICHhweePHmCQYMGoWXLlvJ9VHD8TFl0goODMWbMmFztFStWRHx8vAiJiFQLhxYWIU9PT7i6uiI8PBzZ2dn47bffcPfuXVy5cgUXLlwQO55KWbp0KTw8PDB69Gj8+uuviI6OxqBBg1CnTh3s2rWLvyyVwPfll5NIJEhLS5PPByEIgrzt35OTly1bVqyIKiUkJAQuLi7Q1dVFo0aNIAgCVq5cicWLF+P06dNwcnISO2KxV758ecTFxaFy5cqQyWQICQnBtGnT5PuzsrIgCIKICVVHdna2QlHg0KFDCvuTkpKgpsbv/QoiISEBFStWBPBhXjw9PT20atVK5FSqKzY2Fs2aNQMA6Orqyud4cnNzQ5MmTbBu3Tox4xVr9erVg0QiUfj/4MfHmzZtwubNm+W/y3NyckRMqlr4mbLo6Ojo5LnATWRkJIyNjUVIRKRa+MmsCDVr1gyXLl1CRkYGqlSpgtOnT8PU1BRXrlyRz2NCBfPbb7/hyJEjWLt2LXR0dFCzZk0EBQWhZ8+eaN26tdjxVArfl19OEARUr15dPil5+fLl8ebNGzg6OnKS8kKYNm0aunXrhkePHuHQoUM4fPgwHj58iC5dunBOpwJq1aoVFi5ciCdPnmD16tWQyWRo06aNfH94eDisra3FC6hC7OzscPny5Xz3X7x4EdWrV/+GiVSXRCJRKPqpqalBU1NTxESqzczMTL7anpWVFa5evQrgw5x4LFR/2sOHDxETE4OHDx/Kt38//vhzTEyM2FFVCj9TFp3u3bvjl19+wfv37wF8+P9nbGws5syZg169eomcjqj4kwj8TUjF0KtXr2BkZJTnvgsXLvAbXvqmCvotI9+XBaOrq4vQ0FDUqFFDoT08PBwNGjTgEOICePjwITp06ICHDx9CTU0Na9aswbhx4+T7e/ToARsbG6xatUrElKrh119/xdKlS3Hu3DnUqVNHYV9YWBjatm2LOXPmYObMmSIlVB1qamqQSqXy4UbJyckoW7Zsrh5tH1fnok8bOXIkKleuDA8PD2zcuBHTp09H8+bNERISgp49e8Lb21vsiERUSKmpqejUqRPu3r2LtLQ0WFhYID4+Hk2bNsWJEycUhrgTUW4sZBWhvLqHAh8q7Nra2tDS0vrGiVRbcnIyDhw4gOjoaMycORPly5fHjRs3YGpqKh+6QAWTk5ODw4cPIyIiAhKJBPb29ujevTs0NDi6mL49U1NT7Ny5E87Ozgrtp06dwuDBg/HixQuRkqmW9+/fIzw8HMbGxrCwsFDYFxYWhkqVKqFChQoipVMd79+/R/v27XH58mV06NABdnZ2kEgkuHfvHvz9/dG0aVOcPXuWPYsKwNfXt0DHDRky5CsnKRlkMhlkMpn8d/Wff/6JwMBAVK1aFWPHjuXnSiWFh4fnufpjt27dREqkmviZsmgFBATgxo0bkMlkcHJyQvv27cWORKQSWMgqQmpqagpL0f5XpUqVMHToUHh4eHC+jc/475K0kZGRsLW1xc8//8wlaZV0584ddO/eHfHx8bCzswMAREVFwdjYGEePHkXt2rVFTqiaBEHAuXPn8PbtWzRr1oxDC5UwefJkHD58GF5eXmjWrBkkEgkCAwMxc+ZM9OrVC6tXrxY7osrKyspCVlYW9PX1xY6iUrKysrBy5Urs3bsXUVFRAIBq1aqhf//+mDZtGrS1tUVOSESFFRMTg++//x63b99WmDfr42d2zpFVcPxM+XUlJyejXLlyYscgUgksZBWhHTt2YO7cuRg6dKh8AuPg4GD4+vrip59+wsuXL+Hl5YWZM2fixx9/FDtusda+fXs4OTlh+fLlMDAwQFhYGGxtbXH58mUMGDCAq3EpoUmTJjAxMYGvr6+82JKUlIShQ4ciISEBV65cETlh8ZecnIwpU6bgxo0baNKkCVasWIFOnTrJ59UxNjaGv79/rmFJlLesrCzMnDkTGzduRHZ2NgBAU1MT48aNw9KlS1k0KCAfHx/5e3LgwIFwd3fHypUrkZ2djbZt22Lv3r3skUWk4pKTkxEUFISEhATIZDKFfYMHDxYplWrp2rUr1NXVsWXLFtja2iIoKAiJiYmYMWMGvLy88N1334kdUWXwM2XRWbZsGaytrdG3b18AQJ8+fXDw4EGYmZnhxIkTqFu3rsgJiYo3FrKKULt27TBmzBj06dNHof3PP//Epk2bcPbsWezcuROLFy/GvXv3REqpGqRSKW7cuIEqVaooFLIeP34MOzs7vHv3TuyIKkNXVxchISGoWbOmQvudO3fQsGFDvH37VqRkqmPkyJH4559/MHjwYBw/fhxqamoQBAGrV6+GmpoaZs2aBX19fRw7dkzsqMVeTk4OAgMDUbt2bejo6CA6OhqCIKBq1arQ09MTO57KWLx4MRYvXoxmzZohNDQUffr0wZEjRzB16lT5nFldunTBhg0bxI5a7CUlJWHXrl0YMmRIrpVHU1JSsGPHjjz3UW6Ghoaf7Jn+EefIKphjx45h4MCBSE9Ph4GBgcJrK5FI+DoWkJGREQICAlCnTh1IpVIEBQXBzs4OAQEBmDFjBkJDQ8WOqDL4mbLo2NraYteuXWjWrBn8/f3Rp08f7Nu3D3/++SdiY2Nx+vRpsSMSFWsczFyErly5go0bN+Zqd3R0lH9D0aJFC8TGxn7raCqHS9IWHTs7O7x48SLXh46EhARUrVpVpFSq5eTJk9izZw9atWqFYcOGoXLlyggICEDjxo0BfPhWjXNsFIy6ujpcXFwQERGB8uXLcxhCIW3fvh3e3t7o378/QkJC0LhxY+zbtw//+9//AAC1atXC2LFjRU6pGtatW4dbt25h0qRJufZJpVJcvHgRqampmDt3rgjpVMu/hwULgoBx48bhl19+gYmJiXihVNiMGTMwfPhwLFmyhIX+L5CTkyMfbm1kZITnz5/Dzs4OVlZWiIyMFDmdauFnyqITFxeHypUrAwCOHz+OPn36wNnZGdbW1vLPl0SUPxayilClSpXg7e2NpUuXKrR7e3vL/0eVmJjIuXQK4OOStH/++ScALkn7JZYsWYLJkydj/vz5aNKkCQDg6tWr+OWXX7Bs2TKFgiF7HOTtxYsXqF69OgCgYsWK0NHRkf+bBgBLS0u8fPlSrHgqp3bt2oiJiYGNjY3YUVRWbGwsWrRoAQBo0KABNDQ0FIqCderUQVxcnFjxVMrBgwexYsWKfPePGTMGP/zwAwtZBfDfSdwnTZqEXr16wdbWVqREqu3Zs2eYPHkyi1hfqFatWrh16xZsbW3RuHFjLF++HFpaWti8eTPfm0riZ8qiY2hoiCdPnqBy5crw8/PDokWLAHz4EoDzthF9HgtZRcjLywu9e/fGyZMn0bBhQ0gkEgQHByMiIgIHDx4EAAQHB8vHQlP+vLy80KlTJ5iYmODt27do1aoV4uLi0LRpUyxevFjseCqlS5cuAD6Mvf84LOHjiOKuXbvKH0skEv7izIdMJoO6urr8sbq6eq4hHlRwixcvxg8//ICFCxeifv36uZaY5offz3v//r3CXGJaWloKq+ppaGjw33MBRUdHo1q1avnur1atGqKjo79hIqIPXFxcEBISwmLLF/rpp5+Qnp4OAFi0aBG6dOmC7777DhUqVMC+fftETqda+Jmy6PTs2RMDBgxAtWrVkJiYiI4dOwIAbt68yd5tRAXAQlYR6tatG6KiorBhwwZERUVBEAR07NgRR44cQXJyMgBg3Lhx4oZUEWXLlkVgYKDCkrT169dHu3btxI6mcgICAlhoKQJbt26VD03Izs7G9u3bYWRkBABIS0sTM5rKcXV1BfDh/5n/fm/yw69ywsPDER8fD+DDa3fv3j28efMGAPDq1Ssxo6kUdXV1PH/+HJaWlnnuf/78OVcaJlF07twZM2fORHh4OGrXrq1QrAbAIe0F5OLiIv/Z1tYW4eHheP36dYHndKP/c+7cObEjlBirVq2CtbU1njx5guXLl8s/Y8bFxWH8+PEipyMq/jjZ+1eUnJyM3bt3Y9u2bbh58yb/OCuAa9eu4fXr1/JvJQDA19cXHh4eyMjIQI8ePbB27VquakbflLW1dYE+7D58+PAbpFF9Fy5c+OT+Vq1afaMkqktNTU1hGfl/+9jOomDBtGnTBo0bN841LcBHs2fPRlBQEP+AK4R/L9ZCyvtUAZX/vpX34MEDREdHo2XLltDV1ZX/f5KIiFQPe2R9BQEBAdi2bRsOHToEKysr9OrVC1u3bhU7lkqYP38+WrduLS9k3b59G6NGjcKQIUNgb2+PX3/9FRYWFpg/f764QVWIjY0Nhg0bhqFDh+bb44A+7dGjR2JHKFFYqPpyLJoWnYkTJ6Jfv36oVKkSxo0bJx9GnJOTg/Xr12PVqlXYs2ePyClVw/Tp0xUeZ2VlYfHixZBKpQrtK1eu/JaxVJZMJhM7QomQmJiIPn364Ny5c5BIJLh//z5sbW0xcuRIlCtX7pNz5FFuycnJ8Pb2RkREBCQSCRwcHDB8+PBc/86pYMLDwxEbG4usrCyFdva4JPo09sgqIk+fPsX27duxbds2pKeno0+fPti4cSPCwsLg4OAgdjyVYW5ujmPHjqFBgwYAgLlz5+LChQsIDAwEAOzfvx8eHh4IDw8XM6ZKWbt2LbZv346wsDC0adMGI0aMwPfff89ebSSqixcvYtOmTYiJicH+/ftRsWJF7Ny5EzY2NvJJzIm+lblz58LT0xMGBgawtbWFRCJBdHQ03rx5g5kzZ+bbW4sUtWnT5rPHSCQSBAQEfIM0RB8MHjwYCQkJ2Lp1K+zt7eW9BE+fPo1p06bh7t27YkdUGSEhIXBxcYGuri4aNWoEQRAQEhKCt2/f4vTp03BychI7osqIiYnB999/j9u3byv0sP7YS5A9Lok+jYWsItCpUycEBgaiS5cuGDhwIFxdXaGurg5NTU0WspSko6OD+/fvy1eEa9GiBVxdXfHTTz8B+NAzpnbt2pyTqBDCwsKwbds2/PHHH8jOzsaAAQMwfPhwfuhQwpo1a/Jsl0gk0NHRQdWqVdGyZUuFieEpt4MHD8LNzQ0DBw7Ezp07ER4eDltbW6xfvx7Hjx/HiRMnxI6oMm7dupVn+8f3pKWlJYvWBRQUFITdu3fjwYMHEAQB1atXx4ABA9CoUSOxo1EpsmbNGowePRo6Ojr5/s75aPLkyd8olWozMzPDqVOnULduXYXhrg8fPkTt2rXlcwvS53333XeoWrUqtmzZAg2NDwN7srOzMXLkSMTExOCff/4ROaHq6Nq1K9TV1bFlyxbY2toiKCgIiYmJmDFjBry8vPDdd9+JHZGoWGMhqwhoaGhg8uTJGDdunMLKRyxkKc/Kygo7d+5Ey5YtkZWVhXLlyuHYsWPySd5v376NVq1a4fXr1yInVV3v37/H+vXrMXv2bLx//x61atXClClTMGzYMM4V8Rk2NjZ4+fIlMjIyYGhoCEEQkJycDD09Pejr6yMhIQG2trY4d+6cvBhLuTk6OmLatGkYPHiwwh8VN2/ehKurq3wCc/q8j3Nl5UdTUxN9+/bFpk2boKOj8w2TUWn29u1b6Orq5rkvLi4O5ubm3ziR6rCxsUFISAgqVKgAGxubfI+TSCSIiYn5hslUl4GBAW7cuIFq1aop/M4JDg6Gq6srEhMTxY6oMnR1dREaGooaNWootIeHh6NBgwbIyMgQKZnqMTIyQkBAAOrUqQOpVIqgoCDY2dkhICAAM2bMQGhoqNgRiYo1LsNTBC5evIi0tDQ0aNAAjRs3xrp16/Dy5UuxY6kkV1dXzJkzBxcvXoS7uzv09PQUvpG4desWqlSpImJC1fX+/Xv8+eef6NatG2bMmIEGDRpg69at6NOnD+bOnYuBAweKHbHYW7JkCRo2bIj79+8jMTERr1+/RlRUFBo3bozffvsNsbGxMDMzw7Rp08SOWqxFRkaiZcuWudrLli0rX+GVCubw4cOoVq0aNm/ejJs3byI0NBSbN2+GnZ0d9uzZA29vbwQEBMh7tVJuy5cvx9u3b+WP//nnH2RmZsofp6WlcQUpJTk6OuLGjRu52g8cOIA6deqIkEh1PHz4EBUqVJD/nN/GIlbBtWzZEjt27JA/lkgkkMlk+PXXXws0HJb+T9myZREbG5ur/cmTJzAwMBAhkerKycmRr1RoZGSE58+fA/jwpX5kZKSY0YhUg0BFJj09XfD29haaN28uaGpqCmpqasLq1auF1NRUsaOpjISEBKFFixaCRCIRDAwMhEOHDinsb9u2rfDjjz+KlE61+Pr6Cu/evROuX78uTJw4UahQoYJgYmIizJgxQ4iIiFA4NigoSNDR0REpqeqwtbUVQkNDc7XfuHFDsLGxEQRBEC5duiSYmZl942SqxdbWVvD39xcEQRD09fWF6OhoQRA+vGft7e3FjKZyGjZsKPj5+eVq9/PzExo2bCgIgiAcPnxYsLW1/dbRVIaamprw4sUL+WMDAwP5e1IQBCE+Pl5QU1MTI5rKmjhxoqCtrS14enoKMplMSEtLE4YMGSLo6ekJa9asETselTJ3794VjI2NBVdXV0FLS0v43//+J9jb2wumpqbCgwcPxI6nUiZNmiRUqlRJ2Lt3rxAbGys8efJE+OOPP4RKlSoJU6ZMETueSmnRooVw+PBhQRAEoX///oKrq6sQGBgoDB48WKhZs6a44YhUAIcWfiWRkZHw9vbGzp07kZycjA4dOuDo0aNix1IZKSkp0NfXzzXX0OvXr6Gvrw8tLS2RkqkOdXV1+RCODh06YMSIEejRowc0NTVzHZueno6JEyfCx8dHhKSqQ09PD//88498MYKPgoOD0apVK2RkZODRo0eoVasW59z4hOXLl8PX1xfbtm1Dhw4dcOLECTx+/BjTpk3DvHnzMHHiRLEjqoz8hnncu3cPjo6OePv2LR49egQHBwcO+ciHmpoa4uPjYWJiAgAKQ48A4MWLF7CwsODEu0ry8/PDsGHDULVqVTx//hxly5bF7t27Od2CEv67CuRH/56XsXv37ihfvvw3TqZ64uPjsWHDBly/fh0ymQxOTk6YMGECh7kqKSsrCzNnzsTGjRuRnZ0N4MMQ9nHjxmHp0qWck1EJp06dQnp6Onr27ImYmBh06dIF9+7dQ4UKFbBv3z60bdtW7IhExRoLWV9ZTk4Ojh07hm3btrGQRd/Uxz/O3r59CysrK7HjlAidO3dGfHw8tm7dCkdHRwBAaGgoRo0aBTMzMxw/fhzHjh3Djz/+iNu3b4uctnibO3cuVq1ahXfv3gEAtLW18cMPP2DhwoUiJ1Mtjo6OqFu3LjZv3iwv8L9//x6jRo1CWFgYQkNDcenSJQwaNAgPHz4UOW3xxELW1yGTyTBp0iRs2LABGhoaOHbsGFxcXMSOpVLatGmDGzduICcnB3Z2dhAEAffv34e6ujpq1KiByMhISCQSBAYGskBI31RGRgaio6MhCAKqVq0KPT09sSOVCK9fv4ahoSHnrCUqABayiEooNTU1vHjxAsbGxmJHKTHi4+Ph5uaGs2fPynu2ZWdno127dti5cydMTU1x7tw5vH//Hs7OziKnLf4yMjIQHh4OmUwGBwcH+VwRVHCXL19Gt27doKamhjp16kAikeDWrVvIycnB8ePH0aRJE+zcuRPx8fGYOXOm2HGLJRayil50dDQGDBggL/xfuHABXl5emDx5MhYvXpxnz2DKbfXq1bh48SJ8fHxQtmxZAEBqaipGjBiBFi1aYNSoURgwYADevn2LU6dOiZy2eEtKSoK3tzciIiIgkUhgb2+PYcOGsTcbie7BgweIjo5Gy5YtoaurC0EQWMgiKgAWsohKKDU1NXTs2PGz3bwPHTr0jRKVHPfu3UNUVBQEQUCNGjVgZ2cndiSVMnz4cPz222+5JoZNT0/HpEmTsG3bNpGSqaY3b95g165dCu/JAQMGcOLdAlJTU8OiRYvkhdTZs2dj5syZMDIyAvBhsvd58+axkKUEAwMDdO7cGRs3bkS5cuUAfCi6flyplKtxFUzFihXh7++fq7fV3bt34ezsjGfPnuHGjRtwdnbGq1evREpZ/F24cAHdu3dH2bJl5VMDXL9+HcnJyTh69ChatWolcsLirWfPngU+lp8pCy4xMRF9+vTBuXPnIJFIcP/+fdja2mLEiBEoV64cVqxYIXZEomKNhSyiEkpNTQ19+vTJdwn0jzgvFn1rH+dv+9gD5qNXr17BzMxMPu8G0bdgbW1doG+/OTSz4Hbu3Ak3N7dc7WlpaZg6dSq8vb1FSKV69PX1cfz4cbRu3Vqh/fz58+jatSvS0tIQExODevXqITU1VZyQKqBWrVpo1qwZNmzYIJ97NScnB+PHj8elS5dw584dkRMWb8OGDSvwsfxMWXCDBw9GQkICtm7dCnt7e3lP4NOnT2PatGm4e/eu2BGJijUWsohKqP8Ol6Evl5OTg+3bt+Ps2bNISEiATCZT2B8QECBSMtWQmpoKQRBgaGiI+/fvKwx7/Tif4Jw5c+RLUFPBREVF4fz583m+J+fNmydSKiL6UgMHDsSVK1ewYsUKNGzYEBKJBEFBQfjhhx/QrFkz7Ny5E3v37oWXlxdCQkLEjlts6erq4ubNm7l6T0dGRqJevXp4+/atSMmoNDMzM8OpU6dQt25dhSHtDx8+RO3atbloENFnaIgdgIi+Do6vL3pTpkzB9u3b0blzZ9SqVYuvsZLKlSsHiUQCiUSC6tWr59ovkUiwYMECEZKpri1btmDcuHEwMjKCmZmZwntSIpGwkEWiCg8PR2xsLLKysuRtEokEXbt2FTGV6ti0aROmTZuGfv36yXuqamhoYMiQIVi1ahUAoEaNGti6dauYMYs9JycnRERE5CpkRUREoF69euKEKiEuXLiA9PR0NG3aFIaGhmLHUSnp6el5TpL/6tUrrv5IVADskUVUQrFHVtEzMjLCjh070KlTJ7GjqKQLFy5AEAS0bdsWBw8eVJhkV0tLC1ZWVrCwsBAxoeqxsrLC+PHjMXv2bLGjqLw1a9bk2S6RSKCjo4OqVauiZcuW8qFJlL+YmBh8//33uH37NiQSCT5+1PxYaOV8Y8p58+YNYmJiIAgCqlSpwoUxlLRv3z7MmjULkyZNQpMmTQAAV69exe+//46lS5fC3t5efmydOnXEilms/frrr3jz5o38yyZBENCxY0ecPn0aAGBiYoKzZ8+iZs2aYsZUKZ07d4aTkxMWLlwIAwMD3Lp1C1ZWVujXrx9kMhkOHDggdkSiYo2FLKIS6sKFC2jevDk0NNjxsqhYWFjg/PnzefYmooJ7/PgxLC0t2aOtCJQtWxY3b96Ur7BHhWdjY4OXL18iIyMDhoaGEAQBycnJ0NPTg76+PhISEmBra4tz586hcuXKYsct1rp27Qp1dXVs2bIFtra2CAoKQmJiImbMmAEvLy989913YkekUkRNTe2T+z8WWyUSCYus+XBycsLs2bPRt29fAMD+/fsxZMgQ+Pv7w97eHoMHD4aenh7+/PNPkZOqjvDwcLRu3Rr169dHQEAAunXrhrt37+L169e4dOkSqlSpInZEomKNhSyiUuDs2bP5zuvEFeIKbsWKFYiJicG6detYhPkCfn5+0NfXR4sWLQAAv//+O7Zs2QIHBwf8/vvvHJ6ghBEjRqBhw4YYO3as2FFU3h9//IHNmzdj69at8j8gHjx4gDFjxmD06NFo3rw5+vXrBzMzM35T/hlGRkYICAhAnTp1IJVKERQUBDs7OwQEBGDGjBlctbCA0tPTsXTp0nx/f8fExIiUTLU8fvy4wMdaWVl9xSSqy9DQEJcvX5b3Xhs2bBiys7Oxc+dOAB96uPXu3RtPnjwRM6bKiY+Px4YNG3D9+nXIZDI4OTlhwoQJMDc3FzsaUbHHrhpEJdyCBQvwyy+/oEGDBjA3N2cB5gsEBgbi3LlzOHnyJGrWrAlNTU2F/Vx2umBmzpyJZcuWAQBu376N6dOnY8aMGQgICMD06dO56pESqlatip9//hlXr15F7dq1c70nJ0+eLFIy1fPTTz/h4MGDCt+CV61aFV5eXujVqxdiYmKwfPly9OrVS8SUqiEnJ0c+/M3IyAjPnz+HnZ0drKysEBkZKXI61TFy5EhcuHABbm5u/P39BVic+nLv379XmLfpypUrmDJlivyxhYUFXr16JUY0lWZmZsa5QYkKiYUsohJu48aN2L59e55LoZNyypUrh++//17sGCrv4cOHcHBwAAAcPHgQXbt2xZIlS3Djxg3OP6akzZs3Q19fHxcuXMCFCxcU9kkkEhaylBAXFyefUPvfsrOzER8fD+DDH2tpaWnfOprKqVWrFm7dugVbW1s0btwYy5cvh5aWFjZv3sxhsEo4efIk/v77bzRv3lzsKCrn6NGjBT62W7duXzFJyVC1alX8888/sLW1RWxsLKKiotCqVSv5/qdPn6JChQoiJlQ97J1O9GVYyCIq4bKystCsWTOxY5QI7ClUNLS0tJCRkQEAOHPmDAYPHgwAKF++PFJTU8WMpnIePnwodoQSo02bNhgzZgy2bt0KR0dHAEBoaCjGjRuHtm3bAvjQg9DGxkbMmCrhp59+Qnp6OgBg0aJF6NKlC7777jtUqFABe/fuFTmd6jA0NFRYFIMKrkePHgqP/73owMfHH3FerM8bN24cJk6ciIsXL+Lq1ato2rSp/AspAAgICJD/f5MKhr3Tib7Mp2c/JCKVN3LkSOzZs0fsGERyLVq0wPTp07Fw4UIEBQWhc+fOAICoqChUqlRJ5HRUWnl7e6N8+fKoX78+tLW1oa2tjQYNGqB8+fLw9vYGAOjr62PFihUiJy3+XFxc0LNnTwCAra0twsPD8erVKyQkJKBdu3Yip1MdCxcuxLx58+SFfyo4mUwm306fPo169erh5MmTSE5ORkpKCk6cOAEnJyf4+fmJHVUljBkzBr/99htev36Nli1b4uDBgwr7nz9/juHDh4uUTjXl1zt9/fr1OHnypMjpiIo/TvZOVMJNmTIFO3bsQJ06dVCnTp1cc+isXLlSpGSqwcnJCWfPnoWhoSEcHR0/OUfJjRs3vmEy1RUbG4vx48fjyZMnmDx5MkaMGAEAmDZtGnJycrBmzRqRExZvH4uAZcqUwfTp0z95LP99K+/evXuIioqCIAioUaMG7OzsxI6kMgr6hywXGSkYR0dHREdHQxAEWFtb5/r9zd85BVOrVi1s3LhRPoTro4sXL2L06NGIiIgQKVnJtXTpUowdOxblypUTO0qxVb58eQQGBsLBwQEtWrTA4MGDMXr0aDx69AgODg4sYBN9BocWEpVwt27dQr169QAAd+7cUdjHiWM/r3v37vIJTrt3787XrAhYWlri+PHjudpXrVolQhrVExoaivfv38t/pqJVo0YN1KhRQ+wYKmn79u2wsrKCo6Mj+D3pl/vv8DgqnOjoaEil0lztUqkUjx49+vaBSoElS5agT58+LGR9wsfe6c2bN0dQUBD27dsHgL3TiQqKPbKIiOibi46Oho+PD6Kjo/Hbb7/BxMQEfn5+qFy5MmrWrCl2PCqFcnJysH37dpw9exYJCQmQyWQK+wMCAkRKpjrGjx+PvXv3wtLSEsOHD8egQYM4x9NXkp2dDQ0Nfh9dEC1btoSmpiZ27doFc3NzAEB8fDzc3NyQlZWVa6EM+nIGBgYICwvj4g6fwN7pRF+Gc2QRERWQra0tEhMTc7UnJyfzw5oSLly4gNq1a+PatWs4dOgQ3rx5A+BD70EPDw+R06mW4cOH57mKXnp6OucrUdKUKVMwZcoU5OTkoFatWqhbt67CRp+3fv16xMXFYfbs2Th27BgqV66MPn364NSpU+yhVUTCw8MxY8YMVKxYUewoKmPbtm1ISEiAlZUVqlatiqpVq8LS0hJxcXHy+e+IvrWPvdPDwsLkRSzgQ+90FrGIPo89sohKoJ49e2L79u0oW7asfMLd/Bw6dOgbpVJ9ampqiI+Ph4mJiUL7ixcvULlyZWRlZYmUTLU0bdoUvXv3xvTp0xW+tQ0ODkaPHj3w7NkzsSOqDHV1dcTFxeV6T7569QpmZmbIzs4WKZnqMTIywo4dO9CpUyexo5QYjx8/xvbt27Fjxw68f/8e4eHh0NfXFzuWynnz5g327t0Lb29vBAcHo0mTJujVqxemTZsmdjSVIQgC/P39ce/ePQiCAAcHB7Rv357TBXwl7JGVt9TUVJQtW1b+86d8PI6I8sY+yUQlkFQqlX84y2teCFLO0aNH5T+fOnVK4TXNycnB2bNnYWNjI0Y0lXT79u08V9I0NjbOs8cb5ZaamgpBECAIAtLS0qCjoyPfl5OTgxMnTuQqbtGnaWlpoWrVqmLHKFEkEgkkEgkEQcg1VJM+LzAwEFu3bsXBgwdhY2OD8PBwXLhwAc2bNxc7msqRSCRwdnaGs7Oz2FGoFDM0NJR/+VSuXLk8C6mCIEAikSAnJ0eEhESqg4UsohLIx8cnz5+pcD5OuCuRSDBkyBCFfZqamrC2tsaKFStESKaaypUrh7i4uFzFv9DQUA6XKaCPH4AlEgmqV6+ea79EIsGCBQtESKa6ZsyYgd9++w3r1q1jL40vkJmZiUOHDmHbtm0IDAxEly5dsG7dOri6ukJNjTNaFMTy5cuxbds2vHnzBv3790dgYCDq1q0LTU1NGBoaih1PJSgzNGvy5MlfMQnR/wkICJDPG3ju3DmR0xCpNg4tJCIqIBsbGwQHB8PIyEjsKCpt1qxZuHLlCvbv34/q1avjxo0bePHiBQYPHozBgwdznqwCuHDhAgRBQNu2bXHw4EGFCbW1tLRgZWUFCwsLEROqnu+//x7nzp1D+fLlUbNmTWhqairs5zDsz/v3ZO/Dhg3DoEGDUKFCBbFjqRwNDQ3Mnj0bv/zyC9TV1eXtmpqaCAsLg4ODg4jpVENBe0lLJBLExMR85TSqb8eOHejbt698FefP6dSpE7y9veWT6xMRFTUWsohKgQMHDuDPP/9EbGxsrnmcbty4IVKqkiE5OZnLSyvp/fv3GDp0KPbu3QtBEKChoYGcnBwMGDAA27dvV/jDjT7t8ePHsLS0ZA+iIjBs2LBP7mfv1s9TU1ODpaUlHB0dP/meZFHw05YsWYLt27fj3bt36N+/P9zc3FCrVi0Wsr7Qy5cvoaamxuJqIeQ3HyMV3v379/HXX3/h0aNHkEgksLW1Rffu3TmvGFEBsZBFVMKtWbMGc+fOxZAhQ7BlyxYMGzYM0dHRCA4OxoQJE7B48WKxI6qMZcuWwdraGn379gUA9O7dGwcPHoS5uTlOnDjBlc2UFB0djdDQUMhkMjg6OqJatWpiR1I5fn5+0NfXR4sWLQAAv//+O7Zs2QIHBwf8/vvvHIZE39TQoUMLVFRlUbBgLly4gG3btuHgwYOoUqUK7t69yzmylJScnIy5c+di3759SEpKAvBhnqJ+/fph8eLFnEe0gPJb7IYKx9PTE/PmzYNMJoOJiQkEQcDLly+hrq6OJUuW4IcffhA7IlGxx0IWUQlXo0YNeHh4oH///gqryMybNw+vX7/GunXrxI6oMmxtbbFr1y40a9YM/v7+6NOnD/bt2yfv7Xb69GmxI1IpU7t2bSxbtgydOnXC7du30aBBA8yYMQMBAQGwt7dnwYCoBEhLS8Pu3bvh4+OD69evo1GjRvjf//6H6dOnix2tWHv9+jWaNm2KZ8+eYeDAgbC3t4cgCIiIiMCePXtQuXJlXL58mQX/AlBTU8OLFy9gbGwsdhSVd+7cObRv3x4///wzpkyZIn//vX79GqtXr8aSJUsQEBCAli1bipyUqHhjIYuohNPT00NERASsrKxgYmICf39/1K1bF/fv30eTJk24SpwSdHV1ERUVhcqVK2PKlCl49+4dNm3ahKioKDRu3Fj+bS/lpswfXCtXrvyKSUoWfX193LlzB9bW1pg/fz7u3LmDAwcO4MaNG+jUqRPi4+PFjlisOTk54ezZszA0NPzscDgOw6bi4Pbt2/D29saePXuQkJAgdpxiberUqTh79izOnDkDU1NThX3x8fFwdnZGu3btsGrVKpESqg41NTV07Njxs3Nkcdjw5/Xt2xflypXDpk2b8tw/evRopKWl4Y8//vjGyYhUC1ctJCrhzMzMkJiYCCsrK1hZWeHq1auoW7cuHj58CNaxlWNoaIgnT56gcuXK8PPzw6JFiwB8WCqZyyR/WmhoaIGO41xPytHS0kJGRgYA4MyZMxg8eDAAoHz58khNTRUzmkro3r27/A+z7t278/1Hxda7d++go6OD2rVrY/Xq1fj111/FjlTsHTlyBJs2bcpVxAI+fDZavnw5xo4dy0JWARkYGEBXV1fsGCovKCgIO3fuzHe/m5ub/Hc5EeWPhSyiEq5t27Y4duwYnJycMGLECEybNg0HDhxASEgIevbsKXY8ldKzZ08MGDAA1apVQ2JiIjp27AgAuHnzJqpWrSpyuuKNy0x/HS1atMD06dPRvHlzBAUFYd++fQCAqKgoVKpUSeR0xd+/V8icP3++eEGI8iCTybB48WJs3LgRL168QFRUlHxqAGtrawwfPlzsiMVaXFwcatasme/+WrVqsdeqEtasWcM5sorAixcvYG1tne9+Gxsbvi+JCkBN7ABE9HVt3rwZc+fOBQCMHTsW27dvh729PRYsWIANGzaInE61rFq1ChMnToSDgwP8/f2hr68P4MOH5fHjx4ucTjU9ffoUz549EzuGylq3bh00NDRw4MABbNiwARUrVgQAnDx5Eq6uriKnUy22trZ5DrVOTk7mKlIkikWLFmH79u1Yvnw5tLS05O21atXCli1bREymGoyMjPDo0aN89z98+JArGBYQe6sWnXfv3in8e/4vTU3NXCuME1FunCOLqAS7du0ajh49ivfv36N9+/ZwdnYWOxIRZDIZFi1ahBUrVuDNmzcAPgxZmDFjBubOnQs1NX7HQt9efqtyvXjxApUrV+YfFvTNVa1aFZs2bUK7du0UFmu5d+8emjZtynkZP2PEiBF48OAB/P39cxUOMjMz4eLigipVqsDb21ukhKqDqxYWHTU1NSxatEj+Zeh/paWlYd68eZyygugzOLSQqIQ6fPgwevfuDR0dHWhoaGDFihVYsWIFpk6dKnY0lbZz505s2rQJMTExuHLlCqysrLB69WrY2Nige/fuYsdTCXPnzoW3tzeWLl2K5s2bQxAEXLp0CfPnz8e7d++wePFisSOqpLdv3+L9+/cKbWXLlhUpjeo4evSo/OdTp05BKpXKH+fk5ODs2bOwsbERIxqVcs+ePctz2LpMJsv1b51yW7BgARo0aIBq1aphwoQJqFGjBgAgPDwc69evR2Zm5ifnKqL/s2TJEly7dg1du3aVt+3YsQMeHh5IT09Hjx49sHbt2s9OBk+ApaXlZ3tUWlpafqM0RCpMIKISqUGDBsKIESOE9+/fC4IgCAsXLhQqVKggcirVtn79esHIyEhYtGiRoKurK0RHRwuCIAg+Pj5C69atRU6nOszNzYW//vorV/uRI0cECwsLERKprjdv3ggTJkwQjI2NBTU1tVwbfZ5EIhEkEomgpqYm//njpqWlJVSvXl04duyY2DGpFKpfv76wc+dOQRAEQV9fX/47Z/78+UKLFi3EjKYyYmJiBFdXV4V/32pqaoKLi4tw//59seOpDBcXF2Hp0qXyx7du3RI0NDSEkSNHCitWrBDMzMwEDw8P8QISUanD8RtEJVRkZCRmzZoFDY0PHS9nzpyJ5ORkvHr1SuRkqmvt2rXYsmUL5s6dC3V1dXl7gwYNcPv2bRGTqZbXr1/Lvxn/txo1auD169ciJFJds2bNQkBAANavXw9tbW1s3boVCxYsgIWFBXbs2CF2PJUgk8kgk8lgaWmJhIQE+WOZTIbMzExERkaiS5cuYsekUsjDwwMTJ07EsmXLIJPJcOjQIYwaNQpLlizBvHnzxI6nEmxsbHDy5Em8evUKV69exdWrV/Hy5Uv4+flxkRYlhIWFoV27dvLHe/fuRePGjbFlyxZMnz4da9aswZ9//iliQtWzY8cOZGZm5mrPysri72+iAmAhi6iEevPmDcqVKyd/rK2tDV1dXaSmpooXSsU9fPgQjo6Oudq1tbWRnp4uQiLVVLduXaxbty5X+7p161C3bl0REqmuY8eOYf369fjf//4HDQ0NfPfdd/jpp5+wZMkS7N69W+x4KuXhw4cwMjJSaEtOThYnDBGArl27Yt++fThx4gQkEgnmzZuHiIgIHDt2DB06dBA7nkoxNDREo0aN0KhRI5QvX17sOConKSkJpqam8scXLlxQWFCkYcOGePLkiRjRVNawYcOQkpKSqz0tLQ3Dhg0TIRGRauEcWUQl2H/ne5HJZDh79izu3Lkjb+vWrZsY0VSSjY0Nbt68CSsrK4X2kydPwt7eXqRUqmf58uXo3Lkzzpw5g6ZNm0IikeDy5ct48uQJTpw4IXY8lfL69Wv5/E1ly5aV92hr0aIFxo0bJ2Y0lbNs2TJYW1ujb9++AIDevXvj4MGDMDc3x4kTJ1hkJVG4uLjAxcVF7BhUypmamuLhw4fyhS9u3LiBBQsWyPenpaVBU1NTxISqRxCEPFeDfPr0qcJndyLKGwtZRCXYkCFDcrWNGTNG/rNEIuGqKEqYOXMmJkyYgHfv3kEQBAQFBeGPP/7AkiVLuOqRElq1aoWoqCj8/vvvuHfvHgRBQM+ePTF+/HhYWFiIHU+l2Nra4tGjR7CysoKDgwP+/PNPNGrUCMeOHVPokUmft2nTJuzatQsA4O/vjzNnzsDPzw9//vknZs6cidOnT4uckEqbJ0+eQCKRoFKlSgCAoKAg7NmzBw4ODhg9erTI6ag0cXV1xZw5c7Bs2TIcOXIEenp6+O677+T7b926hSpVqoiYUHU4OjpCIpFAIpGgXbt28ilAgA8LjDx8+FChtxsR5Y2FLKISSiaTiR2hxBk2bBiys7Mxa9YsZGRkYMCAAahYsSLWrl2r8IGOPs/CwoKrE36BmJgYWFtbY9iwYQgLC0OrVq3g7u6Ozp07Y+3atcjOzsbKlSvFjqlS4uLiULlyZQDA8ePH0adPHzg7O8Pa2hqNGzcWOR2VRgMGDMDo0aPh5uaG+Ph4tG/fHrVq1cKuXbsQHx/PebLom1m0aBF69uyJVq1aQV9fH76+vtDS0pLv37ZtG5ydnUVMqDp69OgBALh58yZcXFygr68v36elpQVra2v06tVLpHREqkMiCIIgdggi+nr++ecfNGvWTOEbH+DDtz6XLl1Cy5YtRUqm2l69egWZTIacnBwsWbIEW7duxdu3b8WOpTKSk5MRFBQkn1z73wYPHixSKtWhrq6OuLg4mJiYAAD69u2LNWvWIDMzEyEhIahSpQqHwinJwsICBw4cQLNmzWBnZ4dFixahd+/eiIyMRMOGDTm/IH1zhoaGuHr1Kuzs7LBmzRrs27cPly5dwunTpzF27FjExMSIHZFKmZSUFOjr6ysseAN8GOaur6+vUNyi/OXk5GDnzp1wcXGBubm52HGIVBJ7ZBGVcG3atFH4g/ej5ORktGnThkMLCyA5ORkTJkzA6dOnoampiTlz5mDixIlYsGABvLy84ODggG3btokdU2UcO3YMAwcORHp6OgwMDBTmiJBIJCxkFcB/v4M6ceIEPD09YWtrC0tLS5FSqbaePXtiwIABqFatGhITE9GxY0cAH7415+pmJIb3799DW1sbAHDmzBn5nJY1atRAXFycmNGolMpv7iZOoK8cdXV1jB07FhEREWJHIVJZXLWQqITLbzLJxMRElClTRoREqufHH3/EP//8gyFDhqB8+fKYNm0aunTpgosXL+LEiRMIDg5G//79xY6pMmbMmIHhw4cjLS0NycnJSEpKkm8fJysn+tZWrVqFiRMnwsHBAf7+/vLhHnFxcRg/frzI6ag0qlmzJjZu3IiLFy/C399fPm/O8+fPUaFCBZHTEdGXqF27NntVEn0BDi0kKqF69uwJAPjrr7/g6uoq/1YX+NCl+datW7Czs4Ofn59YEVWGlZUVvL290b59e8TExKBq1aqYPHkyVq9eLXY0lVSmTBncvn0btra2YkdRWerq6oiPj4exsTEAwMDAALdu3ZKvYEhEqu/8+fP4/vvvkZqaiiFDhsh7/v7444+4d+8eDh06JHJCIiqs06dPY/bs2Vi4cCHq16+f68vlsmXLipSMSDVwaCFRCfWx+7cgCDAwMICurq58n5aWFpo0aYJRo0aJFU+lPH/+HA4ODgA+rBKno6ODkSNHipxKdbm4uCAkJISFrC8gCAKGDh0qL1C/e/cOY8eOzfVBmH/oKmfnzp3YtGkTYmJicOXKFVhZWWH16tWwsbFB9+7dxY5HpUzr1q3x6tUrpKamwtDQUN4+evRo6OnpiZiMiL7Uxx6W3bp1Uxg58XEkBaf+IPo0FrKISigfHx8AgLW1NX744QcOI/wCMpkMmpqa8sfq6up8PZV09OhR+c+dO3fGzJkzER4ejtq1ayu8tgDk88BQ/oYMGaLweNCgQSIlKTk2bNiAefPmYerUqVi8eLH8j4hy5cph9erVLGSRKNTV1RWKWMCH3+tEpNrOnTsndgQilcahhUQl3Nu3byEIgvzb28ePH+Pw4cNwcHDgUskFpKamho4dO8p7vxw7dgxt27Zl7xclqKkVbEpGfgtJYnFwcMCSJUvQo0cPGBgYICwsDLa2trhz5468ZwzR1+bk5ISzZ8/C0NAQjo6Oec5x+dGNGze+YTIiIqLigz2yiEq47t27o2fPnhg7diySk5PRqFEjaGlp4dWrV1i5ciXGjRsndsRij71fvpxMJhM7AtEnPXz4EI6OjrnatbW1kZ6eLkIiKo26d+8u/9KkR48e4oYhoq8uIyMDsbGxyMrKUmivU6eOSImIVAMLWUQl3I0bN7Bq1SoAwIEDB2BmZobQ0FAcPHgQ8+bNYyGrAD4O06QvExAQgIkTJ+Lq1au5JjFNSUlBs2bNsHHjRnz33XciJaTSzMbGBjdv3oSVlZVC+8mTJ2Fvby9SKiptPDw88vyZiEqWly9fYtiwYTh58mSe+9k7nejTCjbWg4hUVkZGBgwMDAB8WCGlZ8+eUFNTQ5MmTfD48WOR01Fpsnr1aowaNSrPlXikUinGjBmDlStXipCMCJg5cyYmTJiAffv2QRAEBAUFYfHixXB3d8esWbPEjkelUHBwMK5du5ar/dq1awgJCREhEREVlalTpyIpKQlXr16Frq4u/Pz84Ovri2rVqinMK0pEeWMhi6iEq1q1Ko4cOYInT57g1KlT8nmxEhISuLQvfVNhYWHyVXry4uzsjOvXr3/DRET/Z9iwYfDw8MCsWbOQkZGBAQMGYOPGjVi7di17CZIoJkyYgCdPnuRqf/bsGSZMmCBCIiIqKgEBAVi1ahUaNmwINTU1WFlZYdCgQVi+fDk8PT3FjkdU7LGQRVTCzZs3Dz/88AOsra3RqFEjNG3aFMCH3ll5zQdD9LW8ePEi1wqF/6ahoYGXL19+w0REikaNGoXHjx8jISEB8fHxCAoKQmhoKKpWrSp2NCqFwsPD4eTklKvd0dER4eHhIiQioqKSnp4OExMTAED58uXln39q167NhRyICoCFLKIS7n//+x9iY2MREhKCU6dOydvbtWsnnzuL6FuoWLEibt++ne/+W7duwdzc/BsmIgKSk5MxcOBAGBsbw8LCAmvWrEH58uXx+++/o2rVqrh69Sq2bdsmdkwqhbS1tfHixYtc7XFxcdDQ4DS3RKrMzs4OkZGRAIB69eph06ZNePbsGTZu3MjPQkQFIBEEQRA7BBF9fQ8ePEB0dDRatmwJXV1dCILwyWW9iYrapEmTcP78eQQHB0NHR0dh39u3b9GoUSO0adMGa9asESkhlUbjx4/HsWPH0LdvX/j5+SEiIgIuLi549+4dPDw80KpVK7EjUinVr18/xMfH46+//oJUKgXwofDao0cPmJiY4M8//xQ5IREV1u7du/H+/XsMHToUoaGhcHFxQWJiIrS0tLB9+3b07dtX7IhExRoLWUQlXGJiIvr06YNz585BIpHg/v37sLW1xYgRI1CuXDmsWLFC7IhUSrx48QJOTk5QV1fHxIkTYWdnB4lEgoiICPz+++/IycnBjRs3YGpqKnZUKkWsrKzg7e2N9u3bIyYmBlWrVsXkyZOxevVqsaNRKff06VO0atUKiYmJ8qkAbt68CVNTU/j7+6Ny5coiJySiopKRkYF79+7B0tISRkZGYschKvZYyCIq4QYPHoyEhARs3boV9vb2CAsLg62tLU6fPo1p06bh7t27YkekUuTx48cYN24cTp06hY+/fiQSCVxcXLB+/XpYW1uLG5BKHU1NTTx+/BgWFhYAAD09PQQFBaFWrVoiJyP6MI/O7t27ERYWBl1dXdSpUwf9+/f/5HyDRKQ6srKy8PDhQ1SpUoVDhomUwH8tRCXc6dOncerUKVSqVEmhvVq1anj8+LFIqai0srKywokTJ5CUlIQHDx5AEARUq1YNhoaGYkejUkomkykUBdTV1VGmTBkRExEB79+/h52dHY4fP47Ro0eLHYeIilhGRgYmTZoEX19fAEBUVBRsbW0xefJkWFhYYM6cOSInJCreWMgiKuHS09Ohp6eXq/3Vq1fQ1tYWIRERYGhoiIYNG4odgwiCIGDo0KHy/x++e/cOY8eOzVXMOnTokBjxqJTS1NREZmYm57IkKqHc3d0RFhaG8+fPw9XVVd7evn17eHh4sJBF9BlctZCohGvZsiV27NghfyyRSCCTyfDrr7+iTZs2IiYjIhLfkCFDYGJiAqlUCqlUikGDBsHCwkL++ONG9K1NmjQJy5YtQ3Z2tthRiKiIHTlyBOvWrUOLFi0UCtYODg6Ijo4WMRmRamCPLKIS7tdff0Xr1q0REhKCrKwszJo1C3fv3sXr169x6dIlseMREYnKx8dH7AhEebp27RrOnj2L06dPo3bt2uwlSFSCvHz5EiYmJrna09PT2ROTqABYyCIq4RwcHHDr1i1s2LAB6urqSE9PR8+ePTFhwgSYm5uLHY+IiIjyUK5cOfTq1UvsGET0FTRs2BB///03Jk2aBADy4tWWLVvQtGlTMaMRqQSuWkhERERERET0jVy+fBmurq4YOHAgtm/fjjFjxuDu3bu4cuUKLly4gPr164sdkahYYyGLqBRITk5GUFAQEhISIJPJFPYNHjxYpFRERET0KdnZ2Th//jyio6MxYMAAGBgY4Pnz5yhbtiz09fXFjkdEX+D27dvw8vLC9evXIZPJ4OTkhNmzZ6N27dpiRyMq9ljIIirhjh07hoEDByI9PR0GBgYK4+4lEglev34tYjoiIiLKy+PHj+Hq6orY2FhkZmYiKioKtra2mDp1Kt69e4eNGzeKHZGIlJSamlqg48qWLfuVkxCpNhayiEq46tWro1OnTliyZAn09PTEjkNEREQF0KNHDxgYGMDb2xsVKlRAWFgYbG1tceHCBYwcORL3798XOyIRKUlNTe2Tk7kLggCJRIKcnJxvmIpI9XCyd6IS7tmzZ5g8eTKLWERERCokMDAQly5dgpaWlkK7lZUVnj17JlIqIvoS586dk/8sCAI6deqErVu3omLFiiKmIlI9LGQRlXAuLi4ICQmBra2t2FGIiIiogGQyWZ69Mp4+fQoDAwMREhHRl2rVqpXCY3V1dTRp0oSf04mUxEIWUQl09OhR+c+dO3fGzJkzER4ejtq1a0NTU1Ph2G7dun3reERERPQZHTp0wOrVq7F582YAH+a1fPPmDTw8PNCpUyeR0xEREYmHc2QRlUBqamoFOo5j8ImIiIqn58+fo02bNlBXV8f9+/fRoEED3L9/H0ZGRvjnn39gYmIidkQi+kIGBgby+e+IqOBYyCIiIiIiKobevn2LvXv34vr165DJZHBycsLAgQOhq6srdjQiKgIGBga4desWbGxsxI5CpFJYyCIqoQICAjBx4kRcvXo11xK+KSkpaNasGTZu3IjvvvtOpIRERESUnxcvXsDU1DTPfbdu3UKdOnW+cSIi+lI9e/ZUeHzs2DG0bdsWZcqUUWg/dOjQt4xFpHIKNv6IiFTO6tWrMWrUqFxFLACQSqUYM2YMVq5cKUIyIiIi+pzatWsrzHn5kZeXFxo3bixCIiL6UlKpVGEbNGgQLCwscrUT0aexRxZRCWVlZQU/Pz/Y29vnuf/evXtwdnZGbGzsN05GREREn7NixQr89NNPGDJkCFatWoXXr1/Dzc0Nd+/exZYtW7hYCxERlVrskUVUQr148SLXCoX/pqGhgZcvX37DRERERFRQM2bMwNWrV3Hp0iXUqVMHderUga6uLm7dusUiFhERlWosZBGVUBUrVsTt27fz3X/r1i2Ym5t/w0RERESkDFtbW9SsWROPHj1Camoq+vTpk++8WURERKUFC1lEJVSnTp0wb948vHv3Lte+t2/fwsPDA126dBEhGREREX3Ox55YDx48wK1bt7BhwwZMmjQJffr0QVJSktjxiIiIRMM5sohKqBcvXsDJyQnq6uqYOHEi7OzsIJFIEBERgd9//x05OTm4ceMGv9klIiIqhrS1tTFt2jQsXLhQPlVAdHQ03NzcEBsbi6dPn4qckIiISBwsZBGVYI8fP8a4ceNw6tQpfPynLpFI4OLigvXr18Pa2lrcgERERJSnCxcuoFWrVrnaZTIZFi9ejJ9//lmEVEREROJjIYuoFEhKSsKDBw8gCAKqVasGQ0NDsSMRERFRHjp16oQ//vgDUqkUALB48WJMmDAB5cqVAwAkJibiu+++Q3h4uIgpiYiIxMNCFhERERFRMaGuro64uDiYmJgAAMqWLYubN2/C1tYWwIepAywsLJCTkyNmTCIiItFwsnciIiIiomLiv98x8ztnIiIiRSxkERERERERERGRSmAhi4iIiIiomJBIJJBIJLnaiIiI6AMNsQMQEREREdEHgiBg6NCh0NbWBgC8e/cOY8eORZkyZQAAmZmZYsYjIiISHSd7JyIiIiIqJoYNG1ag43x8fL5yEiIiouKJhSwiIiIiIiIiIlIJnCOLiIiIiIiIiIhUAgtZRERERERERESkEljIIiIiIiIiIiIilcBCFhERERERERERqQQWsoiIiIiIiIiISCWwkEVERERERERERCqBhSwiIiIiIiIiIlIJ/w+Yja6qDn5L+QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### visualize in the heatmap\n", "plt.figure(figsize = (16,8))\n", "sns.heatmap(data.isna(),cmap='BrBG')" ] }, { "cell_type": "code", "execution_count": 8, "id": "88eee4d5-03fa-4bee-bd8e-7233d215499b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeSexChestPainTypeRestingBPCholesterolFastingBSRestingECGMaxHRExerciseAnginaOldpeakST_SlopeHeartDisease
040MATA1402890Normal172N0.0Up0
149FNAP1601800Normal156N1.0Flat1
237MATA1302830ST98N0.0Up0
348FASY1382140Normal108Y1.5Flat1
454MNAP1501950Normal122N0.0Up0
\n", "
" ], "text/plain": [ " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n", "0 40 M ATA 140 289 0 Normal 172 \n", "1 49 F NAP 160 180 0 Normal 156 \n", "2 37 M ATA 130 283 0 ST 98 \n", "3 48 F ASY 138 214 0 Normal 108 \n", "4 54 M NAP 150 195 0 Normal 122 \n", "\n", " ExerciseAngina Oldpeak ST_Slope HeartDisease \n", "0 N 0.0 Up 0 \n", "1 N 1.0 Flat 1 \n", "2 N 0.0 Up 0 \n", "3 Y 1.5 Flat 1 \n", "4 N 0.0 Up 0 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "677f1259-f567-4629-8924-a15277bdefed", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "e107b348-5817-42d9-bbb6-5c4c5afcffe3", "metadata": {}, "source": [ "## Data analysis\n" ] }, { "cell_type": "code", "execution_count": 9, "id": "66174ff8-73c5-4a6c-bb61-4cd7beb1f308", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sex\n", "M 725\n", "F 193\n", "Name: count, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Sex'].value_counts()" ] }, { "cell_type": "code", "execution_count": 10, "id": "0d25c72c-aaf6-482f-b703-21c9ddffcd4f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKnCAYAAAB9MFj8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0FklEQVR4nO3de5DddX3/8deSyxJCspILe9iyYCiptwSFQClRSSAXpCAqDsGCChIUDMauJIRGxjY6dtPAcOmYlhYEwmUwnVGDVhGTqEQjUkO8AVq8pRJK1qAsuwksuzGc3x+W83OTACGGz4nh8Zj5znA+3885+/7yV+Y53/M9DdVqtRoAAAAAgJfYPvUeAAAAAAB4eRAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKGJgvQfYEzzzzDN59NFHM2zYsDQ0NNR7HAAAAAD4k1KtVrNp06a0tLRkn32e+/5HMTLJo48+mtbW1nqPAQAAAAB/0tavX5+DDz74Oc+LkUmGDRuW5Pf/s4YPH17naQAAAADgT0t3d3daW1trne25iJFJ7avZw4cPFyMBAAAAYBe90CMQ/YANAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFDGw3gNQXxMuuaXeIwAAL9LaK95b7xEAAGCXuDMSAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAi6hojX/nKV6ahoWG746KLLkqSVKvVLFiwIC0tLRkyZEgmT56cBx98sN9n9Pb2Zvbs2Rk1alSGDh2a0047LY888kg9LgcAAAAAeB51jZFr1qzJhg0baseKFSuSJGeccUaS5PLLL89VV12VxYsXZ82aNalUKpk2bVo2bdpU+4y2trYsW7YsS5cuzerVq7N58+aceuqp2bp1a12uCQAAAADYsbrGyNGjR6dSqdSOL33pS/nzP//zTJo0KdVqNddcc00uu+yynH766Rk3blxuvvnmPPXUU7n99tuTJF1dXbnhhhty5ZVXZurUqTnyyCNz22235f7778/KlSvreWkAAAAAwDb2mGdG9vX15bbbbst5552XhoaGrFu3Lh0dHZk+fXptT2NjYyZNmpR77rknSbJ27dps2bKl356WlpaMGzeutmdHent7093d3e8AAAAAAF5ae0yMvOOOO/LEE0/k3HPPTZJ0dHQkSZqbm/vta25urp3r6OjI4MGDc8ABBzznnh1ZuHBhmpqaakdra+tuvBIAAAAAYEf2mBh5ww035OSTT05LS0u/9YaGhn6vq9XqdmvbeqE98+fPT1dXV+1Yv379rg8OAAAAAOyUPSJG/upXv8rKlStz/vnn19YqlUqSbHeH48aNG2t3S1YqlfT19aWzs/M59+xIY2Njhg8f3u8AAAAAAF5ae0SMvOmmm3LggQfmlFNOqa2NGTMmlUql9gvbye+fK7lq1apMnDgxSTJhwoQMGjSo354NGzbkgQceqO0BAAAAAPYMA+s9wDPPPJObbrop55xzTgYO/P/jNDQ0pK2tLe3t7Rk7dmzGjh2b9vb27LfffjnrrLOSJE1NTZk5c2bmzJmTkSNHZsSIEZk7d27Gjx+fqVOn1uuSAAAAAIAdqHuMXLlyZR5++OGcd955252bN29eenp6MmvWrHR2dubYY4/N8uXLM2zYsNqeq6++OgMHDsyMGTPS09OTKVOmZMmSJRkwYEDJywAAAAAAXkBDtVqt1nuIeuvu7k5TU1O6urpeds+PnHDJLfUeAQB4kdZe8d56jwAAAP3sbF/bI54ZCQAAAADs/cRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoIi6x8j//d//zbvf/e6MHDky++23X97whjdk7dq1tfPVajULFixIS0tLhgwZksmTJ+fBBx/s9xm9vb2ZPXt2Ro0alaFDh+a0007LI488UvpSAAAAAIDnUdcY2dnZmTe+8Y0ZNGhQvvKVr+THP/5xrrzyyrziFa+o7bn88stz1VVXZfHixVmzZk0qlUqmTZuWTZs21fa0tbVl2bJlWbp0aVavXp3Nmzfn1FNPzdatW+twVQAAAADAjgys5x9ftGhRWltbc9NNN9XWXvnKV9b+u1qt5pprrslll12W008/PUly8803p7m5ObfffnsuuOCCdHV15YYbbsitt96aqVOnJkluu+22tLa2ZuXKlTnppJOKXhMAAAAAsGN1vTPyi1/8Yo4++uicccYZOfDAA3PkkUfm+uuvr51ft25dOjo6Mn369NpaY2NjJk2alHvuuSdJsnbt2mzZsqXfnpaWlowbN662Z1u9vb3p7u7udwAAAAAAL626xshf/vKXufbaazN27Nh89atfzYUXXpgPf/jDueWWW5IkHR0dSZLm5uZ+72tubq6d6+joyODBg3PAAQc8555tLVy4ME1NTbWjtbV1d18aAAAAALCNusbIZ555JkcddVTa29tz5JFH5oILLsj73//+XHvttf32NTQ09HtdrVa3W9vW8+2ZP39+urq6asf69ev/uAsBAAAAAF5QXWPkQQcdlNe+9rX91l7zmtfk4YcfTpJUKpUk2e4Ox40bN9bulqxUKunr60tnZ+dz7tlWY2Njhg8f3u8AAAAAAF5adY2Rb3zjG/PQQw/1W/vpT3+aQw89NEkyZsyYVCqVrFixona+r68vq1atysSJE5MkEyZMyKBBg/rt2bBhQx544IHaHgAAAACg/ur6a9of+chHMnHixLS3t2fGjBn57ne/m+uuuy7XXXddkt9/PbutrS3t7e0ZO3Zsxo4dm/b29uy3334566yzkiRNTU2ZOXNm5syZk5EjR2bEiBGZO3duxo8fX/t1bQAAAACg/uoaI4855pgsW7Ys8+fPzyc+8YmMGTMm11xzTc4+++zannnz5qWnpyezZs1KZ2dnjj322CxfvjzDhg2r7bn66qszcODAzJgxIz09PZkyZUqWLFmSAQMG1OOyAAAAAIAdaKhWq9V6D1Fv3d3daWpqSldX18vu+ZETLrml3iMAAC/S2iveW+8RAACgn53ta3V9ZiQAAAAA8PIhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABF1DVGLliwIA0NDf2OSqVSO1+tVrNgwYK0tLRkyJAhmTx5ch588MF+n9Hb25vZs2dn1KhRGTp0aE477bQ88sgjpS8FAAAAAHgBdb8z8nWve102bNhQO+6///7aucsvvzxXXXVVFi9enDVr1qRSqWTatGnZtGlTbU9bW1uWLVuWpUuXZvXq1dm8eXNOPfXUbN26tR6XAwAAAAA8h4F1H2DgwH53Qz6rWq3mmmuuyWWXXZbTTz89SXLzzTenubk5t99+ey644IJ0dXXlhhtuyK233pqpU6cmSW677ba0trZm5cqVOemkk4peCwAAAADw3Op+Z+TPfvaztLS0ZMyYMXnXu96VX/7yl0mSdevWpaOjI9OnT6/tbWxszKRJk3LPPfckSdauXZstW7b029PS0pJx48bV9uxIb29vuru7+x0AAAAAwEurrjHy2GOPzS233JKvfvWruf7669PR0ZGJEyfmt7/9bTo6OpIkzc3N/d7T3NxcO9fR0ZHBgwfngAMOeM49O7Jw4cI0NTXVjtbW1t18ZQAAAADAtuoaI08++eS8853vzPjx4zN16tR8+ctfTvL7r2M/q6Ghod97qtXqdmvbeqE98+fPT1dXV+1Yv379H3EVAAAAAMDOqPvXtP/Q0KFDM378+PzsZz+rPUdy2zscN27cWLtbslKppK+vL52dnc+5Z0caGxszfPjwfgcAAAAA8NLao2Jkb29vfvKTn+Sggw7KmDFjUqlUsmLFitr5vr6+rFq1KhMnTkySTJgwIYMGDeq3Z8OGDXnggQdqewAAAACAPUNdf0177ty5eetb35pDDjkkGzduzCc/+cl0d3fnnHPOSUNDQ9ra2tLe3p6xY8dm7NixaW9vz3777ZezzjorSdLU1JSZM2dmzpw5GTlyZEaMGJG5c+fWvvYNAAAAAOw56hojH3nkkfzN3/xNfvOb32T06NH5q7/6q9x777059NBDkyTz5s1LT09PZs2alc7Ozhx77LFZvnx5hg0bVvuMq6++OgMHDsyMGTPS09OTKVOmZMmSJRkwYEC9LgsAAAAA2IGGarVarfcQ9dbd3Z2mpqZ0dXW97J4fOeGSW+o9AgDwIq294r31HgEAAPrZ2b62Rz0zEgAAAADYe4mRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBF7TIxcuHBhGhoa0tbWVlurVqtZsGBBWlpaMmTIkEyePDkPPvhgv/f19vZm9uzZGTVqVIYOHZrTTjstjzzySOHpAQAAAIAXskfEyDVr1uS6667LEUcc0W/98ssvz1VXXZXFixdnzZo1qVQqmTZtWjZt2lTb09bWlmXLlmXp0qVZvXp1Nm/enFNPPTVbt24tfRkAAAAAwPOoe4zcvHlzzj777Fx//fU54IADauvVajXXXHNNLrvsspx++ukZN25cbr755jz11FO5/fbbkyRdXV254YYbcuWVV2bq1Kk58sgjc9ttt+X+++/PypUr63VJAAAAAMAO7FKMPPHEE/PEE09st97d3Z0TTzzxRX3WRRddlFNOOSVTp07tt75u3bp0dHRk+vTptbXGxsZMmjQp99xzT5Jk7dq12bJlS789LS0tGTduXG3PjvT29qa7u7vfAQAAAAC8tAbuypvuvvvu9PX1bbf+9NNP51vf+tZOf87SpUvzve99L2vWrNnuXEdHR5Kkubm533pzc3N+9atf1fYMHjy43x2Vz+559v07snDhwnz84x/f6TkBAAAAgD/ei4qRP/rRj2r//eMf/7hf8Nu6dWvuuuuu/Nmf/dlOfdb69evzt3/7t1m+fHn23Xff59zX0NDQ73W1Wt1ubVsvtGf+/Pm5+OKLa6+7u7vT2tq6U3MDAAAAALvmRcXIN7zhDWloaEhDQ8MOv449ZMiQfOpTn9qpz1q7dm02btyYCRMm1Na2bt2ab37zm1m8eHEeeuihJL+/+/Gggw6q7dm4cWPtbslKpZK+vr50dnb2uzty48aNmThx4nP+7cbGxjQ2Nu7UnAAAAADA7vGiYuS6detSrVZz2GGH5bvf/W5Gjx5dOzd48OAceOCBGTBgwE591pQpU3L//ff3W3vf+96XV7/61bn00ktz2GGHpVKpZMWKFTnyyCOTJH19fVm1alUWLVqUJJkwYUIGDRqUFStWZMaMGUmSDRs25IEHHsjll1/+Yi4NAAAAAHiJvagYeeihhyZJnnnmmT/6Dw8bNizjxo3rtzZ06NCMHDmytt7W1pb29vaMHTs2Y8eOTXt7e/bbb7+cddZZSZKmpqbMnDkzc+bMyciRIzNixIjMnTs348eP3+4HcQAAAACA+tqlH7BJkp/+9Ke5++67s3Hjxu3i5N///d//0YMlybx589LT05NZs2als7Mzxx57bJYvX55hw4bV9lx99dUZOHBgZsyYkZ6enkyZMiVLlizZ6Ts0AQAAAIAyGqrVavXFvun666/PBz/4wYwaNSqVSqXfj8U0NDTke9/73m4d8qXW3d2dpqamdHV1Zfjw4fUep6gJl9xS7xEAgBdp7RXvrfcIAADQz872tV26M/KTn/xk/vEf/zGXXnrpLg8IAAAAALy87LMrb+rs7MwZZ5yxu2cBAAAAAPZiuxQjzzjjjCxfvnx3zwIAAAAA7MV26Wvahx9+eD72sY/l3nvvzfjx4zNo0KB+5z/84Q/vluEAAAAAgL3HLsXI6667Lvvvv39WrVqVVatW9TvX0NAgRgIAAAAA29mlGLlu3brdPQcAAAAAsJfbpWdGAgAAAAC8WLt0Z+R55533vOdvvPHGXRoGAAAAANh77VKM7Ozs7Pd6y5YteeCBB/LEE0/kxBNP3C2DAQAAAAB7l12KkcuWLdtu7ZlnnsmsWbNy2GGH/dFDAQAAAAB7n932zMh99tknH/nIR3L11Vfvro8EAAAAAPYiu/UHbH7xi1/kd7/73e78SAAAAABgL7FLX9O++OKL+72uVqvZsGFDvvzlL+ecc87ZLYMBAAAAAHuXXYqR3//+9/u93meffTJ69OhceeWVL/hL2wAAAADAy9MuxchvfOMbu3sOAAAAAGAvt0sx8lmPPfZYHnrooTQ0NOQv/uIvMnr06N01FwAAAACwl9mlH7B58sknc9555+Wggw7K8ccfnze/+c1paWnJzJkz89RTT+3uGQEAAACAvcAuxciLL744q1atyn/+53/miSeeyBNPPJEvfOELWbVqVebMmbO7ZwQAAAAA9gK79DXtz33uc/nsZz+byZMn19b++q//OkOGDMmMGTNy7bXX7q75AAAAAIC9xC7dGfnUU0+lubl5u/UDDzzQ17QBAAAAgB3apRh53HHH5R/+4R/y9NNP19Z6enry8Y9/PMcdd9xuGw4AAAAA2Hvs0te0r7nmmpx88sk5+OCD8/rXvz4NDQ35wQ9+kMbGxixfvnx3zwgAAAAA7AV2KUaOHz8+P/vZz3Lbbbflv//7v1OtVvOud70rZ599doYMGbK7ZwQAAAAA9gK7FCMXLlyY5ubmvP/97++3fuONN+axxx7LpZdeuluGAwAAAAD2Hrv0zMh///d/z6tf/ert1l/3utfl3/7t3/7ooQAAAACAvc8uxciOjo4cdNBB262PHj06GzZs+KOHAgAAAAD2PrsUI1tbW/Ptb397u/Vvf/vbaWlp+aOHAgAAAAD2Prv0zMjzzz8/bW1t2bJlS0488cQkyde+9rXMmzcvc+bM2a0DAgAAAAB7h12KkfPmzcvjjz+eWbNmpa+vL0my77775tJLL838+fN364AAAAAAwN5hl2JkQ0NDFi1alI997GP5yU9+kiFDhmTs2LFpbGzc3fMBAAAAAHuJXYqRz9p///1zzDHH7K5ZAAAAAIC92C79gA0AAAAAwIslRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARdY2R1157bY444ogMHz48w4cPz3HHHZevfOUrtfPVajULFixIS0tLhgwZksmTJ+fBBx/s9xm9vb2ZPXt2Ro0alaFDh+a0007LI488UvpSAAAAAIAXUNcYefDBB+ef/umfct999+W+++7LiSeemLe97W214Hj55ZfnqquuyuLFi7NmzZpUKpVMmzYtmzZtqn1GW1tbli1blqVLl2b16tXZvHlzTj311GzdurVelwUAAAAA7EBDtVqt1nuIPzRixIhcccUVOe+889LS0pK2trZceumlSX5/F2Rzc3MWLVqUCy64IF1dXRk9enRuvfXWnHnmmUmSRx99NK2trbnzzjtz0kkn7dTf7O7uTlNTU7q6ujJ8+PCX7Nr2RBMuuaXeIwAAL9LaK95b7xEAAKCfne1re8wzI7du3ZqlS5fmySefzHHHHZd169alo6Mj06dPr+1pbGzMpEmTcs899yRJ1q5dmy1btvTb09LSknHjxtX27Ehvb2+6u7v7HQAAAADAS6vuMfL+++/P/vvvn8bGxlx44YVZtmxZXvva16ajoyNJ0tzc3G9/c3Nz7VxHR0cGDx6cAw444Dn37MjChQvT1NRUO1pbW3fzVQEAAAAA26p7jHzVq16VH/zgB7n33nvzwQ9+MOecc05+/OMf1843NDT021+tVrdb29YL7Zk/f366urpqx/r16/+4iwAAAAAAXlDdY+TgwYNz+OGH5+ijj87ChQvz+te/Pv/8z/+cSqWSJNvd4bhx48ba3ZKVSiV9fX3p7Ox8zj070tjYWPsF72cPAAAAAOClVfcYua1qtZre3t6MGTMmlUolK1asqJ3r6+vLqlWrMnHixCTJhAkTMmjQoH57NmzYkAceeKC2BwAAAADYMwys5x//6Ec/mpNPPjmtra3ZtGlTli5dmrvvvjt33XVXGhoa0tbWlvb29owdOzZjx45Ne3t79ttvv5x11llJkqampsycOTNz5szJyJEjM2LEiMydOzfjx4/P1KlT63lpAAAAAMA26hojf/3rX+c973lPNmzYkKamphxxxBG56667Mm3atCTJvHnz0tPTk1mzZqWzszPHHntsli9fnmHDhtU+4+qrr87AgQMzY8aM9PT0ZMqUKVmyZEkGDBhQr8sCAAAAAHagoVqtVus9RL11d3enqakpXV1dL7vnR0645JZ6jwAAvEhrr3hvvUcAAIB+drav7XHPjAQAAAAA9k5iJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFBEXWPkwoULc8wxx2TYsGE58MAD8/a3vz0PPfRQvz3VajULFixIS0tLhgwZksmTJ+fBBx/st6e3tzezZ8/OqFGjMnTo0Jx22ml55JFHSl4KAAAAAPAC6hojV61alYsuuij33ntvVqxYkd/97neZPn16nnzyydqeyy+/PFdddVUWL16cNWvWpFKpZNq0adm0aVNtT1tbW5YtW5alS5dm9erV2bx5c0499dRs3bq1HpcFAAAAAOxAQ7VardZ7iGc99thjOfDAA7Nq1aocf/zxqVaraWlpSVtbWy699NIkv78Lsrm5OYsWLcoFF1yQrq6ujB49OrfeemvOPPPMJMmjjz6a1tbW3HnnnTnppJNe8O92d3enqakpXV1dGT58+Et6jXuaCZfcUu8RAIAXae0V7633CAAA0M/O9rU96pmRXV1dSZIRI0YkSdatW5eOjo5Mnz69tqexsTGTJk3KPffckyRZu3ZttmzZ0m9PS0tLxo0bV9uzrd7e3nR3d/c7AAAAAICX1h4TI6vVai6++OK86U1vyrhx45IkHR0dSZLm5uZ+e5ubm2vnOjo6Mnjw4BxwwAHPuWdbCxcuTFNTU+1obW3d3ZcDAAAAAGxjj4mRH/rQh/KjH/0on/nMZ7Y719DQ0O91tVrdbm1bz7dn/vz56erqqh3r16/f9cEBAAAAgJ2yR8TI2bNn54tf/GK+8Y1v5OCDD66tVyqVJNnuDseNGzfW7pasVCrp6+tLZ2fnc+7ZVmNjY4YPH97vAAAAAABeWnWNkdVqNR/60Ify+c9/Pl//+tczZsyYfufHjBmTSqWSFStW1Nb6+vqyatWqTJw4MUkyYcKEDBo0qN+eDRs25IEHHqjtAQAAAADqb2A9//hFF12U22+/PV/4whcybNiw2h2QTU1NGTJkSBoaGtLW1pb29vaMHTs2Y8eOTXt7e/bbb7+cddZZtb0zZ87MnDlzMnLkyIwYMSJz587N+PHjM3Xq1HpeHgAAAADwB+oaI6+99tokyeTJk/ut33TTTTn33HOTJPPmzUtPT09mzZqVzs7OHHvssVm+fHmGDRtW23/11Vdn4MCBmTFjRnp6ejJlypQsWbIkAwYMKHUpAAAAAMALaKhWq9V6D1Fv3d3daWpqSldX18vu+ZETLrml3iMAAC/S2iveW+8RKOjhT4yv9wgAwIt0yN/fX+8RitvZvrZH/IANAAAAALD3EyMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIuoaI7/5zW/mrW99a1paWtLQ0JA77rij3/lqtZoFCxakpaUlQ4YMyeTJk/Pggw/229Pb25vZs2dn1KhRGTp0aE477bQ88sgjBa8CAAAAANgZdY2RTz75ZF7/+tdn8eLFOzx/+eWX56qrrsrixYuzZs2aVCqVTJs2LZs2bartaWtry7Jly7J06dKsXr06mzdvzqmnnpqtW7eWugwAAAAAYCcMrOcfP/nkk3PyySfv8Fy1Ws0111yTyy67LKeffnqS5Oabb05zc3Nuv/32XHDBBenq6soNN9yQW2+9NVOnTk2S3HbbbWltbc3KlStz0kknFbsWAAAAAOD57bHPjFy3bl06Ojoyffr02lpjY2MmTZqUe+65J0mydu3abNmypd+elpaWjBs3rrZnR3p7e9Pd3d3vAAAAAABeWntsjOzo6EiSNDc391tvbm6unevo6MjgwYNzwAEHPOeeHVm4cGGamppqR2tr626eHgAAAADY1h4bI5/V0NDQ73W1Wt1ubVsvtGf+/Pnp6uqqHevXr98tswIAAAAAz22PjZGVSiVJtrvDcePGjbW7JSuVSvr6+tLZ2fmce3aksbExw4cP73cAAAAAAC+tPTZGjhkzJpVKJStWrKit9fX1ZdWqVZk4cWKSZMKECRk0aFC/PRs2bMgDDzxQ2wMAAAAA7Bnq+mvamzdvzs9//vPa63Xr1uUHP/hBRowYkUMOOSRtbW1pb2/P2LFjM3bs2LS3t2e//fbLWWedlSRpamrKzJkzM2fOnIwcOTIjRozI3LlzM378+NqvawMAAAAAe4a6xsj77rsvJ5xwQu31xRdfnCQ555xzsmTJksybNy89PT2ZNWtWOjs7c+yxx2b58uUZNmxY7T1XX311Bg4cmBkzZqSnpydTpkzJkiVLMmDAgOLXAwAAAAA8t4ZqtVqt9xD11t3dnaampnR1db3snh854ZJb6j0CAPAirb3ivfUegYIe/sT4eo8AALxIh/z9/fUeobid7Wt77DMjAQAAAIC9ixgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFDEXhMj//Vf/zVjxozJvvvumwkTJuRb3/pWvUcCAAAAAP7AXhEj/+M//iNtbW257LLL8v3vfz9vfvObc/LJJ+fhhx+u92gAAAAAwP/ZK2LkVVddlZkzZ+b888/Pa17zmlxzzTVpbW3NtddeW+/RAAAAAID/8ycfI/v6+rJ27dpMnz693/r06dNzzz331GkqAAAAAGBbA+s9wB/rN7/5TbZu3Zrm5uZ+683Nzeno6Njhe3p7e9Pb21t73dXVlSTp7u5+6QbdQ23t7an3CADAi/Ry/DfLy9mmp7fWewQA4EV6Of577dlrrlarz7vvTz5GPquhoaHf62q1ut3asxYuXJiPf/zj2623tra+JLMBAOxOTZ+6sN4jAADwfBY21XuCutm0aVOamp77+v/kY+SoUaMyYMCA7e6C3Lhx43Z3Sz5r/vz5ufjii2uvn3nmmTz++OMZOXLkcwZMgD8l3d3daW1tzfr16zN8+PB6jwMAwDb8ew3Y21Sr1WzatCktLS3Pu+9PPkYOHjw4EyZMyIoVK/KOd7yjtr5ixYq87W1v2+F7Ghsb09jY2G/tFa94xUs5JkBdDB8+3D9uAQD2YP69BuxNnu+OyGf9ycfIJLn44ovznve8J0cffXSOO+64XHfddXn44Ydz4YW+wgQAAAAAe4q9IkaeeeaZ+e1vf5tPfOIT2bBhQ8aNG5c777wzhx56aL1HAwAAAAD+z14RI5Nk1qxZmTVrVr3HANgjNDY25h/+4R+2eyQFAAB7Bv9eA16uGqov9HvbAAAAAAC7wT71HgAAAAAAeHkQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBNgLnHvuuWloaMiFF1643blZs2aloaEh5557bvnBAADo59l/t217/PznP6/3aABFiJEAe4nW1tYsXbo0PT09tbWnn346n/nMZ3LIIYfUcTIAAP7QW97ylmzYsKHfMWbMmHqPBVCEGAmwlzjqqKNyyCGH5POf/3xt7fOf/3xaW1tz5JFH1nEyAAD+UGNjYyqVSr9jwIAB9R4LoAgxEmAv8r73vS833XRT7fWNN96Y8847r44TAQAAwP8nRgLsRd7znvdk9erV+Z//+Z/86le/yre//e28+93vrvdYAAD8gS996UvZf//9a8cZZ5xR75EAihlY7wEA2H1GjRqVU045JTfffHOq1WpOOeWUjBo1qt5jAQDwB0444YRce+21tddDhw6t4zQAZYmRAHuZ8847Lx/60IeSJP/yL/9S52kAANjW0KFDc/jhh9d7DIC6ECMB9jJvectb0tfXlyQ56aST6jwNAAAA/H9iJMBeZsCAAfnJT35S+28AAADYU4iRAHuh4cOH13sEAAAA2E5DtVqt1nsIAAAAAGDvt0+9BwAAAAAAXh7ESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAqJuNGzfmggsuyCGHHJLGxsZUKpWcdNJJ+c53vlPv0QAAeAkMrPcAAAC8fL3zne/Mli1bcvPNN+ewww7Lr3/963zta1/L448/Xu/RAAB4CbgzEgCAunjiiSeyevXqLFq0KCeccEIOPfTQ/OVf/mXmz5+fU045JUnS1dWVD3zgAznwwAMzfPjwnHjiifnhD3+YJHnsscdSqVTS3t5e+8z/+q//yuDBg7N8+fK6XBMAAM9PjAQAoC7233//7L///rnjjjvS29u73flqtZpTTjklHR0dufPOO7N27docddRRmTJlSh5//PGMHj06N954YxYsWJD77rsvmzdvzrvf/e7MmjUr06dPr8MVAQDwQhqq1Wq13kMAAPDy9LnPfS7vf//709PTk6OOOiqTJk3Ku971rhxxxBH5+te/nne84x3ZuHFjGhsba+85/PDDM2/evHzgAx9Iklx00UVZuXJljjnmmPzwhz/MmjVrsu+++9brkgAAeB5iJAAAdfX000/nW9/6Vr7zne/krrvuyne/+918+tOfzmOPPZa/+7u/y5AhQ/rt7+npydy5c7No0aLa63HjxmX9+vW57777csQRR9TjMgAA2AliJAAAe5Tzzz8/K1asyKxZs/KpT30qd99993Z7XvGKV2TUqFFJkgcffDBHH310tmzZkmXLluWtb31r4YkBANhZfk0bAIA9ymtf+9rccccdOeqoo9LR0ZGBAwfmla985Q739vX15eyzz86ZZ56ZV7/61Zk5c2buv//+NDc3lx0aAICd4s5IAADq4re//W3OOOOMnHfeeTniiCMybNiw3HfffZk9e3ZOOeWUfPrTn87xxx+fTZs2ZdGiRXnVq16VRx99NHfeeWfe/va35+ijj84ll1ySz372s/nhD3+Y/fffPyeccEKGDRuWL33pS/W+PAAAdkCMBACgLnp7e7NgwYIsX748v/jFL7Jly5a0trbmjDPOyEc/+tEMGTIkmzZtymWXXZbPfe5zeeyxx1KpVHL88cdn4cKF+cUvfpFp06blG9/4Rt70pjclSR5++OEcccQRWbhwYT74wQ/W+QoBANiWGAkAAAAAFLFPvQcAAAAAAF4exEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAivh/cZcDM0IIT0YAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize = (16,8))\n", "sns.countplot(data = data, x = 'Sex')" ] }, { "cell_type": "markdown", "id": "7310d0a7-c361-4214-a3e5-708d934cfccb", "metadata": {}, "source": [ "## According to this dataset, which gender suffered more from heart disease?" ] }, { "cell_type": "code", "execution_count": 11, "id": "4b019dff-6704-4df9-9fd3-7786dc9d95c1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sex\n", "F 143\n", "M 267\n", "Name: HeartDisease, dtype: int64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tot = data['HeartDisease'].groupby(data['Sex']).count()\n", "suff = data['HeartDisease'].groupby(data['Sex']).sum()\n", "not_suf = tot-suff\n", "not_suf" ] }, { "cell_type": "code", "execution_count": 12, "id": "26ef5d40-ac18-4ef8-b2c0-20f1aa154562", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmg0lEQVR4nO3df1TVdZ7H8ddF5MeK4ISAkAiYWYw4OkLTYGHp1CVsnZxpR1rn+CN1i9FkkDKHcdV07JBbmf0Yf5Xmafoxrjaac2IVthR/1TYSpDuilVKQXSI0Qckg4bt/eLy7dy8a8usLn56Pc+453c/9fr/3fe2gz/P93st1WJZlCQAAwBA+dg8AAADQnogbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABjF1+4BOltTU5M+//xz9e7dWw6Hw+5xAABAC1iWpTNnzigqKko+Ppc/N/O9i5vPP/9c0dHRdo8BAABaoaKiQv3797/sNt+7uOndu7ekC384wcHBNk8DAABaora2VtHR0e5/xy/nexc3Fy9FBQcHEzcAAHQzLXlLCW8oBgAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBRb42b37t0aN26coqKi5HA4tHXr1u/cp7CwUImJiQoICNDAgQO1evXqjh8UAAB0G7bGTV1dnYYNG6bnnnuuRduXlZVp7NixSklJUXFxsX7/+98rMzNTr7/+egdPCgAAugtbvxU8LS1NaWlpLd5+9erVGjBggFasWCFJio+P14EDB/TEE0/o7rvv7qApAQBAd9Kt3nPzzjvvyOl0eqylpqbqwIED+vbbb5vdp76+XrW1tR43AABgLlvP3FypyspKRUREeKxFRETo/Pnzqq6uVmRkpNc+ubm5Wrx4cWeN6JY496VOf06gOyh6fLLdI7RZ+ZKhdo8AdEkDFh6yewRJ3ezMjSQ5HA6P+5ZlNbt+UU5Ojmpqaty3ioqKDp8RAADYp1uduenXr58qKys91qqqquTr66vQ0NBm9/H395e/v39njAcAALqAbnXmJjk5WQUFBR5r+fn5SkpKUs+ePW2aCgAAdCW2xs3Zs2dVUlKikpISSRc+6l1SUqLy8nJJFy4pTZ78v9fnMzIy9Omnnyo7O1ulpaVav3691q1bp4ceesiO8QEAQBdk62WpAwcOaPTo0e772dnZkqQpU6Zow4YNcrlc7tCRpLi4OOXl5WnOnDn64x//qKioKD3zzDN8DBwAALjZGje33nqr+w3BzdmwYYPX2i233KL333+/A6cCAADdWbd6zw0AAMB3IW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYxfa4WblypeLi4hQQEKDExETt2bPnstu/8sorGjZsmP7hH/5BkZGRuvfee3Xy5MlOmhYAAHR1tsbNxo0blZWVpfnz56u4uFgpKSlKS0tTeXl5s9vv3btXkydP1vTp0/X3v/9dmzZt0t/+9jfNmDGjkycHAABdla1xs3z5ck2fPl0zZsxQfHy8VqxYoejoaK1atarZ7d99913FxsYqMzNTcXFxuvnmm3X//ffrwIEDl3yO+vp61dbWetwAAIC5bIubhoYGFRUVyel0eqw7nU7t37+/2X1Gjhypzz77THl5ebIsS1988YU2b96sO++885LPk5ubq5CQEPctOjq6XV8HAADoWmyLm+rqajU2NioiIsJjPSIiQpWVlc3uM3LkSL3yyitKT0+Xn5+f+vXrpz59+ujZZ5+95PPk5OSopqbGfauoqGjX1wEAALoW299Q7HA4PO5bluW1dtHhw4eVmZmphQsXqqioSNu3b1dZWZkyMjIueXx/f38FBwd73AAAgLl87Xrivn37qkePHl5naaqqqrzO5lyUm5urm266SXPnzpUk/ehHP1KvXr2UkpKipUuXKjIyssPnBgAAXZttZ278/PyUmJiogoICj/WCggKNHDmy2X2+/vpr+fh4jtyjRw9JF874AAAA2HpZKjs7Wy+88ILWr1+v0tJSzZkzR+Xl5e7LTDk5OZo8ebJ7+3Hjxukvf/mLVq1apePHj2vfvn3KzMzUT37yE0VFRdn1MgAAQBdi22UpSUpPT9fJkye1ZMkSuVwuJSQkKC8vTzExMZIkl8vl8Ttvpk6dqjNnzui5557Tgw8+qD59+mjMmDFatmyZXS8BAAB0MQ7re3Y9p7a2ViEhIaqpqenQNxcnzn2pw44NdGdFj0/+7o26uPIlQ+0eAeiSBiw81GHHvpJ/v23/tBQAAEB7Im4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFNvjZuXKlYqLi1NAQIASExO1Z8+ey25fX1+v+fPnKyYmRv7+/rrmmmu0fv36TpoWAAB0db52PvnGjRuVlZWllStX6qabbtKaNWuUlpamw4cPa8CAAc3uM2HCBH3xxRdat26dBg0apKqqKp0/f76TJwcAAF2VrXGzfPlyTZ8+XTNmzJAkrVixQjt27NCqVauUm5vrtf327dtVWFio48eP66qrrpIkxcbGdubIAACgi7PtslRDQ4OKiorkdDo91p1Op/bv39/sPtu2bVNSUpL+7d/+TVdffbUGDx6shx56SOfOnbvk89TX16u2ttbjBgAAzGXbmZvq6mo1NjYqIiLCYz0iIkKVlZXN7nP8+HHt3btXAQEB2rJli6qrqzVz5kydOnXqku+7yc3N1eLFi9t9fgAA0DXZ/oZih8Phcd+yLK+1i5qamuRwOPTKK6/oJz/5icaOHavly5drw4YNlzx7k5OTo5qaGvetoqKi3V8DAADoOmw7c9O3b1/16NHD6yxNVVWV19mciyIjI3X11VcrJCTEvRYfHy/LsvTZZ5/p2muv9drH399f/v7+7Ts8AADosmw7c+Pn56fExEQVFBR4rBcUFGjkyJHN7nPTTTfp888/19mzZ91rH374oXx8fNS/f/8OnRcAAHQPtl6Wys7O1gsvvKD169ertLRUc+bMUXl5uTIyMiRduKQ0efJk9/YTJ05UaGio7r33Xh0+fFi7d+/W3LlzNW3aNAUGBtr1MgAAQBdi60fB09PTdfLkSS1ZskQul0sJCQnKy8tTTEyMJMnlcqm8vNy9fVBQkAoKCjR79mwlJSUpNDRUEyZM0NKlS+16CQAAoIuxNW4kaebMmZo5c2azj23YsMFr7frrr/e6lAUAAHCR7Z+WAgAAaE/EDQAAMEqr4mbMmDE6ffq013ptba3GjBnT1pkAAABarVVxs2vXLjU0NHitf/PNN9/5rd4AAAAd6YreUHzw4EH3fx8+fNjjF/A1NjZq+/btuvrqq9tvOgAAgCt0RXEzfPhwORwOORyOZi8/BQYG6tlnn2234QAAAK7UFcVNWVmZLMvSwIED9d577yksLMz9mJ+fn8LDw9WjR492HxIAAKClrihuLv5yvaampg4ZBgAAoK1a/Uv8PvzwQ+3atUtVVVVesbNw4cI2DwYAANAarYqb559/Xr/5zW/Ut29f9evXTw6Hw/2Yw+EgbgAAgG1aFTdLly7Vo48+qnnz5rX3PAAAAG3Sqt9z89VXX+lXv/pVe88CAADQZq2Km1/96lfKz89v71kAAADarFWXpQYNGqQFCxbo3Xff1dChQ9WzZ0+PxzMzM9tlOAAAgCvVqrhZu3atgoKCVFhYqMLCQo/HHA4HcQMAAGzTqrgpKytr7zkAAADaRavecwMAANBVterMzbRp0y77+Pr161s1DAAAQFu1Km6++uorj/vffvut/vu//1unT59u9gs1AQAAOkur4mbLli1ea01NTZo5c6YGDhzY5qEAAABaq93ec+Pj46M5c+boqaeeaq9DAgAAXLF2fUPxsWPHdP78+fY8JAAAwBVp1WWp7Oxsj/uWZcnlcunNN9/UlClT2mUwAACA1mhV3BQXF3vc9/HxUVhYmJ588snv/CQVAABAR2pV3OzcubO95wAAAGgXrYqbi7788ksdPXpUDodDgwcPVlhYWHvNBQAA0CqtekNxXV2dpk2bpsjISI0aNUopKSmKiorS9OnT9fXXX7f3jAAAAC3WqrjJzs5WYWGh/vrXv+r06dM6ffq03njjDRUWFurBBx9s7xkBAABarFWXpV5//XVt3rxZt956q3tt7NixCgwM1IQJE7Rq1ar2mg8AAOCKtOrMzddff62IiAiv9fDwcC5LAQAAW7UqbpKTk7Vo0SJ988037rVz585p8eLFSk5ObrfhAAAArlSrLkutWLFCaWlp6t+/v4YNGyaHw6GSkhL5+/srPz+/vWcEAABosVbFzdChQ/XRRx/p5Zdf1pEjR2RZlu655x79+te/VmBgYHvPCAAA0GKtipvc3FxFREToX/7lXzzW169fry+//FLz5s1rl+EAAACuVKvec7NmzRpdf/31XutDhgzR6tWr2zwUAABAa7UqbiorKxUZGem1HhYWJpfL1eahAAAAWqtVcRMdHa19+/Z5re/bt09RUVFtHgoAAKC1WvWemxkzZigrK0vffvutxowZI0l666239PDDD/MbigEAgK1aFTcPP/ywTp06pZkzZ6qhoUGSFBAQoHnz5iknJ6ddBwQAALgSrYobh8OhZcuWacGCBSotLVVgYKCuvfZa+fv7t/d8AAAAV6RVcXNRUFCQbrjhhvaaBQAAoM1a9YZiAACAroq4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGsT1uVq5cqbi4OAUEBCgxMVF79uxp0X779u2Tr6+vhg8f3rEDAgCAbsXWuNm4caOysrI0f/58FRcXKyUlRWlpaSovL7/sfjU1NZo8ebJ+9rOfddKkAACgu7A1bpYvX67p06drxowZio+P14oVKxQdHa1Vq1Zddr/7779fEydOVHJycidNCgAAugvb4qahoUFFRUVyOp0e606nU/v377/kfi+++KKOHTumRYsWteh56uvrVVtb63EDAADmsi1uqqur1djYqIiICI/1iIgIVVZWNrvPRx99pN/97nd65ZVX5Ovr26Lnyc3NVUhIiPsWHR3d5tkBAEDXZfsbih0Oh8d9y7K81iSpsbFREydO1OLFizV48OAWHz8nJ0c1NTXuW0VFRZtnBgAAXVfLTn90gL59+6pHjx5eZ2mqqqq8zuZI0pkzZ3TgwAEVFxfrgQcekCQ1NTXJsiz5+voqPz9fY8aM8drP399f/v7+HfMiAABAl2PbmRs/Pz8lJiaqoKDAY72goEAjR4702j44OFiHDh1SSUmJ+5aRkaHrrrtOJSUluvHGGztrdAAA0IXZduZGkrKzszVp0iQlJSUpOTlZa9euVXl5uTIyMiRduKR04sQJvfTSS/Lx8VFCQoLH/uHh4QoICPBaBwAA31+2xk16erpOnjypJUuWyOVyKSEhQXl5eYqJiZEkuVyu7/ydNwAAAP+Xw7Isy+4hOlNtba1CQkJUU1Oj4ODgDnuexLkvddixge6s6PHJdo/QZuVLhto9AtAlDVh4qMOOfSX/ftv+aSkAAID2RNwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwiu1xs3LlSsXFxSkgIECJiYnas2fPJbf9y1/+ottvv11hYWEKDg5WcnKyduzY0YnTAgCArs7WuNm4caOysrI0f/58FRcXKyUlRWlpaSovL292+927d+v2229XXl6eioqKNHr0aI0bN07FxcWdPDkAAOiqHJZlWXY9+Y033qgRI0Zo1apV7rX4+HiNHz9eubm5LTrGkCFDlJ6eroULFzb7eH19verr6933a2trFR0drZqaGgUHB7ftBVxG4tyXOuzYQHdW9Phku0dos/IlQ+0eAeiSBiw81GHHrq2tVUhISIv+/bbtzE1DQ4OKiorkdDo91p1Op/bv39+iYzQ1NenMmTO66qqrLrlNbm6uQkJC3Lfo6Og2zQ0AALo22+KmurpajY2NioiI8FiPiIhQZWVli47x5JNPqq6uThMmTLjkNjk5OaqpqXHfKioq2jQ3AADo2nztHsDhcHjctyzLa605r732mh555BG98cYbCg8Pv+R2/v7+8vf3b/OcAACge7Atbvr27asePXp4naWpqqryOpvz/23cuFHTp0/Xpk2bdNttt3XkmAAAoJux7bKUn5+fEhMTVVBQ4LFeUFCgkSNHXnK/1157TVOnTtWrr76qO++8s6PHBAAA3Yytl6Wys7M1adIkJSUlKTk5WWvXrlV5ebkyMjIkXXi/zIkTJ/TSSxc+efTaa69p8uTJevrpp/XTn/7UfdYnMDBQISEhtr0OAADQddgaN+np6Tp58qSWLFkil8ulhIQE5eXlKSYmRpLkcrk8fufNmjVrdP78ec2aNUuzZs1yr0+ZMkUbNmzo7PEBAEAXZPsbimfOnKmZM2c2+9j/D5Zdu3Z1/EAAAKBbs/3rFwAAANoTcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACj2B43K1euVFxcnAICApSYmKg9e/ZcdvvCwkIlJiYqICBAAwcO1OrVqztpUgAA0B3YGjcbN25UVlaW5s+fr+LiYqWkpCgtLU3l5eXNbl9WVqaxY8cqJSVFxcXF+v3vf6/MzEy9/vrrnTw5AADoqmyNm+XLl2v69OmaMWOG4uPjtWLFCkVHR2vVqlXNbr969WoNGDBAK1asUHx8vGbMmKFp06bpiSee6OTJAQBAV+Vr1xM3NDSoqKhIv/vd7zzWnU6n9u/f3+w+77zzjpxOp8daamqq1q1bp2+//VY9e/b02qe+vl719fXu+zU1NZKk2tratr6Ey2qsP9ehxwe6q47+2esMZ75ptHsEoEvqyJ/vi8e2LOs7t7Utbqqrq9XY2KiIiAiP9YiICFVWVja7T2VlZbPbnz9/XtXV1YqMjPTaJzc3V4sXL/Zaj46ObsP0AFor5NkMu0cA0FFyQzr8Kc6cOaOQkMs/j21xc5HD4fC4b1mW19p3bd/c+kU5OTnKzs52329qatKpU6cUGhp62eeBGWpraxUdHa2KigoFBwfbPQ6AdsTP9/eLZVk6c+aMoqKivnNb2+Kmb9++6tGjh9dZmqqqKq+zMxf169ev2e19fX0VGhra7D7+/v7y9/f3WOvTp0/rB0e3FBwczF9+gKH4+f7++K4zNhfZ9oZiPz8/JSYmqqCgwGO9oKBAI0eObHaf5ORkr+3z8/OVlJTU7PttAADA94+tn5bKzs7WCy+8oPXr16u0tFRz5sxReXm5MjIuXJPPycnR5MmT3dtnZGTo008/VXZ2tkpLS7V+/XqtW7dODz30kF0vAQAAdDG2vucmPT1dJ0+e1JIlS+RyuZSQkKC8vDzFxMRIklwul8fvvImLi1NeXp7mzJmjP/7xj4qKitIzzzyju+++266XgC7O399fixYt8ro0CaD74+cbl+KwWvKZKgAAgG7C9q9fAAAAaE/EDQAAMApxAwAAjELcAAAAoxA36JZ2796tcePGKSoqSg6HQ1u3br3ktvfff78cDodWrFjhtX7NNdcoMDBQYWFhuuuuu3TkyJGOHRzAZeXm5uqGG25Q7969FR4ervHjx+vo0aNe25WWlurnP/+5QkJC1Lt3b/30pz91f7r2k08+kcPhaPa2adOmzn5JsAFxg26prq5Ow4YN03PPPXfZ7bZu3ar/+q//avbXdScmJurFF19UaWmpduzYIcuy5HQ61djIlyICdiksLNSsWbP07rvvqqCgQOfPn5fT6VRdXZ17m2PHjunmm2/W9ddfr127dumDDz7QggULFBAQIOnCdwe6XC6P2+LFi9WrVy+lpaXZ9dLQifgoOLo9h8OhLVu2aPz48R7rJ06c0I033qgdO3bozjvvVFZWlrKysi55nIMHD2rYsGH6+OOPdc0113Ts0ABa5Msvv1R4eLgKCws1atQoSdI999yjnj176k9/+lOLj/PjH/9YI0aM0Lp16zpqVHQhnLmBkZqamjRp0iTNnTtXQ4YM+c7t6+rq9OKLLyouLo5vjAe6kJqaGknSVVddJenCz/abb76pwYMHKzU1VeHh4brxxhsve2m6qKhIJSUlmj59emeMjC6AuIGRli1bJl9fX2VmZl52u5UrVyooKEhBQUHavn27CgoK5Ofn10lTArgcy7KUnZ2tm2++WQkJCZIufFny2bNn9dhjj+mOO+5Qfn6+fvGLX+iXv/ylCgsLmz3OunXrFB8ff8nvLYR5bP36BaAjFBUV6emnn9b7778vh8Nx2W1//etf6/bbb5fL5dITTzyhCRMmaN++fe5r9wDs88ADD+jgwYPau3eve62pqUmSdNddd2nOnDmSpOHDh2v//v1avXq1brnlFo9jnDt3Tq+++qoWLFjQeYPDdpy5gXH27NmjqqoqDRgwQL6+vvL19dWnn36qBx98ULGxsR7bhoSE6Nprr9WoUaO0efNmHTlyRFu2bLFncABus2fP1rZt27Rz507179/fvd63b1/5+vrqhz/8ocf28fHxHt9FeNHmzZv19ddfe3wJM8zHmRsYZ9KkSbrttts81lJTUzVp0iTde++9l93XsizV19d35HgALsOyLM2ePVtbtmzRrl27FBcX5/G4n5+fbrjhBq+Ph3/44YfuL13+v9atW6ef//znCgsL69C50bUQN+iWzp49q48//th9v6ysTCUlJbrqqqs0YMAAhYaGemzfs2dP9evXT9ddd50k6fjx49q4caOcTqfCwsJ04sQJLVu2TIGBgRo7dmynvhYA/2vWrFl69dVX9cYbb6h3796qrKyUdOEsa2BgoCRp7ty5Sk9P16hRozR69Ght375df/3rX7Vr1y6PY3388cfavXu38vLyOvtlwG4W0A3t3LnTkuR1mzJlSrPbx8TEWE899ZT7/okTJ6y0tDQrPDzc6tmzp9W/f39r4sSJ1pEjRzrnBQBoVnM/15KsF1980WO7devWWYMGDbICAgKsYcOGWVu3bvU6Vk5OjtW/f3+rsbGxk6ZHV8HvuQEAAEbhDcUAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AIy1a9cuORwOnT592u5RAHQi4gbAJU2dOlXjx4/3Wu+saHjkkUc0fPhwr/XY2Fg5HA45HA4FBgYqNjZWEyZM0Ntvv+2x3ciRI+VyuRQSEtKhcwLoWogbAF2OZVk6f/78ZbdZsmSJXC6Xjh49qpdeekl9+vTRbbfdpkcffdS9jZ+fn/r16yeHw9HRIwPoQogbAG22f/9+jRo1SoGBgYqOjlZmZqbq6urcj7/88stKSkpS79691a9fP02cOFFVVVXuxy+eCdqxY4eSkpLk7++vP/3pT1q8eLE++OAD91maDRs2uPe5eKwBAwZo1KhRWrt2rRYsWKCFCxfq6NGjHse9eIbp008/1bhx4/SDH/xAvXr10pAhQzy+Mfrw4cMaO3asgoKCFBERoUmTJqm6utr9+Pbt23XzzTerT58+Cg0N1T/+4z/q2LFj7scbGhr0wAMPKDIyUgEBAYqNjVVubq778ZqaGt13330KDw9XcHCwxowZow8++KDd/j8AuIC4AdAmhw4dUmpqqn75y1/q4MGD2rhxo/bu3asHHnjAvU1DQ4P+8Ic/6IMPPtDWrVtVVlamqVOneh3r4YcfVm5urkpLS+V0OvXggw9qyJAhcrlccrlcSk9Pv+wsv/3tb2VZlt54441mH581a5bq6+u1e/duHTp0SMuWLVNQUJAkyeVy6ZZbbtHw4cN14MABbd++XV988YUmTJjg3r+urk7Z2dn629/+prfeeks+Pj76xS9+oaamJknSM888o23btunf//3fdfToUb388suKjY2VdOFs1J133qnKykrl5eWpqKhII0aM0M9+9jOdOnXqSv7IAXwXW7+THECXNmXKFKtHjx5Wr169PG4BAQGWJOurr76yJk2aZN13330e++3Zs8fy8fGxzp071+xx33vvPUuSdebMGcuyLGvnzp2WJGvr1q0e2y1atMgaNmyY1/4xMTHWU0891eyxIyIirN/85jcex/3qq68sy7KsoUOHWo888kiz+y1YsMByOp0eaxUVFZYk6+jRo83uU1VVZUmyDh06ZFmWZc2ePdsaM2aM1dTU5LXtW2+9ZQUHB1vffPONx/o111xjrVmzptnjA2gdztwAuKzRo0erpKTE4/bCCy+4Hy8qKtKGDRsUFBTkvqWmpqqpqUllZWWSpOLiYt11112KiYlR7969deutt0qSysvLPZ4rKSmpzfNalnXJ99hkZmZq6dKluummm7Ro0SIdPHjQ43Xs3LnT43Vcf/31kuS+9HTs2DFNnDhRAwcOVHBwsOLi4jxex9SpU1VSUqLrrrtOmZmZys/P9zj+2bNnFRoa6vEcZWVlHpe2ALSdr90DAOjaevXqpUGDBnmsffbZZ+7/bmpq0v3336/MzEyvfQcMGKC6ujo5nU45nU69/PLLCgsLU3l5uVJTU9XQ0OD1XG1x8uRJffnll+7o+P9mzJih1NRUvfnmm8rPz1dubq6efPJJzZ49W01NTRo3bpyWLVvmtV9kZKQkady4cYqOjtbzzz+vqKgoNTU1KSEhwf06RowYobKyMv3Hf/yH/vM//1MTJkzQbbfdps2bN6upqUmRkZHatWuX1/H79OnTptcNwBNxA6BNRowYob///e9eAXTRoUOHVF1drccee0zR0dGSpAMHDrTo2H5+fmpsbGzxLE8//bR8fHya/fj6RdHR0crIyFBGRoZycnL0/PPPa/bs2RoxYoRef/11xcbGytfX+6/GkydPqrS0VGvWrFFKSookae/evV7bBQcHKz09Xenp6fqnf/on3XHHHTp16pRGjBihyspK+fr6ut+HA6BjcFkKQJvMmzdP77zzjmbNmqWSkhJ99NFH2rZtm2bPni3pwtkbPz8/Pfvsszp+/Li2bdumP/zhDy06dmxsrMrKylRSUqLq6mrV19e7Hztz5owqKytVUVGh3bt367777tPSpUv16KOPXjK0srKytGPHDpWVlen999/X22+/rfj4eEkX3mx86tQp/fM//7Pee+89HT9+XPn5+Zo2bZoaGxv1gx/8QKGhoVq7dq0+/vhjvf3228rOzvY4/lNPPaU///nPOnLkiD788ENt2rRJ/fr1c39MPTk5WePHj9eOHTv0ySefaP/+/frXf/3XFscegJYhbgC0yY9+9CMVFhbqo48+UkpKin784x9rwYIF7ks5YWFh2rBhgzZt2qQf/vCHeuyxx/TEE0+06Nh333237rjjDo0ePVphYWF67bXX3I8tXLhQkZGRGjRokCZNmqSamhq99dZbmjdv3iWP19jYqFmzZik+Pl533HGHrrvuOq1cuVKSFBUVpX379qmxsVGpqalKSEjQb3/7W4WEhMjHx0c+Pj7685//rKKiIiUkJGjOnDl6/PHHPY4fFBSkZcuWKSkpSTfccIM++eQT5eXlycfHRw6HQ3l5eRo1apSmTZumwYMH65577tEnn3yiiIiIK/1jB3AZDsuyLLuHAAAAaC+cuQEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGCU/wGn1/tMFIuz6AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.countplot(data = data, x = not_suf)" ] }, { "cell_type": "code", "execution_count": 13, "id": "9ba7095a-b22a-4db7-9996-80adf8f096eb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmmklEQVR4nO3df1RVdb7/8dcB4kAqWIgHKETMLK6YXWEqKEqtMOy6blM3aWz5Y9QpRpOUfhiZP8eGcabMKfNX5TVvTXGrybw3rsJUommtlKCYZMyrFDQdIvwBqAUJ+/uHy/O9Zw4a8mvDp+djrbOW53P23ud9nEU+Z+8NOCzLsgQAAGAIP7sHAAAA6EjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMEmD3AF2tublZX3/9tfr06SOHw2H3OAAAoBUsy1J9fb2ioqLk53f2czM/ubj5+uuvFR0dbfcYAACgDSorK3XxxRefdZufXNz06dNH0qm/nJCQEJunAQAArVFXV6fo6GjPv+Nn85OLm9OXokJCQogbAAB6mNbcUsINxQAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxia9xs375d48aNU1RUlBwOhzZt2vSj+xQWFiohIUFBQUEaNGiQ1qxZ0/mDAgCAHsPWuDl+/LiGDx+ulStXtmr78vJyjR07VikpKSouLtajjz6qzMxMvfHGG508KQAA6Cls/a3gaWlpSktLa/X2a9as0YABA7RixQpJUlxcnPbs2aMnnnhCd9xxRydNCQAAepIedc/NBx98oNTUVK+1MWPGaM+ePfrhhx9a3KehoUF1dXVeDwAAYC5bz9ycq6qqKrlcLq81l8ulkydPqqamRpGRkT775OTkaPHixV01okfCQxu7/D2BnqDoD5PsHqHdKpYMs3sEoFsasKDU7hEk9bAzN5LkcDi8nluW1eL6adnZ2aqtrfU8KisrO31GAABgnx515iYiIkJVVVVea9XV1QoICFBYWFiL+zidTjmdzq4YDwAAdAM96sxNUlKSCgoKvNby8/OVmJio8847z6apAABAd2Jr3Bw7dkwlJSUqKSmRdOpbvUtKSlRRUSHp1CWlSZP+//X5jIwMffnll8rKylJZWZnWr1+vF154QQ8++KAd4wMAgG7I1stSe/bs0ahRozzPs7KyJEmTJ0/Whg0b5Ha7PaEjSbGxscrLy9OcOXP07LPPKioqSk8//TTfBg4AADxsjZuRI0d6bghuyYYNG3zWbrjhBn388cedOBUAAOjJetQ9NwAAAD+GuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU2+Nm1apVio2NVVBQkBISErRjx46zbv/yyy9r+PDhOv/88xUZGalf/vKXOnToUBdNCwAAujtb4yY3N1ezZ8/WvHnzVFxcrJSUFKWlpamioqLF7d9//31NmjRJ06ZN02effabXXntNu3fv1vTp07t4cgAA0F3ZGjfLly/XtGnTNH36dMXFxWnFihWKjo7W6tWrW9z+ww8/1MCBA5WZmanY2Fhdd911uvfee7Vnz54zvkdDQ4Pq6uq8HgAAwFy2xU1jY6OKioqUmprqtZ6amqpdu3a1uE9ycrK++uor5eXlybIsffPNN3r99dd16623nvF9cnJyFBoa6nlER0d36OcAAADdi21xU1NTo6amJrlcLq91l8ulqqqqFvdJTk7Wyy+/rPT0dAUGBioiIkJ9+/bVM888c8b3yc7OVm1tredRWVnZoZ8DAAB0L7bfUOxwOLyeW5bls3ba3r17lZmZqQULFqioqEhbtmxReXm5MjIyznh8p9OpkJAQrwcAADBXgF1v3K9fP/n7+/ucpamurvY5m3NaTk6Orr32Wj300EOSpCuuuEK9evVSSkqKli5dqsjIyE6fGwAAdG+2nbkJDAxUQkKCCgoKvNYLCgqUnJzc4j4nTpyQn5/3yP7+/pJOnfEBAACw9bJUVlaWnn/+ea1fv15lZWWaM2eOKioqPJeZsrOzNWnSJM/248aN05///GetXr1aBw8e1M6dO5WZmamrrrpKUVFRdn0MAADQjdh2WUqS0tPTdejQIS1ZskRut1vx8fHKy8tTTEyMJMntdnv9zJspU6aovr5eK1eu1AMPPKC+fftq9OjRWrZsmV0fAQAAdDMO6yd2Paeurk6hoaGqra3t1JuLEx7a2GnHBnqyoj9M+vGNurmKJcPsHgHolgYsKO20Y5/Lv9+2f7cUAABARyJuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTb42bVqlWKjY1VUFCQEhIStGPHjrNu39DQoHnz5ikmJkZOp1OXXHKJ1q9f30XTAgCA7i7AzjfPzc3V7NmztWrVKl177bVau3at0tLStHfvXg0YMKDFfcaPH69vvvlGL7zwggYPHqzq6mqdPHmyiycHAADdla1xs3z5ck2bNk3Tp0+XJK1YsUJbt27V6tWrlZOT47P9li1bVFhYqIMHD+rCCy+UJA0cOLArRwYAAN2cbZelGhsbVVRUpNTUVK/11NRU7dq1q8V9Nm/erMTERP3+97/XRRddpCFDhujBBx/Ud999d8b3aWhoUF1dndcDAACYy7YzNzU1NWpqapLL5fJad7lcqqqqanGfgwcP6v3331dQUJDefPNN1dTUaMaMGTp8+PAZ77vJycnR4sWLO3x+AADQPdl+Q7HD4fB6blmWz9ppzc3Ncjgcevnll3XVVVdp7NixWr58uTZs2HDGszfZ2dmqra31PCorKzv8MwAAgO7DtjM3/fr1k7+/v89Zmurqap+zOadFRkbqoosuUmhoqGctLi5OlmXpq6++0qWXXuqzj9PplNPp7NjhAQBAt2XbmZvAwEAlJCSooKDAa72goEDJyckt7nPttdfq66+/1rFjxzxrn3/+ufz8/HTxxRd36rwAAKBnsPWyVFZWlp5//nmtX79eZWVlmjNnjioqKpSRkSHp1CWlSZMmebafMGGCwsLC9Mtf/lJ79+7V9u3b9dBDD2nq1KkKDg6262MAAIBuxNZvBU9PT9ehQ4e0ZMkSud1uxcfHKy8vTzExMZIkt9utiooKz/a9e/dWQUGBZs2apcTERIWFhWn8+PFaunSpXR8BAAB0M7bGjSTNmDFDM2bMaPG1DRs2+KxdfvnlPpeyAAAATrP9u6UAAAA6EnEDAACM0qa4GT16tI4ePeqzXldXp9GjR7d3JgAAgDZrU9xs27ZNjY2NPuvff//9j/5WbwAAgM50TjcUf/rpp54/79271+sH8DU1NWnLli266KKLOm46AACAc3ROcXPllVfK4XDI4XC0ePkpODhYzzzzTIcNBwAAcK7OKW7Ky8tlWZYGDRqkjz76SOHh4Z7XAgMD1b9/f/n7+3f4kAAAAK11TnFz+ofrNTc3d8owAAAA7dXmH+L3+eefa9u2baqurvaJnQULFrR7MAAAgLZoU9w899xz+vWvf61+/fopIiJCDofD85rD4SBuAACAbdoUN0uXLtXjjz+uuXPndvQ8AAAA7dKmn3Nz5MgR3XnnnR09CwAAQLu1KW7uvPNO5efnd/QsAAAA7damy1KDBw/W/Pnz9eGHH2rYsGE677zzvF7PzMzskOEAAADOVZviZt26derdu7cKCwtVWFjo9ZrD4SBuAACAbdoUN+Xl5R09BwAAQIdo0z03AAAA3VWbztxMnTr1rK+vX7++TcMAAAC0V5vi5siRI17Pf/jhB/31r3/V0aNHW/yFmgAAAF2lTXHz5ptv+qw1NzdrxowZGjRoULuHAgAAaKsOu+fGz89Pc+bM0VNPPdVRhwQAADhnHXpD8YEDB3Ty5MmOPCQAAMA5adNlqaysLK/nlmXJ7Xbr7bff1uTJkztkMAAAgLZoU9wUFxd7Pffz81N4eLiefPLJH/1OKgAAgM7Uprh57733OnoOAACADtGmuDnt22+/1b59++RwODRkyBCFh4d31FwAAABt0qYbio8fP66pU6cqMjJS119/vVJSUhQVFaVp06bpxIkTHT0jAABAq7UpbrKyslRYWKj/+q//0tGjR3X06FG99dZbKiws1AMPPNDRMwIAALRamy5LvfHGG3r99dc1cuRIz9rYsWMVHBys8ePHa/Xq1R01HwAAwDlp05mbEydOyOVy+az379+fy1IAAMBWbYqbpKQkLVy4UN9//71n7bvvvtPixYuVlJTUYcMBAACcqzZdllqxYoXS0tJ08cUXa/jw4XI4HCopKZHT6VR+fn5HzwgAANBqbYqbYcOGaf/+/XrppZf0t7/9TZZl6a677tLdd9+t4ODgjp4RAACg1doUNzk5OXK5XPrVr37ltb5+/Xp9++23mjt3bocMBwAAcK7adM/N2rVrdfnll/usDx06VGvWrGn3UAAAAG3VpripqqpSZGSkz3p4eLjcbne7hwIAAGirNsVNdHS0du7c6bO+c+dORUVFtXsoAACAtmrTPTfTp0/X7Nmz9cMPP2j06NGSpHfeeUcPP/wwP6EYAADYqk1x8/DDD+vw4cOaMWOGGhsbJUlBQUGaO3eusrOzO3RAAACAc9GmuHE4HFq2bJnmz5+vsrIyBQcH69JLL5XT6ezo+QAAAM5Jm+LmtN69e+tnP/tZR80CAADQbm26oRgAAKC7Im4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFFsj5tVq1YpNjZWQUFBSkhI0I4dO1q1386dOxUQEKArr7yycwcEAAA9iq1xk5ubq9mzZ2vevHkqLi5WSkqK0tLSVFFRcdb9amtrNWnSJN14441dNCkAAOgpbI2b5cuXa9q0aZo+fbri4uK0YsUKRUdHa/Xq1Wfd795779WECROUlJTURZMCAICewra4aWxsVFFRkVJTU73WU1NTtWvXrjPu9+///u86cOCAFi5c2Kr3aWhoUF1dndcDAACYy7a4qampUVNTk1wul9e6y+VSVVVVi/vs379fjzzyiF5++WUFBAS06n1ycnIUGhrqeURHR7d7dgAA0H3ZfkOxw+Hwem5Zls+aJDU1NWnChAlavHixhgwZ0urjZ2dnq7a21vOorKxs98wAAKD7at3pj07Qr18/+fv7+5ylqa6u9jmbI0n19fXas2ePiouLdd9990mSmpubZVmWAgIClJ+fr9GjR/vs53Q65XQ6O+dDAACAbse2MzeBgYFKSEhQQUGB13pBQYGSk5N9tg8JCVFpaalKSko8j4yMDF122WUqKSnR1Vdf3VWjAwCAbsy2MzeSlJWVpYkTJyoxMVFJSUlat26dKioqlJGRIenUJaW///3v2rhxo/z8/BQfH++1f//+/RUUFOSzDgAAfrpsjZv09HQdOnRIS5YskdvtVnx8vPLy8hQTEyNJcrvdP/ozbwAAAP4vh2VZlt1DdKW6ujqFhoaqtrZWISEhnfY+CQ9t7LRjAz1Z0R8m2T1Cu1UsGWb3CEC3NGBBaacd+1z+/bb9u6UAAAA6EnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKLbHzapVqxQbG6ugoCAlJCRox44dZ9z2z3/+s26++WaFh4crJCRESUlJ2rp1axdOCwAAujtb4yY3N1ezZ8/WvHnzVFxcrJSUFKWlpamioqLF7bdv366bb75ZeXl5Kioq0qhRozRu3DgVFxd38eQAAKC7cliWZdn15ldffbVGjBih1atXe9bi4uJ02223KScnp1XHGDp0qNLT07VgwYIWX29oaFBDQ4PneV1dnaKjo1VbW6uQkJD2fYCzSHhoY6cdG+jJiv4wye4R2q1iyTC7RwC6pQELSjvt2HV1dQoNDW3Vv9+2nblpbGxUUVGRUlNTvdZTU1O1a9euVh2jublZ9fX1uvDCC8+4TU5OjkJDQz2P6Ojods0NAAC6N9vipqamRk1NTXK5XF7rLpdLVVVVrTrGk08+qePHj2v8+PFn3CY7O1u1tbWeR2VlZbvmBgAA3VuA3QM4HA6v55Zl+ay15JVXXtGiRYv01ltvqX///mfczul0yul0tntOAADQM9gWN/369ZO/v7/PWZrq6mqfszn/KDc3V9OmTdNrr72mm266qTPHBAAAPYxtl6UCAwOVkJCggoICr/WCggIlJyefcb9XXnlFU6ZM0Z/+9CfdeuutnT0mAADoYWy9LJWVlaWJEycqMTFRSUlJWrdunSoqKpSRkSHp1P0yf//737Vx46nvPHrllVc0adIk/fGPf9Q111zjOesTHBys0NBQ2z4HAADoPmyNm/T0dB06dEhLliyR2+1WfHy88vLyFBMTI0lyu91eP/Nm7dq1OnnypGbOnKmZM2d61idPnqwNGzZ09fgAAKAbsv2G4hkzZmjGjBktvvaPwbJt27bOHwgAAPRotv/6BQAAgI5E3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAotsfNqlWrFBsbq6CgICUkJGjHjh1n3b6wsFAJCQkKCgrSoEGDtGbNmi6aFAAA9AS2xk1ubq5mz56tefPmqbi4WCkpKUpLS1NFRUWL25eXl2vs2LFKSUlRcXGxHn30UWVmZuqNN97o4skBAEB3ZWvcLF++XNOmTdP06dMVFxenFStWKDo6WqtXr25x+zVr1mjAgAFasWKF4uLiNH36dE2dOlVPPPFEF08OAAC6qwC73rixsVFFRUV65JFHvNZTU1O1a9euFvf54IMPlJqa6rU2ZswYvfDCC/rhhx903nnn+ezT0NCghoYGz/Pa2lpJUl1dXXs/wlk1NXzXqccHeqrO/trrCvXfN9k9AtAtdebX9+ljW5b1o9vaFjc1NTVqamqSy+XyWne5XKqqqmpxn6qqqha3P3nypGpqahQZGemzT05OjhYvXuyzHh0d3Y7pAbRV6DMZdo8AoLPkhHb6W9TX1ys09OzvY1vcnOZwOLyeW5bls/Zj27e0flp2draysrI8z5ubm3X48GGFhYWd9X1ghrq6OkVHR6uyslIhISF2jwOgA/H1/dNiWZbq6+sVFRX1o9vaFjf9+vWTv7+/z1ma6upqn7Mzp0VERLS4fUBAgMLCwlrcx+l0yul0eq317du37YOjRwoJCeE/foCh+Pr+6fixMzan2XZDcWBgoBISElRQUOC1XlBQoOTk5Bb3SUpK8tk+Pz9fiYmJLd5vAwAAfnps/W6prKwsPf/881q/fr3Kyso0Z84cVVRUKCPj1DX57OxsTZo0ybN9RkaGvvzyS2VlZamsrEzr16/XCy+8oAcffNCujwAAALoZW++5SU9P16FDh7RkyRK53W7Fx8crLy9PMTExkiS32+31M29iY2OVl5enOXPm6Nlnn1VUVJSefvpp3XHHHXZ9BHRzTqdTCxcu9Lk0CaDn4+sbZ+KwWvM9VQAAAD2E7b9+AQAAoCMRNwAAwCjEDQAAMApxAwAAjELcwAiLFi2Sw+HwekRERHhetyxLixYtUlRUlIKDgzVy5Eh99tlnNk4MoDVycnLkcDg0e/Zsz9qUKVN8vt6vueYar/2qqqo0ceJERUREqFevXhoxYoRef/31Lp4ediFuYIyhQ4fK7XZ7HqWlpZ7Xfv/732v58uVauXKldu/erYiICN18882qr6+3cWIAZ7N7926tW7dOV1xxhc9rt9xyi9fXe15entfrEydO1L59+7R582aVlpbq9ttvV3p6uoqLi7tqfNiIuIExAgICFBER4XmEh4dLOnXWZsWKFZo3b55uv/12xcfH68UXX9SJEyf0pz/9yeapAbTk2LFjuvvuu/Xcc8/pggsu8Hnd6XR6fb1feOGFXq9/8MEHmjVrlq666ioNGjRIjz32mPr27auPP/64qz4CbETcwBj79+9XVFSUYmNjddddd+ngwYOSpPLyclVVVSk1NdWzrdPp1A033KBdu3bZNS6As5g5c6ZuvfVW3XTTTS2+vm3bNvXv319DhgzRr371K1VXV3u9ft111yk3N1eHDx9Wc3OzXn31VTU0NGjkyJFdMD3sZvtvBQc6wtVXX62NGzdqyJAh+uabb7R06VIlJyfrs88+8/yy1X/8hawul0tffvmlHeMCOItXX31VH3/8sXbv3t3i62lpabrzzjsVExOj8vJyzZ8/X6NHj1ZRUZHnpxXn5uYqPT1dYWFhCggI0Pnnn68333xTl1xySVd+FNiEuIER0tLSPH8eNmyYkpKSdMkll+jFF1/03GjocDi89rEsy2cNgL0qKyt1//33Kz8/X0FBQS1uk56e7vlzfHy8EhMTFRMTo7ffflu33367JOmxxx7TkSNH9Je//EX9+vXTpk2bdOedd2rHjh0aNmxYl3wW2Ie4gZF69eqlYcOGaf/+/brtttsknfruicjISM821dXVPmdzANirqKhI1dXVSkhI8Kw1NTVp+/btWrlypRoaGuTv7++1T2RkpGJiYrR//35J0oEDB7Ry5Ur99a9/1dChQyVJw4cP144dO/Tss89qzZo1XfeBYAvuuYGRGhoaVFZWpsjISMXGxioiIkIFBQWe1xsbG1VYWKjk5GQbpwTwj2688UaVlpaqpKTE80hMTNTdd9+tkpISn7CRpEOHDqmystLzf15OnDghSfLz8/4nzt/fX83NzZ3/IWA7ztzACA8++KDGjRunAQMGqLq6WkuXLlVdXZ0mT57s+RkZv/3tb3XppZfq0ksv1W9/+1udf/75mjBhgt2jA/g/+vTpo/j4eK+1Xr16KSwsTPHx8Tp27JgWLVqkO+64Q5GRkfriiy/06KOPql+/fvr5z38uSbr88ss1ePBg3XvvvXriiScUFhamTZs2qaCgQP/93/9tx8dCFyNuYISvvvpKv/jFL1RTU6Pw8HBdc801+vDDDxUTEyNJevjhh/Xdd99pxowZOnLkiK6++mrl5+erT58+Nk8O4Fz4+/urtLRUGzdu1NGjRxUZGalRo0YpNzfX8/V83nnnKS8vT4888ojGjRunY8eOafDgwXrxxRc1duxYmz8BuoLDsizL7iEAAAA6CvfcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAw1rZt2+RwOHT06FG7RwHQhYgbAGc0ZcoUz29V/7+6KhoWLVqkK6+80md94MCBcjgccjgcCg4O1sCBAzV+/Hi9++67XtslJyfL7XYrNDS0U+cE0L0QNwC6HcuydPLkybNus2TJErndbu3bt08bN25U3759ddNNN+nxxx/3bBMYGKiIiAg5HI7OHhlAN0LcAGi3Xbt26frrr1dwcLCio6OVmZmp48ePe15/6aWXlJiYqD59+igiIkITJkxQdXW15/XTZ4K2bt2qxMREOZ1O/cd//IcWL16sTz75xHOWZsOGDZ59Th9rwIABuv7667Vu3TrNnz9fCxYs0L59+7yOe/oM05dffqlx48bpggsuUK9evTR06FDl5eV5jrl3716NHTtWvXv3lsvl0sSJE1VTU+N5fcuWLbruuuvUt29fhYWF6V/+5V904MABz+uNjY267777FBkZqaCgIA0cOFA5OTme12tra3XPPfeof//+CgkJ0ejRo/XJJ5902P8OAE4hbgC0S2lpqcaMGaPbb79dn376qXJzc/X+++/rvvvu82zT2Nio3/zmN/rkk0+0adMmlZeXa8qUKT7Hevjhh5WTk6OysjKlpqbqgQce0NChQ+V2u+V2u5Wenn7WWe6//35ZlqW33nqrxddnzpyphoYGbd++XaWlpVq2bJl69+4tSXK73brhhht05ZVXas+ePdqyZYu++eYbjR8/3rP/8ePHlZWVpd27d+udd96Rn5+ffv7zn6u5uVmS9PTTT2vz5s36z//8T+3bt08vvfSSBg4cKOnU2ahbb71VVVVVysvLU1FRkUaMGKEbb7xRhw8fPpe/cgA/xgKAM5g8ebLl7+9v9erVy+sRFBRkSbKOHDliTZw40brnnnu89tuxY4fl5+dnfffddy0e96OPPrIkWfX19ZZlWdZ7771nSbI2bdrktd3ChQut4cOH++wfExNjPfXUUy0e2+VyWb/+9a+9jnvkyBHLsixr2LBh1qJFi1rcb/78+VZqaqrXWmVlpSXJ2rdvX4v7VFdXW5Ks0tJSy7Isa9asWdbo0aOt5uZmn23feecdKyQkxPr++++91i+55BJr7dq1LR4fQNtw5gbAWY0aNUolJSVej+eff97zelFRkTZs2KDevXt7HmPGjFFzc7PKy8slScXFxfrXf/1XxcTEqE+fPho5cqQkqaKiwuu9EhMT2z2vZVlnvMcmMzNTS5cu1bXXXquFCxfq008/9foc7733ntfnuPzyyyXJc+npwIEDmjBhggYNGqSQkBDFxsZ6fY4pU6aopKREl112mTIzM5Wfn+91/GPHjiksLMzrPcrLy70ubQFovwC7BwDQvfXq1UuDBw/2Wvvqq688f25ubta9996rzMxMn30HDBig48ePKzU1VampqXrppZcUHh6uiooKjRkzRo2NjT7v1R6HDh3St99+64mOfzR9+nSNGTNGb7/9tvLz85WTk6Mnn3xSs2bNUnNzs8aNG6dly5b57BcZGSlJGjdunKKjo/Xcc88pKipKzc3Nio+P93yOESNGqLy8XP/zP/+jv/zlLxo/frxuuukmvf7662publZkZKS2bdvmc/y+ffu263MD8EbcAGiXESNG6LPPPvMJoNNKS0tVU1Oj3/3ud4qOjpYk7dmzp1XHDgwMVFNTU6tn+eMf/yg/P78Wv339tOjoaGVkZCgjI0PZ2dl67rnnNGvWLI0YMUJvvPGGBg4cqIAA3/80Hjp0SGVlZVq7dq1SUlIkSe+//77PdiEhIUpPT1d6err+7d/+TbfccosOHz6sESNGqKqqSgEBAZ77cAB0Di5LAWiXuXPn6oMPPtDMmTNVUlKi/fv3a/PmzZo1a5akU2dvAgMD9cwzz+jgwYPavHmzfvOb37Tq2AMHDlR5eblKSkpUU1OjhoYGz2v19fWqqqpSZWWltm/frnvuuUdLly7V448/fsbQmj17trZu3ary8nJ9/PHHevfddxUXFyfp1M3Ghw8f1i9+8Qt99NFHOnjwoPLz8zV16lQ1NTXpggsuUFhYmNatW6f//d//1bvvvqusrCyv4z/11FN69dVX9be//U2ff/65XnvtNUVERHi+TT0pKUm33Xabtm7dqi+++EK7du3SY4891urYA9A6xA2AdrniiitUWFio/fv3KyUlRf/8z/+s+fPney7lhIeHa8OGDXrttdf0T//0T/rd736nJ554olXHvuOOO3TLLbdo1KhRCg8P1yuvvOJ5bcGCBYqMjNTgwYM1ceJE1dbW6p133tHcuXPPeLympibNnDlTcXFxuuWWW3TZZZdp1apVkqSoqCjt3LlTTU1NGjNmjOLj43X//fcrNDRUfn5+8vPz06uvvqqioiLFx8drzpw5+sMf/uB1/N69e2vZsmVKTEzUz372M33xxRfKy8uTn5+fHA6H8vLydP3112vq1KkaMmSI7rrrLn3xxRdyuVzn+tcO4CwclmVZdg8BAADQUThzAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCj/D84Mk70lBymeAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.countplot(data = data, x = suff)" ] }, { "cell_type": "code", "execution_count": 14, "id": "6f5b5e9c-ffcd-4a3d-b3c1-750c101da277", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_3804\\3227672255.py:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", " female_suffered = suff[0]\n", "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_3804\\3227672255.py:2: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", " male_suffered = suff[1]\n" ] } ], "source": [ "female_suffered = suff[0]\n", "male_suffered = suff[1]" ] }, { "cell_type": "code", "execution_count": 15, "id": "1b51947d-0785-4f5b-bc9f-de56cedbb420", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Female suffered percent 5.446623093681917\n" ] } ], "source": [ "total_gend = data['Sex'].count()\n", "print(\"Female suffered percent \", (female_suffered/total_gend)*100)" ] }, { "cell_type": "code", "execution_count": 16, "id": "c440e9cc-3288-45e7-afbb-a12c88d40018", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Male suffered percent 49.89106753812636\n" ] } ], "source": [ "total_gend = data['Sex'].count()\n", "print(\"Male suffered percent \", (male_suffered/total_gend)*100)" ] }, { "cell_type": "markdown", "id": "7a15fa1e-b7f6-4b8d-bd01-9325972c5e8b", "metadata": {}, "source": [ "## Analyze the chest pain type" ] }, { "cell_type": "code", "execution_count": 17, "id": "877fec62-c514-469f-a0e0-072037f7d0f3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ChestPainType\n", "ASY 496\n", "NAP 203\n", "ATA 173\n", "TA 46\n", "Name: count, dtype: int64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['ChestPainType'].value_counts()" ] }, { "cell_type": "code", "execution_count": 18, "id": "49a43505-823a-4f83-a731-a71b7ccc75b5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKnCAYAAAB9MFj8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6GklEQVR4nO3de7iVdZ3//9eWwxYQtoK6t3vcKY2ojaBN2DhqKclJHLOkxPPkV+xSUZQR069RSZaQmkecbMYLxHQcdCoPkzOK+k1KSUXKPI5ZOV/1GztSkJO0QVi/PxrXry0nRfgs3D4e17WuXPf9udd639S1Wjy911p1lUqlEgAAAACAzWyrWg8AAAAAAHwwiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAU0bnWA2wJVq9end/97nfp2bNn6urqaj0OAAAAALyvVCqVLFmyJM3Nzdlqq3Vf/yhGJvnd736XlpaWWo8BAAAAAO9rL7/8cnbeeed17hcjk/Ts2TPJn/6wevXqVeNpAAAAAOD9ZfHixWlpaal2tnURI5PqR7N79eolRgIAAADARtrQVyD6ARsAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKCImsbIiRMnpq6urt2tqampur9SqWTixIlpbm5Ot27dMmjQoDzzzDPtHqOtrS1jx47N9ttvnx49euSII47IK6+8UvpUAAAAAIANqPmVkXvttVfmzZtXvT311FPVfZdeemmuuOKKXHvttZkzZ06ampoydOjQLFmypLpm3Lhxuf322zNjxow89NBDWbp0aQ4//PCsWrWqFqcDAAAAAKxD55oP0Llzu6sh31KpVHLVVVdlwoQJGTlyZJLkxhtvTGNjY2655ZaceuqpWbRoUaZOnZqbbropQ4YMSZLcfPPNaWlpyf3335/hw4cXPRcAAAAAYN1qfmXkCy+8kObm5vTt2zfHHHNMfvvb3yZJXnzxxbS2tmbYsGHVtfX19Tn44IMze/bsJMncuXOzcuXKdmuam5vTv3//6pq1aWtry+LFi9vdAAAAAIDNq6Yxcr/99sv3vve93Hvvvbn++uvT2tqaAw44IK+99lpaW1uTJI2Nje2OaWxsrO5rbW1N165ds912261zzdpMnjw5DQ0N1VtLS8smPjMAAAAA4O1qGiNHjBiRz33ucxkwYECGDBmSu+++O8mfPo79lrq6unbHVCqVNba93YbWXHDBBVm0aFH19vLLL7+HswAAAAAA3omaf0z7z/Xo0SMDBgzICy+8UP0eybdf4Th//vzq1ZJNTU1ZsWJFFi5cuM41a1NfX59evXq1uwEAAAAAm9cWFSPb2try3HPPZaeddkrfvn3T1NSU++67r7p/xYoVmTVrVg444IAkycCBA9OlS5d2a+bNm5enn366ugYAAAAA2DLU9Ne0zz333Hz605/Ohz70ocyfPz/f/OY3s3jx4nzhC19IXV1dxo0bl0mTJqVfv37p169fJk2alO7du+e4445LkjQ0NGT06NEZP358+vTpk969e+fcc8+tfuwbAAAAANhy1DRGvvLKKzn22GPz6quvZocddsjf/u3f5pFHHskuu+ySJDnvvPOyfPnyjBkzJgsXLsx+++2XmTNnpmfPntXHuPLKK9O5c+eMGjUqy5cvz+DBgzN9+vR06tSpVqcFAEAHc+CUA2s9ArCZPDz24VqPAPCBUlepVCq1HqLWFi9enIaGhixatMj3RwIAsAYxEjouMRJg03infW2L+s5IAAAAAKDjEiMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKCILSZGTp48OXV1dRk3blx1W6VSycSJE9Pc3Jxu3bpl0KBBeeaZZ9od19bWlrFjx2b77bdPjx49csQRR+SVV14pPD0AAAAAsCFbRIycM2dO/vmf/zl77713u+2XXnpprrjiilx77bWZM2dOmpqaMnTo0CxZsqS6Zty4cbn99tszY8aMPPTQQ1m6dGkOP/zwrFq1qvRpAAAAAADrUfMYuXTp0hx//PG5/vrrs91221W3VyqVXHXVVZkwYUJGjhyZ/v3758Ybb8wbb7yRW265JUmyaNGiTJ06NZdffnmGDBmSv/7rv87NN9+cp556Kvfff3+tTgkAAAAAWIuax8gzzjgjf/d3f5chQ4a02/7iiy+mtbU1w4YNq26rr6/PwQcfnNmzZydJ5s6dm5UrV7Zb09zcnP79+1fXAAAAAABbhs61fPIZM2bk5z//eebMmbPGvtbW1iRJY2Nju+2NjY35v//3/1bXdO3atd0VlW+teev4tWlra0tbW1v1/uLFizf6HAAAAACAd6ZmV0a+/PLLOfvss3PzzTdn6623Xue6urq6dvcrlcoa295uQ2smT56choaG6q2lpeXdDQ8AAAAAvGs1i5Fz587N/PnzM3DgwHTu3DmdO3fOrFmzcs0116Rz587VKyLffoXj/Pnzq/uampqyYsWKLFy4cJ1r1uaCCy7IokWLqreXX355E58dAAAAAPB2NYuRgwcPzlNPPZUnnniiett3331z/PHH54knnsiHP/zhNDU15b777qses2LFisyaNSsHHHBAkmTgwIHp0qVLuzXz5s3L008/XV2zNvX19enVq1e7GwAAAACwedXsOyN79uyZ/v37t9vWo0eP9OnTp7p93LhxmTRpUvr165d+/fpl0qRJ6d69e4477rgkSUNDQ0aPHp3x48enT58+6d27d84999wMGDBgjR/EAQAAAABqq6Y/YLMh5513XpYvX54xY8Zk4cKF2W+//TJz5sz07NmzuubKK69M586dM2rUqCxfvjyDBw/O9OnT06lTpxpODgAAAAC8XV2lUqnUeohaW7x4cRoaGrJo0SIf2QYAYA0HTjmw1iMAm8nDYx+u9QgAHcI77Ws1+85IAAAAAOCDRYwEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoIiaxsjrrrsue++9d3r16pVevXpl//33z3/+539W91cqlUycODHNzc3p1q1bBg0alGeeeabdY7S1tWXs2LHZfvvt06NHjxxxxBF55ZVXSp8KAAAAALABNY2RO++8c771rW/l8ccfz+OPP55DDjkkn/nMZ6rB8dJLL80VV1yRa6+9NnPmzElTU1OGDh2aJUuWVB9j3Lhxuf322zNjxow89NBDWbp0aQ4//PCsWrWqVqcFAAAAAKxFXaVSqdR6iD/Xu3fvXHbZZTn55JPT3NyccePG5fzzz0/yp6sgGxsbc8kll+TUU0/NokWLssMOO+Smm27K0UcfnST53e9+l5aWlvzHf/xHhg8f/o6ec/HixWloaMiiRYvSq1evzXZuAAC8Px045cBajwBsJg+PfbjWIwB0CO+0r20x3xm5atWqzJgxI8uWLcv++++fF198Ma2trRk2bFh1TX19fQ4++ODMnj07STJ37tysXLmy3Zrm5ub079+/umZt2trasnjx4nY3AAAAAGDzqnmMfOqpp7LNNtukvr4+p512Wm6//fb81V/9VVpbW5MkjY2N7dY3NjZW97W2tqZr167Zbrvt1rlmbSZPnpyGhobqraWlZROfFQAAAADwdjWPkXvssUeeeOKJPPLIIzn99NPzhS98Ic8++2x1f11dXbv1lUpljW1vt6E1F1xwQRYtWlS9vfzyy+/tJAAAAACADap5jOzatWt222237Lvvvpk8eXL22WefXH311WlqakqSNa5wnD9/fvVqyaampqxYsSILFy5c55q1qa+vr/6C91s3AAAAAGDzqnmMfLtKpZK2trb07ds3TU1Nue+++6r7VqxYkVmzZuWAAw5IkgwcODBdunRpt2bevHl5+umnq2sAAAAAgC1D51o++Ze//OWMGDEiLS0tWbJkSWbMmJEHH3ww99xzT+rq6jJu3LhMmjQp/fr1S79+/TJp0qR07949xx13XJKkoaEho0ePzvjx49OnT5/07t075557bgYMGJAhQ4bU8tQAAAAAgLepaYz8/e9/nxNPPDHz5s1LQ0ND9t5779xzzz0ZOnRokuS8887L8uXLM2bMmCxcuDD77bdfZs6cmZ49e1Yf48orr0znzp0zatSoLF++PIMHD8706dPTqVOnWp0WAAAAALAWdZVKpVLrIWpt8eLFaWhoyKJFi3x/JAAAazhwyoG1HgHYTB4e+3CtRwDoEN5pX9vivjMSAAAAAOiYxEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChio2LkIYccktdff32N7YsXL84hhxzyXmcCAAAAADqgjYqRDz74YFasWLHG9j/+8Y/56U9/+p6HAgAAAAA6ns7vZvGTTz5Z/ednn302ra2t1furVq3KPffck7/4i7/YdNMBAAAAAB3Gu4qRH/3oR1NXV5e6urq1fhy7W7dumTJlyiYbDgAAAADoON5VjHzxxRdTqVTy4Q9/OI899lh22GGH6r6uXbtmxx13TKdOnTb5kAAAAADA+9+7ipG77LJLkmT16tWbZRgAAAAAoON6VzHyz/3qV7/Kgw8+mPnz568RJ7/2ta+958EAAAAAgI5lo2Lk9ddfn9NPPz3bb799mpqaUldXV91XV1cnRgIAAAAAa9ioGPnNb34zF198cc4///xNPQ8AAAAA0EFttTEHLVy4MEcdddSmngUAAAAA6MA2KkYeddRRmTlz5qaeBQAAAADowDbqY9q77bZbvvrVr+aRRx7JgAED0qVLl3b7zzrrrE0yHAAAAADQcdRVKpXKuz2ob9++637Aurr89re/fU9DlbZ48eI0NDRk0aJF6dWrV63HAQBgC3PglANrPQKwmTw89uFajwDQIbzTvrZRV0a++OKLGz0YAAAAAPDBtFHfGQkAAAAA8G5t1JWRJ5988nr3T5s2baOGAQAAAAA6ro2KkQsXLmx3f+XKlXn66afz+uuv55BDDtkkgwEAAAAAHctGxcjbb799jW2rV6/OmDFj8uEPf/g9DwUAAAAAdDyb7Dsjt9pqq/zDP/xDrrzyyk31kAAAAABAB7JJf8DmN7/5Td58881N+ZAAAAAAQAexUR/TPuecc9rdr1QqmTdvXu6+++584Qtf2CSDAQAAAAAdy0bFyF/84hft7m+11VbZYYcdcvnll2/wl7YBAAAAgA+mjYqRP/7xjzf1HAAAAABAB7dRMfItf/jDH/L888+nrq4uu+++e3bYYYdNNRcAAAAA0MFs1A/YLFu2LCeffHJ22mmnHHTQQfnkJz+Z5ubmjB49Om+88camnhEAAAAA6AA2Kkaec845mTVrVv793/89r7/+el5//fXceeedmTVrVsaPH7+pZwQAAAAAOoCN+pj2D37wg3z/+9/PoEGDqtsOO+ywdOvWLaNGjcp11123qeYDAAAAADqIjboy8o033khjY+Ma23fccUcf0wYAAAAA1mqjYuT++++fCy+8MH/84x+r25YvX56vf/3r2X///TfZcAAAAABAx7FRH9O+6qqrMmLEiOy8887ZZ599UldXlyeeeCL19fWZOXPmpp4RAAAAAOgANipGDhgwIC+88EJuvvnm/Nd//VcqlUqOOeaYHH/88enWrdumnhEAAAAA6AA2KkZOnjw5jY2N+eIXv9hu+7Rp0/KHP/wh559//iYZDgAAAADoODbqOyP/6Z/+KXvuueca2/faa69897vffc9DAQAAAAAdz0bFyNbW1uy0005rbN9hhx0yb9689zwUAAAAANDxbFSMbGlpycMPP7zG9ocffjjNzc3veSgAAAAAoOPZqO+MPOWUUzJu3LisXLkyhxxySJLkgQceyHnnnZfx48dv0gEBAAAAgI5ho2LkeeedlwULFmTMmDFZsWJFkmTrrbfO+eefnwsuuGCTDggAAAAAdAwbFSPr6upyySWX5Ktf/Wqee+65dOvWLf369Ut9ff2mng8AAAAA6CA2Kka+ZZtttsnHP/7xTTULAAAAANCBbdQP2AAAAAAAvFtiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAETWNkZMnT87HP/7x9OzZMzvuuGM++9nP5vnnn2+3plKpZOLEiWlubk63bt0yaNCgPPPMM+3WtLW1ZezYsdl+++3To0ePHHHEEXnllVdKngoAAAAAsAGda/nks2bNyhlnnJGPf/zjefPNNzNhwoQMGzYszz77bHr06JEkufTSS3PFFVdk+vTp2X333fPNb34zQ4cOzfPPP5+ePXsmScaNG5d///d/z4wZM9KnT5+MHz8+hx9+eObOnZtOnTrV8hQBPpBeumhArUcANpMPfe2pWo8AAMD7WE1j5D333NPu/g033JAdd9wxc+fOzUEHHZRKpZKrrroqEyZMyMiRI5MkN954YxobG3PLLbfk1FNPzaJFizJ16tTcdNNNGTJkSJLk5ptvTktLS+6///4MHz68+HkBAAAAAGvaor4zctGiRUmS3r17J0lefPHFtLa2ZtiwYdU19fX1OfjggzN79uwkydy5c7Ny5cp2a5qbm9O/f//qmrdra2vL4sWL290AAAAAgM1ri4mRlUol55xzTj7xiU+kf//+SZLW1tYkSWNjY7u1jY2N1X2tra3p2rVrtttuu3WuebvJkyenoaGhemtpadnUpwMAAAAAvM0WEyPPPPPMPPnkk/nXf/3XNfbV1dW1u1+pVNbY9nbrW3PBBRdk0aJF1dvLL7+88YMDAAAAAO/IFhEjx44dm7vuuis//vGPs/POO1e3NzU1JckaVzjOnz+/erVkU1NTVqxYkYULF65zzdvV19enV69e7W4AAAAAwOZV0xhZqVRy5pln5oc//GH+z//5P+nbt2+7/X379k1TU1Puu+++6rYVK1Zk1qxZOeCAA5IkAwcOTJcuXdqtmTdvXp5++unqGgAAAACg9mr6a9pnnHFGbrnlltx5553p2bNn9QrIhoaGdOvWLXV1dRk3blwmTZqUfv36pV+/fpk0aVK6d++e4447rrp29OjRGT9+fPr06ZPevXvn3HPPzYABA6q/rg0AAAAA1F5NY+R1112XJBk0aFC77TfccENOOumkJMl5552X5cuXZ8yYMVm4cGH222+/zJw5Mz179qyuv/LKK9O5c+eMGjUqy5cvz+DBgzN9+vR06tSp1KkAAAAAABtQV6lUKrUeotYWL16choaGLFq0yPdHAmwCL100oNYjAJvJh772VK1HqIkDpxxY6xGAzeThsQ/XegSADuGd9rUt4gdsAAAAAICOT4wEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoonOtByAZ+KXv1XoEYDOZe9nf13oEAAAA2GK4MhIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAooqYx8ic/+Uk+/elPp7m5OXV1dbnjjjva7a9UKpk4cWKam5vTrVu3DBo0KM8880y7NW1tbRk7dmy233779OjRI0cccUReeeWVgmcBAAAAALwTNY2Ry5Ytyz777JNrr712rfsvvfTSXHHFFbn22mszZ86cNDU1ZejQoVmyZEl1zbhx43L77bdnxowZeeihh7J06dIcfvjhWbVqVanTAAAAAADegc61fPIRI0ZkxIgRa91XqVRy1VVXZcKECRk5cmSS5MYbb0xjY2NuueWWnHrqqVm0aFGmTp2am266KUOGDEmS3HzzzWlpacn999+f4cOHFzsXAAAAAGD9ttjvjHzxxRfT2tqaYcOGVbfV19fn4IMPzuzZs5Mkc+fOzcqVK9utaW5uTv/+/atr1qatrS2LFy9udwMAAAAANq8tNka2trYmSRobG9ttb2xsrO5rbW1N165ds912261zzdpMnjw5DQ0N1VtLS8smnh4AAAAAeLstNka+pa6urt39SqWyxra329CaCy64IIsWLareXn755U0yKwAAAACwbltsjGxqakqSNa5wnD9/fvVqyaampqxYsSILFy5c55q1qa+vT69evdrdAAAAAIDNa4uNkX379k1TU1Puu+++6rYVK1Zk1qxZOeCAA5IkAwcOTJcuXdqtmTdvXp5++unqGgAAAABgy1DTX9NeunRpfv3rX1fvv/jii3niiSfSu3fvfOhDH8q4ceMyadKk9OvXL/369cukSZPSvXv3HHfccUmShoaGjB49OuPHj0+fPn3Su3fvnHvuuRkwYED117UBAAAAgC1DTWPk448/nk996lPV++ecc06S5Atf+EKmT5+e8847L8uXL8+YMWOycOHC7Lfffpk5c2Z69uxZPebKK69M586dM2rUqCxfvjyDBw/O9OnT06lTp+LnAwAAAACsW01j5KBBg1KpVNa5v66uLhMnTszEiRPXuWbrrbfOlClTMmXKlM0wIQAAAACwqWyx3xkJAAAAAHQsYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBGdaz0AAAAAUNasgw6u9QjAZnLwT2bVeoT1cmUkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFBEh4mR3/nOd9K3b99svfXWGThwYH7605/WeiQAAAAA4M90iBh56623Zty4cZkwYUJ+8Ytf5JOf/GRGjBiRl156qdajAQAAAAD/o0PEyCuuuCKjR4/OKaecko985CO56qqr0tLSkuuuu67WowEAAAAA/+N9HyNXrFiRuXPnZtiwYe22Dxs2LLNnz67RVAAAAADA23Wu9QDv1auvvppVq1alsbGx3fbGxsa0trau9Zi2tra0tbVV7y9atChJsnjx4s036Hqsaltek+cFNr9ava7U2pI/rqr1CMBm8kF9XXtz+Zu1HgHYTD6or2vL3vS6Bh1VrV7X3nreSqWy3nXv+xj5lrq6unb3K5XKGtveMnny5Hz9619fY3tLS8tmmQ344GqYclqtRwDYtCY31HoCgE2q4Xyva0AH01Db17UlS5akYT0zvO9j5Pbbb59OnTqtcRXk/Pnz17ha8i0XXHBBzjnnnOr91atXZ8GCBenTp886AyZsCosXL05LS0tefvnl9OrVq9bjALxnXteAjsbrGtDReF2jlEqlkiVLlqS5uXm96973MbJr164ZOHBg7rvvvhx55JHV7ffdd18+85nPrPWY+vr61NfXt9u27bbbbs4xoZ1evXr5PwGgQ/G6BnQ0XteAjsbrGiWs74rIt7zvY2SSnHPOOTnxxBOz7777Zv/9988///M/56WXXsppp/l4JAAAAABsKTpEjDz66KPz2muv5aKLLsq8efPSv3///Md//Ed22WWXWo8GAAAAAPyPDhEjk2TMmDEZM2ZMrceA9aqvr8+FF164xtcEALxfeV0DOhqva0BH43WNLU1dZUO/tw0AAAAAsAlsVesBAAAAAIAPBjESAAAAAChCjAQAAAAAihAjAQAAAIAixEjYRGbPnp1OnTrl0EMPTZKcdNJJqaurW+/tLbfccks6deqU0047rVbjAyT5/1+7vvWtb7Xbfscdd7R73XrLHnvska5du+b//b//t8a+QYMGVV/v6uvrs/vuu2fSpElZtWrVZpsfYH3e/n7tz/3gBz/Ifvvtl4aGhvTs2TN77bVXxo8fnyT5xje+kZ122ikLFixod8wvf/nLdO3aNXfeeWeR+QHWZkN/7zzppJOqa4cNG5ZOnTrlkUceqd3AfOCJkbCJTJs2LWPHjs1DDz2Ul156KVdffXXmzZtXvSXJDTfcsMa2t44977zzMmPGjLzxxhu1OgWAJMnWW2+dSy65JAsXLlzvuoceeih//OMfc9RRR2X69OlrXfPFL34x8+bNy/PPP5+zzjorX/nKV/Ltb397M0wNsGFvf7/2lvvvvz/HHHNMPv/5z+exxx7L3Llzc/HFF2fFihVJkgsuuCAtLS0544wzqsesXLkyJ510Uo477rh85jOfKX4uAG/5879jXnXVVenVq1e7bVdffXWS5KWXXsrPfvaznHnmmZk6dWqNp+aDTIyETWDZsmW57bbbcvrpp+fwww/P9OnT09DQkKampuotSbbddts1tv33f/93Zs+enf/9v/939txzz3z/+9+v5akAZMiQIWlqasrkyZPXu27q1Kk57rjjcuKJJ2batGmpVCprrOnevXuampqy66675swzz8zgwYNzxx13bKbJAdZtbe/X3vKjH/0on/jEJ/KlL30pe+yxR3bfffd89rOfzZQpU5IknTt3zve+973ceeed1fdqF198cRYsWJBrrrmmFqcDUPXnf8dsaGhIXV3dGtuSP10cc/jhh+f000/PrbfemmXLltV4cj6oxEjYBG699dbsscce2WOPPXLCCSfkhhtuWOtfytdm2rRp+bu/+7s0NDTkhBNO8G+ogJrr1KlTJk2alClTpuSVV15Z65olS5bk3/7t33LCCSdk6NChWbZsWR588MENPna3bt2ycuXKTTwxwIat7/1aU1NTnnnmmTz99NPrPH7PPffMpEmTcvrpp+fee+/N5MmTc8MNN6RXr16lTgFgo1Uqldxwww054YQTsueee2b33XfPbbfdVuux+IASI2ETmDp1ak444YQkyaGHHpqlS5fmgQce2OBxq1evzvTp06vHHnPMMfnZz36WX//615t1XoANOfLII/PRj340F1544Vr3z5gxI/369ctee+2VTp065Zhjjlnvv0xZvXp17rnnntx7770ZPHjw5hobYJ3W935t7Nix+fjHP54BAwZk1113zTHHHJNp06alra2t3WOcffbZ6d+/fw477LCcfvrpOeSQQ4qfB8DGuP/++/PGG29k+PDhSeJCGGpKjIT36Pnnn89jjz2WY445JsmfPsZz9NFHZ9q0aRs8dubMmVm2bFlGjBiRJNl+++0zbNiwd3QswOZ2ySWX5MYbb8yzzz67xr4//0t98qc3tD/84Q/z+uuvt1v3ne98J9tss0223nrrHHHEETnhhBPWGTgBNpcNvV/r0aNH7r777vz617/OV77ylWyzzTYZP358/uZv/qbd93nX1dVlwoQJWb16db7yla/U5FwANsbUqVNz9NFHp3PnzkmSY489No8++mief/75Gk/GB1HnWg8A73dTp07Nm2++mb/4i7+obqtUKunSpUsWLlyY7bbbbp3HTps2LQsWLEj37t2r21avXp1f/OIX+cY3vpFOnTpt1tkB1ueggw7K8OHD8+Uvf7ndrzA+++yzefTRRzNnzpycf/751e2rVq3Kv/7rv+b000+vbjv++OMzYcKE1NfXp7m52esaUBPv9P3aX/7lX+Yv//Ivc8opp2TChAnZfffdc+utt+Z//a//VT3urb/Iv/WfAFu6BQsW5I477sjKlStz3XXXVbevWrUq06ZNyyWXXFLD6fgg8v+g8B68+eab+d73vpfLL788w4YNa7fvc5/7XP7lX/4lZ5555lqPfe2113LnnXdmxowZ2WuvvarbV69enU9+8pP5z//8zxx++OGbdX6ADfnWt76Vj370o9l9992r26ZOnZqDDjoo//iP/9hu7U033ZSpU6e2i5ENDQ3Zbbfdis0L8HYb+35t1113Tffu3f3AA/C+9y//8i/Zeeed1/gRwQceeCCTJ0/OxRdf7F+wUJT/tcF78KMf/SgLFy7M6NGjq79Q9pbPf/7zmTp16jpj5E033ZQ+ffrkqKOOylZbtf/GhMMPPzxTp04VI4GaGzBgQI4//vjqL8quXLkyN910Uy666KL079+/3dpTTjkll156aX75y19mn332qcW4AGt4J+/XXn311bzxxhs57LDDsssuu+T111/PNddck5UrV2bo0KE1mhxg05g6dWo+//nPr/HebZdddsn555+fu+++O5/5zGdqNB0fRL4zEt6DqVOnZsiQIWu8sU3+9G/an3jiifz85z9f67HTpk3LkUceuUaIfOvYH/3oR/n973+/yWcGeLe+8Y1vVH9x9q677sprr72WI488co11/fr1y4ABA3wZOrBFeSfv13r27Jnf/va3+fu///vsueeeGTFiRFpbWzNz5szsscceNZgaYNOYO3dufvnLX+Zzn/vcGvt69uyZYcOGee9GcXWVt/52AQAAAACwGbkyEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAkiR1dXW54447aj3Gu3bSSSfls5/9bK3HAADgHRAjAQA+IFpbWzN27Nh8+MMfTn19fVpaWvLpT386DzzwQJHnX1c0rKurq9569uyZfffdNz/84Q/f8eNeffXVmT59+jta++CDD7Z7vrXd3uljAQDw7nWu9QAAAGx+//3f/50DDzww2267bS699NLsvffeWblyZe69996cccYZ+a//+q+aznfDDTfk0EMPzeuvv57LLrssRx11VB566KHsv//+Gzy2oaHhHT/PAQcckHnz5lXvn3322Vm8eHFuuOGGjXo8AADeHVdGAgB8AIwZMyZ1dXV57LHH8vnPfz6777579tprr5xzzjl55JFHquteffXVHHnkkenevXv69euXu+66q93jPPvssznssMOyzTbbpLGxMSeeeGJeffXV6v7vf//7GTBgQLp165Y+ffpkyJAhWbZsWSZOnJgbb7wxd955Z/UKxAcffLB63Lbbbpumpqbsueee+e53v5utt946d911V1atWpXRo0enb9++6datW/bYY49cffXV7WZ6+xWXgwYNyllnnZXzzjsvvXv3TlNTUyZOnJgk6dq1a5qamqq3bt26pb6+Pk1NTfnjH/+Y5ubmPPPMM+0ef8qUKdlll11SqVSqV1befffd2WeffbL11ltnv/32y1NPPdXumNmzZ+eggw5Kt27d0tLSkrPOOivLli3bmP/qAAA6FDESAKCDW7BgQe65556cccYZ6dGjxxr7t9122+o/f/3rX8+oUaPy5JNP5rDDDsvxxx+fBQsWJEnmzZuXgw8+OB/96Efz+OOP55577snvf//7jBo1qrr/2GOPzcknn5znnnsuDz74YEaOHJlKpZJzzz03o0aNyqGHHpp58+Zl3rx5OeCAA9Y6b5cuXdK5c+esXLkyq1evzs4775zbbrstzz77bL72ta/ly1/+cm677bb1nvONN96YHj165NFHH82ll16aiy66KPfdd996j9l1110zZMiQdldJJn+6avOkk05KXV1ddduXvvSlfPvb386cOXOy44475ogjjsjKlSuTJE899VSGDx+ekSNH5sknn8ytt96ahx56KGeeeeZ6nx8A4IPAx7QBADq4X//616lUKtlzzz03uPakk07KsccemySZNGlSpkyZksceeyyHHnporrvuunzsYx/LpEmTquunTZuWlpaW/OpXv8rSpUvz5ptvZuTIkdlll12SJAMGDKiu7datW9ra2tLU1LTO529ra8tll12WxYsXZ/DgwenSpUu+/vWvV/f37ds3s2fPzm233VaNoGuz995758ILL0yS9OvXL9dee20eeOCBDB06dL3nf8opp+S0007LFVdckfr6+vzyl7/ME088scZ3WF544YXVx7rxxhuz88475/bbb8+oUaNy2WWX5bjjjsu4ceOqz3/NNdfk4IMPznXXXZett956vTMAAHRkrowEAOjgKpVKkrS7sm9d9t577+o/9+jRIz179sz8+fOTJHPnzs2Pf/zjbLPNNtXbW4HzN7/5TfbZZ58MHjw4AwYMyFFHHZXrr78+CxcufEczHnvssdlmm23SvXv3XHHFFfn2t7+dESNGJEm++93vZt99980OO+yQbbbZJtdff31eeumld3weSbLTTjtVz2N9PvvZz6Zz5865/fbbk/wptn7qU5/Krrvu2m7dn3+XZe/evbPHHnvkueeeS/KnP6fp06e3+3MaPnx4Vq9enRdffHGDMwAAdGSujAQA6OD69euXurq6PPfcc2v9Nes/16VLl3b36+rqsnr16iTJ6tWr8+lPfzqXXHLJGsfttNNO6dSpU+67777Mnj07M2fOzJQpUzJhwoQ8+uij6du373qf98orr8yQIUPSq1ev7LjjjtXtt912W/7hH/4hl19+efbff//07Nkzl112WR599NGNPo/16dq1a0488cTccMMNGTlyZG655ZZcddVVGzzuredI/vTndOqpp+ass85aY82HPvShd/RYAAAdlRgJANDB9e7dO8OHD88//uM/5qyzzlrjeyNff/31dt8buS4f+9jH8oMf/CC77rprOnde+9vIurq6HHjggTnwwAPzta99Lbvssktuv/32nHPOOenatWtWrVq11uOampqy2267rbH9pz/9aQ444ICMGTOmuu03v/nNBmd9L0455ZT0798/3/nOd7Jy5cqMHDlyjTWPPPJINSwuXLgwv/rVr6pXiX7sYx/LM888s9bzAQD4oPMxbQCAD4DvfOc7WbVqVf7mb/4mP/jBD/LCCy/kueeeyzXXXNPuI8frc8YZZ2TBggU59thj89hjj+W3v/1tZs6cmZNPPjmrVq3Ko48+mkmTJuXxxx/PSy+9lB/+8If5wx/+kI985CNJ/vQDMU8++WSef/75vPrqq9UffFmf3XbbLY8//njuvffe/OpXv8pXv/rVzJkz5z39WWzIRz7ykfzt3/5tzj///Bx77LHp1q3bGmsuuuiiPPDAA3n66adz0kknZfvtt69edXr++efnZz/7Wc4444w88cQTeeGFF3LXXXdl7Nixm3VuAID3AzESAOADoG/fvvn5z3+eT33qUxk/fnz69++foUOH5oEHHsh11133jh6jubk5Dz/8cFatWpXhw4enf//+Ofvss9PQ0JCtttoqvXr1yk9+8pMcdthh2X333fOVr3wll19+efW7H7/4xS9mjz32qH7/48MPP7zB5zzttNMycuTIHH300dlvv/3y2muvtbtKcnMZPXp0VqxYkZNPPnmt+7/1rW/l7LPPzsCBAzNv3rzcdddd6dq1a5I/fV/lrFmz8sILL+STn/xk/vqv/zpf/epXs9NOO232uQEAtnR1lbe+0RwAAEiSXHzxxZkxY0aeeuqpdtsffPDBfOpTn8rChQvf0UfbAQBoz5WRAADwP5YuXZo5c+ZkypQpa/0BGgAA3hsxEgAA/seZZ56ZT3ziEzn44IPX+RFtAAA2no9pAwAAAABFuDISAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKOL/A2Ow4tgsg6g5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize = (16,8))\n", "sns.countplot(data=data, x= 'ChestPainType')" ] }, { "cell_type": "code", "execution_count": 19, "id": "d3a464a2-e2ac-49a0-9cfe-13d4bb180afe", "metadata": {}, "outputs": [], "source": [ "count_me = data['HeartDisease'].groupby(data['ChestPainType']).count()" ] }, { "cell_type": "code", "execution_count": 20, "id": "89559fe8-36e9-47be-8b3b-b9001e2f6a2e", "metadata": {}, "outputs": [], "source": [ "sum_me = data['HeartDisease'].groupby(data['ChestPainType']).sum()" ] }, { "cell_type": "code", "execution_count": 21, "id": "b46f0a50-7b75-4fe0-ae83-f8ad5c16d5cc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ChestPainType\n", "ASY 392\n", "ATA 24\n", "NAP 72\n", "TA 20\n", "Name: HeartDisease, dtype: int64" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum_me" ] }, { "cell_type": "code", "execution_count": 22, "id": "e05b646e-1ce1-45c3-9d68-b9170ca01547", "metadata": {}, "outputs": [], "source": [ "no_risk = count_me-sum_me" ] }, { "cell_type": "code", "execution_count": 23, "id": "a59db56a-b94f-40d2-8189-8e0412176a9b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "392 of people who have ASY got heart disease and 104 of people who have ASY doesn't get heart disease.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_3804\\2156176294.py:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", " print(\"{} of people who have ASY got heart disease and {} of people who have ASY doesn't get heart disease.\".format(sum_me[0],no_risk[0]))\n" ] } ], "source": [ "print(\"{} of people who have ASY got heart disease and {} of people who have ASY doesn't get heart disease.\".format(sum_me[0],no_risk[0]))" ] }, { "cell_type": "code", "execution_count": 24, "id": "ba4f0a8f-de32-43b5-8794-5aa477bdb2ba", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeSexChestPainTypeRestingBPCholesterolFastingBSRestingECGMaxHRExerciseAnginaOldpeakST_SlopeHeartDisease
040MATA1402890Normal172N0.0Up0
149FNAP1601800Normal156N1.0Flat1
237MATA1302830ST98N0.0Up0
348FASY1382140Normal108Y1.5Flat1
454MNAP1501950Normal122N0.0Up0
\n", "
" ], "text/plain": [ " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n", "0 40 M ATA 140 289 0 Normal 172 \n", "1 49 F NAP 160 180 0 Normal 156 \n", "2 37 M ATA 130 283 0 ST 98 \n", "3 48 F ASY 138 214 0 Normal 108 \n", "4 54 M NAP 150 195 0 Normal 122 \n", "\n", " ExerciseAngina Oldpeak ST_Slope HeartDisease \n", "0 N 0.0 Up 0 \n", "1 N 1.0 Flat 1 \n", "2 N 0.0 Up 0 \n", "3 Y 1.5 Flat 1 \n", "4 N 0.0 Up 0 " ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.head()" ] }, { "cell_type": "markdown", "id": "6d053d6e-60d0-4976-b713-2df3f6034a81", "metadata": {}, "source": [ "## Relation between RestingECG and the HeartDisease\n" ] }, { "cell_type": "code", "execution_count": 25, "id": "beb409a5-332e-4b66-80ed-b16cf13a61bd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RestingECG\n", "Normal 552\n", "LVH 188\n", "ST 178\n", "Name: count, dtype: int64" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[\"RestingECG\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 26, "id": "5be6b2df-af7e-4ee9-9d8e-1d98a90915a9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([552., 0., 0., 0., 0., 178., 0., 0., 0., 188.]),\n", " array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. ]),\n", " )" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAKTCAYAAABhHyR8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArHUlEQVR4nO3df5BV9Xn48eeWhZUfuyu/src7rpFEzAxZjAZTIraC4VeZIiaaYopjpVJHR2WyI1QHHRVrZlexglVGZ0yNS2UsbWqxTmuM2Oi2DM0M0pCITVs7pRVGttR03QXd7FK83z863m8v+Jgsu2QBX6+Z88c957l3P4dxZ++8PfeeQqlUKgUAAAAAwIf4paFeAAAAAABw4hIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABAqmqoF3As3n///XjrrbeipqYmCoXCUC8HAAAAAE4qpVIpDhw4EA0NDfFLv/TR1xielAHxrbfeisbGxqFeBgAAAACc1Pbs2RNnnHHGR86clAGxpqYmIv73BGtra4d4NQAAAABwcunu7o7GxsZyZ/soJ2VA/OBjy7W1tQIiAAAAAByjn+frAd1EBQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSVUO9AHKFewpDvQQGoHR3aaiXAAAAADBgrkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQ6ldAXL16dRQKhYqtWCyWj5dKpVi9enU0NDTEyJEjY9asWfH6669XvEZvb28sX748JkyYEKNHj45FixbF3r17B+dsAAAAAIBB1e8rED/72c/Gvn37yttrr71WPrZmzZpYu3ZtrF+/PrZv3x7FYjHmzp0bBw4cKM80NzfH5s2bY9OmTbF169Y4ePBgLFy4MA4fPjw4ZwQAAAAADJqqfj+hqqriqsMPlEqleOihh+KOO+6Iyy+/PCIiNmzYEPX19fH000/H9ddfH11dXfHEE0/EU089FXPmzImIiI0bN0ZjY2O89NJLMX/+/AGeDgAAAAAwmPp9BeIbb7wRDQ0NMWnSpPja174W//Zv/xYREbt3746Ojo6YN29eeba6ujpmzpwZ27Zti4iIHTt2xKFDhypmGhoaoqmpqTzzYXp7e6O7u7tiAwAAAACOv34FxOnTp8cf//Efx3e/+9345je/GR0dHTFjxoz4yU9+Eh0dHRERUV9fX/Gc+vr68rGOjo4YMWJEjB07Np35MK2trVFXV1feGhsb+7NsAAAAAOAY9SsgLliwIK644oqYOnVqzJkzJ/76r/86Iv73o8ofKBQKFc8plUpH7TvSz5pZtWpVdHV1lbc9e/b0Z9kAAAAAwDHq90eY/6/Ro0fH1KlT44033ih/L+KRVxLu37+/fFVisViMvr6+6OzsTGc+THV1ddTW1lZsAAAAAMDxN6CA2NvbGz/+8Y/jl3/5l2PSpElRLBZjy5Yt5eN9fX3R3t4eM2bMiIiIadOmxfDhwytm9u3bF7t27SrPAAAAAAAnjn7dhXnlypVx6aWXxplnnhn79++Pb3zjG9Hd3R3XXHNNFAqFaG5ujpaWlpg8eXJMnjw5WlpaYtSoUbFkyZKIiKirq4tly5bFihUrYvz48TFu3LhYuXJl+SPRAAAAAMCJpV8Bce/evfFbv/Vb8fbbb8fEiRPji1/8Ynz/+9+PT37ykxERceutt0ZPT0/ceOON0dnZGdOnT48XX3wxampqyq+xbt26qKqqisWLF0dPT0/Mnj072traYtiwYYN7ZgAAAADAgBVKpVJpqBfRX93d3VFXVxddXV2n9PchFu756JvPcGIr3X3S/WoBAAAAHxP96WsD+g5EAAAAAODUJiACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACA1IACYmtraxQKhWhubi7vK5VKsXr16mhoaIiRI0fGrFmz4vXXX694Xm9vbyxfvjwmTJgQo0ePjkWLFsXevXsHshQAAAAA4Dg45oC4ffv2ePzxx+Pcc8+t2L9mzZpYu3ZtrF+/PrZv3x7FYjHmzp0bBw4cKM80NzfH5s2bY9OmTbF169Y4ePBgLFy4MA4fPnzsZwIAAAAADLpjCogHDx6Mq666Kr75zW/G2LFjy/tLpVI89NBDcccdd8Tll18eTU1NsWHDhnjvvffi6aefjoiIrq6ueOKJJ+LBBx+MOXPmxPnnnx8bN26M1157LV566aXBOSsAAAAAYFAcU0C86aab4jd+4zdizpw5Fft3794dHR0dMW/evPK+6urqmDlzZmzbti0iInbs2BGHDh2qmGloaIimpqbyzJF6e3uju7u7YgMAAAAAjr+q/j5h06ZN8Q//8A+xffv2o451dHRERER9fX3F/vr6+viP//iP8syIESMqrlz8YOaD5x+ptbU17rnnnv4uFQAAAAAYoH5dgbhnz574+te/Hhs3bozTTjstnSsUChWPS6XSUfuO9FEzq1atiq6urvK2Z8+e/iwbAAAAADhG/QqIO3bsiP3798e0adOiqqoqqqqqor29PR5++OGoqqoqX3l45JWE+/fvLx8rFovR19cXnZ2d6cyRqquro7a2tmIDAAAAAI6/fgXE2bNnx2uvvRY7d+4sbxdccEFcddVVsXPnzvjUpz4VxWIxtmzZUn5OX19ftLe3x4wZMyIiYtq0aTF8+PCKmX379sWuXbvKMwAAAADAiaFf34FYU1MTTU1NFftGjx4d48ePL+9vbm6OlpaWmDx5ckyePDlaWlpi1KhRsWTJkoiIqKuri2XLlsWKFSti/PjxMW7cuFi5cmVMnTr1qJuyAAAAAABDq983UflZbr311ujp6Ykbb7wxOjs7Y/r06fHiiy9GTU1NeWbdunVRVVUVixcvjp6enpg9e3a0tbXFsGHDBns5AAAAAMAAFEqlUmmoF9Ff3d3dUVdXF11dXaf09yEW7vnoG89wYivdfdL9agEAAAAfE/3pa/36DkQAAAAA4ONFQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASPUrID722GNx7rnnRm1tbdTW1saFF14Y3/nOd8rHS6VSrF69OhoaGmLkyJExa9aseP311yteo7e3N5YvXx4TJkyI0aNHx6JFi2Lv3r2DczYAAAAAwKDqV0A844wz4r777otXX301Xn311fjSl74Ul112WTkSrlmzJtauXRvr16+P7du3R7FYjLlz58aBAwfKr9Hc3BybN2+OTZs2xdatW+PgwYOxcOHCOHz48OCeGQAAAAAwYIVSqVQayAuMGzcuHnjggbj22mujoaEhmpub47bbbouI/73asL6+Pu6///64/vrro6urKyZOnBhPPfVUXHnllRER8dZbb0VjY2M8//zzMX/+/A/9Gb29vdHb21t+3N3dHY2NjdHV1RW1tbUDWf4JrXBPYaiXwACU7h7QrxYAAADAcdPd3R11dXU/V1875u9APHz4cGzatCnefffduPDCC2P37t3R0dER8+bNK89UV1fHzJkzY9u2bRERsWPHjjh06FDFTENDQzQ1NZVnPkxra2vU1dWVt8bGxmNdNgAAAADQD/0OiK+99lqMGTMmqqur44YbbojNmzfHlClToqOjIyIi6uvrK+br6+vLxzo6OmLEiBExduzYdObDrFq1Krq6usrbnj17+rtsAAAAAOAYVPX3CZ/5zGdi586d8c4778QzzzwT11xzTbS3t5ePFwqVH7stlUpH7TvSz5qprq6O6urq/i4VAAAAABigfl+BOGLEiDj77LPjggsuiNbW1vjc5z4Xf/iHfxjFYjEi4qgrCffv31++KrFYLEZfX190dnamMwAAAADAieOYvwPxA6VSKXp7e2PSpElRLBZjy5Yt5WN9fX3R3t4eM2bMiIiIadOmxfDhwytm9u3bF7t27SrPAAAAAAAnjn59hPn222+PBQsWRGNjYxw4cCA2bdoUr7zySrzwwgtRKBSiubk5WlpaYvLkyTF58uRoaWmJUaNGxZIlSyIioq6uLpYtWxYrVqyI8ePHx7hx42LlypUxderUmDNnznE5QQAAAADg2PUrIP7nf/5nXH311bFv376oq6uLc889N1544YWYO3duRETceuut0dPTEzfeeGN0dnbG9OnT48UXX4yamprya6xbty6qqqpi8eLF0dPTE7Nnz462trYYNmzY4J4ZAAAAADBghVKpVBrqRfRXd3d31NXVRVdXV9TW1g71co6bwj0fffMZTmylu0+6Xy0AAADgY6I/fW3A34EIAAAAAJy6BEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQ6ldAbG1tjS984QtRU1MTn/jEJ+LLX/5y/PM//3PFTKlUitWrV0dDQ0OMHDkyZs2aFa+//nrFTG9vbyxfvjwmTJgQo0ePjkWLFsXevXsHfjYAAAAAwKDqV0Bsb2+Pm266Kb7//e/Hli1b4n/+539i3rx58e6775Zn1qxZE2vXro3169fH9u3bo1gsxty5c+PAgQPlmebm5ti8eXNs2rQptm7dGgcPHoyFCxfG4cOHB+/MAAAAAIABK5RKpdKxPvm//uu/4hOf+ES0t7fHxRdfHKVSKRoaGqK5uTluu+22iPjfqw3r6+vj/vvvj+uvvz66urpi4sSJ8dRTT8WVV14ZERFvvfVWNDY2xvPPPx/z58//mT+3u7s76urqoqurK2pra491+Se8wj2FoV4CA1C6+5h/tQAAAACOq/70tQF9B2JXV1dERIwbNy4iInbv3h0dHR0xb9688kx1dXXMnDkztm3bFhERO3bsiEOHDlXMNDQ0RFNTU3nmSL29vdHd3V2xAQAAAADH3zEHxFKpFLfcckv86q/+ajQ1NUVEREdHR0RE1NfXV8zW19eXj3V0dMSIESNi7Nix6cyRWltbo66urrw1NjYe67IBAAAAgH445oB48803x49+9KP4kz/5k6OOFQqVH70tlUpH7TvSR82sWrUqurq6ytuePXuOddkAAAAAQD8cU0Bcvnx5PPfcc/Hyyy/HGWecUd5fLBYjIo66knD//v3lqxKLxWL09fVFZ2dnOnOk6urqqK2trdgAAAAAgOOvXwGxVCrFzTffHH/xF38R3/ve92LSpEkVxydNmhTFYjG2bNlS3tfX1xft7e0xY8aMiIiYNm1aDB8+vGJm3759sWvXrvIMAAAAAHBiqOrP8E033RRPP/10/OVf/mXU1NSUrzSsq6uLkSNHRqFQiObm5mhpaYnJkyfH5MmTo6WlJUaNGhVLliwpzy5btixWrFgR48ePj3HjxsXKlStj6tSpMWfOnME/QwAAAADgmPUrID722GMRETFr1qyK/U8++WQsXbo0IiJuvfXW6OnpiRtvvDE6Oztj+vTp8eKLL0ZNTU15ft26dVFVVRWLFy+Onp6emD17drS1tcWwYcMGdjYAAAAAwKAqlEql0lAvor+6u7ujrq4uurq6TunvQyzc89E3nuHEVrr7pPvVAgAAAD4m+tPXjvkuzAAAAADAqU9ABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApKqGegEAAAAAp6LCPYWhXgIDVLq7NNRLOCG4AhEAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQKpqqBcAAMCpqXBPYaiXwACV7i4N9RIAgBOAKxABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAECq3wHxb//2b+PSSy+NhoaGKBQK8eyzz1YcL5VKsXr16mhoaIiRI0fGrFmz4vXXX6+Y6e3tjeXLl8eECRNi9OjRsWjRoti7d++ATgQAAAAAGHz9DojvvvtufO5zn4v169d/6PE1a9bE2rVrY/369bF9+/YoFosxd+7cOHDgQHmmubk5Nm/eHJs2bYqtW7fGwYMHY+HChXH48OFjPxMAAAAAYNBV9fcJCxYsiAULFnzosVKpFA899FDccccdcfnll0dExIYNG6K+vj6efvrpuP7666OrqyueeOKJeOqpp2LOnDkREbFx48ZobGyMl156KebPnz+A0wEAAAAABtOgfgfi7t27o6OjI+bNm1feV11dHTNnzoxt27ZFRMSOHTvi0KFDFTMNDQ3R1NRUnjlSb29vdHd3V2wAAAAAwPE3qAGxo6MjIiLq6+sr9tfX15ePdXR0xIgRI2Ls2LHpzJFaW1ujrq6uvDU2Ng7msgEAAACAxHG5C3OhUKh4XCqVjtp3pI+aWbVqVXR1dZW3PXv2DNpaAQAAAIDcoAbEYrEYEXHUlYT79+8vX5VYLBajr68vOjs705kjVVdXR21tbcUGAAAAABx/gxoQJ02aFMViMbZs2VLe19fXF+3t7TFjxoyIiJg2bVoMHz68Ymbfvn2xa9eu8gwAAAAAcGLo912YDx48GP/6r/9afrx79+7YuXNnjBs3Ls4888xobm6OlpaWmDx5ckyePDlaWlpi1KhRsWTJkoiIqKuri2XLlsWKFSti/PjxMW7cuFi5cmVMnTq1fFdmAAAAAODE0O+A+Oqrr8Yll1xSfnzLLbdERMQ111wTbW1tceutt0ZPT0/ceOON0dnZGdOnT48XX3wxampqys9Zt25dVFVVxeLFi6Onpydmz54dbW1tMWzYsEE4JQAAAABgsBRKpVJpqBfRX93d3VFXVxddXV2n9PchFu756BvPcGIr3X3S/WoBwKDyXubk5/0MwMD4W3jyO5X/Fvanrx2XuzADAAAAAKcGAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAIDWkAfHRRx+NSZMmxWmnnRbTpk2Lv/u7vxvK5QAAAAAARxiygPinf/qn0dzcHHfccUf84Ac/iF/7tV+LBQsWxJtvvjlUSwIAAAAAjlA1VD947dq1sWzZsvjd3/3diIh46KGH4rvf/W489thj0draWjHb29sbvb295cddXV0REdHd3f2LW/BQ+OlQL4CBOOX/+wSAn8V7mZOe9zMAA+Rv4UnvVP5b+MG5lUqlnzlbKP08U4Osr68vRo0aFd/+9rfjK1/5Snn/17/+9di5c2e0t7dXzK9evTruueeeX/QyAQAAAOCUtmfPnjjjjDM+cmZIrkB8++234/Dhw1FfX1+xv76+Pjo6Oo6aX7VqVdxyyy3lx++//37893//d4wfPz4KhcJxX+9Q6O7ujsbGxtizZ0/U1tYO9XIAAPrFexkA4GR3qr+fKZVKceDAgWhoaPiZs0P2EeaIOCr+lUqlDw2C1dXVUV1dXbHv9NNPP55LO2HU1taekv+RAgAfD97LAAAnu1P5/UxdXd3PNTckN1GZMGFCDBs27KirDffv33/UVYkAAAAAwNAZkoA4YsSImDZtWmzZsqVi/5YtW2LGjBlDsSQAAAAA4EMM2UeYb7nllrj66qvjggsuiAsvvDAef/zxePPNN+OGG24YqiWdUKqrq+Puu+8+6qPbAAAnA+9lAICTnfcz/9+Q3IX5A48++misWbMm9u3bF01NTbFu3bq4+OKLh2o5AAAAAMARhjQgAgAAAAAntiH5DkQAAAAA4OQgIAIAAAAAKQERAAAAAEgJiB8zr7zyShQKhXjnnXeGeikAAAAAnAQExAFYunRpFAqFuO+++yr2P/vss1EoFIZoVQAAv1j79++P66+/Ps4888yorq6OYrEY8+fPj9bW1igUCh+5tbW1DfXyAYCPkaVLl8aXv/zl8uMHH3ww6urq4r333jtq9qc//WmcfvrpsXbt2oiIOOuss+Khhx46am716tVx3nnnHacVnxgExAE67bTT4v7774/Ozs5Be82+vr5Bey0AgOPtiiuuiB/+8IexYcOG+Jd/+Zd47rnnYtasWTFlypTYt29feVu8eHH8+q//esW+K6+8cqiXDwB8jP32b/929PT0xDPPPHPUsWeeeSbee++9uPrqq4dgZScWAXGA5syZE8ViMVpbW9OZZ555Jj772c9GdXV1nHXWWfHggw9WHD/rrLPiG9/4RixdujTq6uriuuuui7a2tjj99NPjr/7qr+Izn/lMjBo1Kr761a/Gu+++Gxs2bIizzjorxo4dG8uXL4/Dhw+XX2vjxo1xwQUXRE1NTRSLxViyZEns37//uJ0/APDx9s4778TWrVvj/vvvj0suuSQ++clPxq/8yq/EqlWr4rLLLotisVjeRo4cWb5C8f/uAwAYKhMnToxLL700vvWtbx117Fvf+lYsWrQoJk6cOAQrO7EIiAM0bNiwaGlpiUceeST27t171PEdO3bE4sWL42tf+1q89tprsXr16rjzzjuP+rjOAw88EE1NTbFjx4648847IyLivffei4cffjg2bdoUL7zwQrzyyitx+eWXx/PPPx/PP/98PPXUU/H444/Hn//5n5dfp6+vL+6999744Q9/GM8++2zs3r07li5dejz/CQCAj7ExY8bEmDFj4tlnn43e3t6hXg4AQL8tW7Ys2tvbY/fu3eV9//7v/x4vv/xyLFu2bAhXduIQEAfBV77ylTjvvPPi7rvvPurY2rVrY/bs2XHnnXfGOeecE0uXLo2bb745HnjggYq5L33pS7Fy5co4++yz4+yzz46IiEOHDsVjjz0W559/flx88cXx1a9+NbZu3RpPPPFETJkyJRYuXBiXXHJJvPzyy+XXufbaa2PBggXxqU99Kr74xS/Gww8/HN/5znfi4MGDx/cfAQD4WKqqqoq2trbYsGFDnH766XHRRRfF7bffHj/60Y+GemkAAD+X+fPnR0NDQ8XFXk8++WQ0NDTEvHnzKmZvu+228v9A/WBraWn5Ba/4F09AHCT3339/bNiwIf7xH/+xYv+Pf/zjuOiiiyr2XXTRRfHGG29UfPT4ggsuOOo1R40aFZ/+9KfLj+vr6+Oss86KMWPGVOz7vx9R/sEPfhCXXXZZfPKTn4yampqYNWtWRES8+eabAzo/AIDMFVdcEW+99VY899xzMX/+/HjllVfi85//vBukAAAnhWHDhsU111wTbW1t8f7770epVIoNGzbE0qVLY9iwYRWzv/d7vxc7d+6s2G644YYhWvkvjoA4SC6++OKYP39+3H777RX7S6XSUXdkLpVKRz1/9OjRR+0bPnx4xeNCofCh+95///2IiHj33Xdj3rx5MWbMmNi4cWNs3749Nm/eHBFuzAIAHF+nnXZazJ07N+66667Ytm1bLF269EM/nQEAcCK69tprY8+ePfG9730v/uZv/ibefPPN+J3f+Z2j5iZMmFD+9OgH27hx44Zgxb9YVUO9gFPJfffdF+edd16cc8455X1TpkyJrVu3Vsxt27YtzjnnnKMq9kD90z/9U7z99ttx3333RWNjY0REvPrqq4P6MwAAfh5TpkyJZ599dqiXAQDwc/n0pz8dM2fOjCeffDJKpVLMmjWr4lOhH3cC4iCaOnVqXHXVVfHII4+U961YsSK+8IUvxL333htXXnll/P3f/32sX78+Hn300UH/+WeeeWaMGDEiHnnkkbjhhhti165dce+99w76zwEA+MBPfvKT+M3f/M249tpr49xzz42ampp49dVXY82aNXHZZZcN9fIAAI7S1dUVO3furNg3bty4WLZsWVx33XUREfFHf/RHQ7CyE5ePMA+ye++9t+Ijyp///Ofjz/7sz2LTpk3R1NQUd911V/z+7//+cbkz8sSJE6OtrS2+/e1vx5QpU+K+++6LP/iDPxj0nwMA8IExY8bE9OnTY926dXHxxRdHU1NT3HnnnXHdddfF+vXrh3p5AABHeeWVV+L888+v2O6666644oororq6Oqqrq+Pyyy8f6mWeUAqlD/tCPgAAAACAcAUiAAAAAPARBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAAKn/B5J4TZRgS2OaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize = (16,8))\n", "plt.hist(data[\"RestingECG\"],color='green')" ] }, { "cell_type": "code", "execution_count": null, "id": "77794355-8c15-4af6-a513-6f5f5c09bdbe", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "bc8675d2-03b7-49b7-a80d-99ce2f0ee43e", "metadata": {}, "source": [ "## Unique values to aid backend\n" ] }, { "cell_type": "code", "execution_count": 27, "id": "c8db5291-fdb5-4520-96c5-6aa4552bfb56", "metadata": {}, "outputs": [], "source": [ "s = data[\"Sex\"].unique()\n", "c = data[\"ChestPainType\"].unique()\n", "r = data[\"RestingECG\"].unique()\n", "e = data[\"ExerciseAngina\"].unique()\n", "sl = data[\"ST_Slope\"].unique()" ] }, { "cell_type": "code", "execution_count": 28, "id": "4fb5831f-8d53-4426-b84a-7eb3aa36b6ac", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['M' 'F']\n", "['ATA' 'NAP' 'ASY' 'TA']\n", "['Normal' 'ST' 'LVH']\n", "['N' 'Y']\n", "['Up' 'Flat' 'Down']\n" ] } ], "source": [ "print(s)\n", "print(c)\n", "print(r)\n", "print(e)\n", "print(sl)" ] }, { "cell_type": "code", "execution_count": null, "id": "f015da99-69f7-4195-9917-710d6f7fe634", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "c4b35ad8-003a-42c3-a75b-c1ec01784ea2", "metadata": {}, "source": [ "## Label Encoding\n" ] }, { "cell_type": "code", "execution_count": 29, "id": "fefab506-4a13-4640-aa27-9ee0971a849a", "metadata": {}, "outputs": [], "source": [ "labelencoder = LabelEncoder()\n", "data[\"Sex\"] = labelencoder.fit_transform(data[\"Sex\"])" ] }, { "cell_type": "code", "execution_count": 30, "id": "6e8dcec9-7c3d-4e80-a4c3-9d4e81dca8a1", "metadata": {}, "outputs": [], "source": [ "data[\"ChestPainType\"] = labelencoder.fit_transform(data[\"ChestPainType\"])\n", "data[\"RestingECG\"] = labelencoder.fit_transform(data[\"RestingECG\"])\n", "data[\"ExerciseAngina\"] = labelencoder.fit_transform(data[\"ExerciseAngina\"])\n", "data[\"ST_Slope\"] = labelencoder.fit_transform(data[\"ST_Slope\"])" ] }, { "cell_type": "code", "execution_count": 31, "id": "08d1ae90-5b55-4e82-acb4-c5ee40bc9b77", "metadata": {}, "outputs": [], "source": [ "s = data[\"Sex\"].unique()\n", "c = data[\"ChestPainType\"].unique()\n", "r = data[\"RestingECG\"].unique()\n", "e = data[\"ExerciseAngina\"].unique()\n", "sl = data[\"ST_Slope\"].unique()" ] }, { "cell_type": "code", "execution_count": 32, "id": "60195969-f008-430e-a0cc-08ddcfbcc382", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1 0]\n", "[1 2 0 3]\n", "[1 2 0]\n", "[0 1]\n", "[2 1 0]\n" ] } ], "source": [ "print(s)\n", "print(c)\n", "print(r)\n", "print(e)\n", "print(sl)" ] }, { "cell_type": "code", "execution_count": null, "id": "1f253193-4257-45f9-ab18-0d23978847f5", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 33, "id": "23306642-b970-4271-bc46-484b4f286be6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([40, 49, 37, 48, 54, 39, 45, 58, 42, 38, 43, 60, 36, 44, 53, 52, 51,\n", " 56, 41, 32, 65, 35, 59, 50, 47, 31, 46, 57, 55, 63, 66, 34, 33, 61,\n", " 29, 62, 28, 30, 74, 68, 72, 64, 69, 67, 73, 70, 77, 75, 76, 71],\n", " dtype=int64)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#label = data[\"HeartDisease\"].copy()\n", "\n", "data[\"Age\"].unique()" ] }, { "cell_type": "code", "execution_count": 34, "id": "507b778b-2cea-4e41-af16-2a4cadf41fac", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkqUlEQVR4nO3dfXBU1f3H8c8lIbuBJltDSDaRTZp20DoGKc8aqwbRYCpYwJaH2ArVMlqRGgPFUkdF7ZDWjlGmVGurgg+JMJ0KUoVqUAGdqBODtIKORRubpCSmZnA3wWQTkvv7w2F/rknQhQ33ZPN+zZyZ3HPO3f3eYcJ+cu7dey3btm0BAAAYZJjTBQAAAHwRAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYJx4pws4ET09PTp06JCSkpJkWZbT5QAAgK/Atm21trYqMzNTw4Ydf41kUAaUQ4cOyefzOV0GAAA4AfX19RozZsxx5wzKgJKUlCTpswNMTk52uBoAAPBVBAIB+Xy+0Of48QzKgHLstE5ycjIBBQCAQearXJ7BRbIAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKACMcuONNyo/P1833nij06UAcFBEAaW0tFRTpkxRUlKS0tLSNGfOHL333nthc2zb1po1a5SZmanExETl5+frwIEDYXOCwaCWL1+u1NRUjRw5UldccYUaGhpO/mgADGp1dXXav3+/JGn//v2qq6tzuCIATokooOzevVvLli3T66+/rsrKSh09elQFBQU6cuRIaM4999yjsrIyrV+/XtXV1fJ6vbr00kvV2toamlNcXKwtW7Zo06ZNevXVV9XW1qZZs2apu7s7ekcGYNC5/vrrj7sNYOiwbNu2T3Tn//3vf0pLS9Pu3bt14YUXyrZtZWZmqri4WLfccoukz1ZL0tPT9dvf/lbXXXed/H6/Ro8erSeeeEILFiyQ9P9PJ96+fbtmzpz5pe8bCATk8Xjk9/t5Fg8QI5566ik99NBDvfqvu+46LVq0yIGKAERbJJ/fJ3UNit/vlySlpKRIkmpra9XU1KSCgoLQHJfLpYsuukhVVVWSpJqaGnV1dYXNyczMVG5ubmjOFwWDQQUCgbAGIHYcPXq0z3AiSQ899JCOHj16iisC4LQTDii2baukpETf/e53lZubK0lqamqSJKWnp4fNTU9PD401NTUpISFBp512Wr9zvqi0tFQejyfUfD7fiZYNwECPP/74SY0DiD0nHFBuvPFG/fOf/9RTTz3Va+yLj1G2bftLH618vDmrV6+W3+8Ptfr6+hMtG4CBrr766pMaBxB7TiigLF++XNu2bdPLL7+sMWPGhPq9Xq8k9VoJaW5uDq2qeL1edXZ26vDhw/3O+SKXy6Xk5OSwBiB2xMfH67rrrutz7Gc/+5ni4+NPcUUAnBZRQLFtWzfeeKOefvppvfTSS8rJyQkbz8nJkdfrVWVlZaivs7NTu3fvVl5eniRp0qRJGj58eNicxsZG7d+/PzQHwNCzaNEijRgxIqxvxIgRoYvpAQwtEf1ZsmzZMlVUVOiZZ55RUlJSaKXE4/EoMTFRlmWpuLhYa9eu1dixYzV27FitXbtWI0aMUFFRUWjutddeqxUrVmjUqFFKSUnRypUrNW7cOF1yySXRP0IAg8Yf//jHsNM5f/zjHx2sBoCTIgooDz74oCQpPz8/rH/Dhg1asmSJJGnVqlVqb2/XDTfcoMOHD2vatGl64YUXlJSUFJp/3333KT4+XvPnz1d7e7tmzJihjRs3Ki4u7uSOBsCglpWVpdzcXO3fv1+5ubnKyspyuiQADjmp+6A4hfugAAAw+Jyy+6AAAAAMBAIKAAAwDgEFgFGqqqq0YMGCfu8sDWBoIKAAMEZHR4fKysr00UcfqaysTB0dHU6XBMAhBBQAxigvL1dLS4skqaWlRRUVFQ5XBMApBBQARmhoaFBFRYWOfbHQtm1VVFSooaHB4coAOIGAAsBxtm1r3bp1+uJdD3p6evrsBxD7CCgAHFdXV6fq6mr19PSE9ff09Ki6ulp1dXUOVQbAKQQUAI7LysrSGWec0efYmWeeyR1lgSGIgALAcbZt69ChQ32O/fe//+UUDzAEEVAAOO6NN95QW1tbn2NtbW164403TnFFAJxGQAHguGnTpvX7XA6Px6Np06ad4ooAOI2AAsBxw4YN0+23397n2B133KFhw/ivChhq+K0HYITJkydr3LhxYX3nnHOOJk6c6FBFAJxEQAFgjLvvvluWZUmSLMvSXXfd5XBFAJxCQAFgDLfbLbfb3etnAEMPAQWAMcrLy0MPCOzo6OBZPMAQRkABYASexQPg8wgoABx37Fk8/fVzozZg6CGgAHDcsWfxdHd3h/V3d3fzLB5giCKgAHBcVlaWpkyZori4uLD+uLg4TZ06lWfxAEMQAQWA4yzL0k033dRv/7GvHgMYOggoAIwwZswYFRUVhfUVFRXp9NNPd6giAE4ioAAwxte//vWwbY/H40whABxHQAFgjN///vfH3QYwdBBQABjhRz/6UUT9AGIbAQWA49ra2vq9IVtDQ4Pa2tpOcUUAnEZAAeC4n/zkJyc1DiD2EFAAOG7Dhg0nNQ4g9hBQADguMTHxpMYBxB4CCgDHPfvssyc1DiD2RBxQ9uzZo9mzZyszM1OWZWnr1q1h45Zl9dl+97vfhebk5+f3Gl+4cOFJHwyAwWnWrFm9bnN/THx8vGbNmnWKKwLgtIgDypEjRzR+/HitX7++z/HGxsaw9uijj8qyLF155ZVh85YuXRo276GHHjqxIwAw6MXFxekXv/hFn2OrVq3qN7wAiF3xke5QWFiowsLCfse9Xm/Y9jPPPKPp06frm9/8Zlj/iBEjes0FMHRddtllevjhh/Xxxx+H+kaPHq2CggIHqwLglAG9BuWjjz7Sc889p2uvvbbXWHl5uVJTU3X22Wdr5cqVam1t7fd1gsGgAoFAWAMQey644ILjbgMYOgY0oDz22GNKSkrSvHnzwvqvuuoqPfXUU9q1a5duu+02/fWvf+015/NKS0vl8XhCzefzDWTZABzQ0NCgbdu2hfVt27at3xu4AYhtlm3b9gnvbFnasmWL5syZ0+f4t7/9bV166aVf+jyNmpoaTZ48WTU1NZo4cWKv8WAwqGAwGNoOBALy+Xzy+/1KTk4+0fIBGMK2ba1atUp79+5Vd3d3qD8uLk4TJ07UPffcI8uyHKwQQDQEAgF5PJ6v9Pk9YCsor7zyit577z399Kc//dK5EydO1PDhw3Xw4ME+x10ul5KTk8MagNhRV1en6urqsHAiSd3d3aqurlZdXZ1DlQFwyoAFlEceeUSTJk3S+PHjv3TugQMH1NXVpYyMjIEqB4DBsrKyNGXKlD7Hpk6dqqysrFNcEQCnRfwtnra2Nr3//vuh7draWu3bt08pKSmh/0QCgYD+8pe/6N577+21/wcffKDy8nJ973vfU2pqqt555x2tWLFCEyZM0Pnnn38ShwJgsLIsSzNmzFB1dXWvsRkzZnB6BxiCIl5BefPNNzVhwgRNmDBBklRSUqIJEybo9ttvD83ZtGmTbNvWokWLeu2fkJCgF198UTNnztSZZ56pn//85yooKNDOnTu51wEwRPX09OiBBx7oc+wPf/iDenp6TnFFAJx2UhfJOiWSi2wAmO+1117T6tWr+x0vLS3VeeeddworAjAQIvn8jvgUDxBrbNtWR0eH02UMaeecc46Sk5P7vMdRcnKyzjnnHLW3tztQGY5xu92casMpRUDBkNfR0XHcuyPDWYFAQJdffrnTZQx5O3bs4KnSOKV4mjEAADAOKygY8txut3bs2OF0GZDU3NysxYsXS5KGDRumiooKeTweh6uC9NnvCXAqEVAw5FmWxdK1IdLS0kI/z58/nweKAkMYp3gAGOnYSgqAoYmAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjBNxQNmzZ49mz56tzMxMWZalrVu3ho0vWbJElmWFtXPPPTdsTjAY1PLly5WamqqRI0fqiiuuUENDw0kdCAAAiB0RB5QjR45o/PjxWr9+fb9zLrvsMjU2Noba9u3bw8aLi4u1ZcsWbdq0Sa+++qra2to0a9YsdXd3R34EAAAg5sRHukNhYaEKCwuPO8flcsnr9fY55vf79cgjj+iJJ57QJZdcIkl68skn5fP5tHPnTs2cOTPSkgAAQIwZkGtQdu3apbS0NJ1xxhlaunSpmpubQ2M1NTXq6upSQUFBqC8zM1O5ubmqqqrq8/WCwaACgUBYAwAAsSvqAaWwsFDl5eV66aWXdO+996q6uloXX3yxgsGgJKmpqUkJCQk67bTTwvZLT09XU1NTn69ZWloqj8cTaj6fL9plAwAAg0R8iufLLFiwIPRzbm6uJk+erOzsbD333HOaN29ev/vZti3LsvocW716tUpKSkLbgUCAkAIAQAwb8K8ZZ2RkKDs7WwcPHpQkeb1edXZ26vDhw2HzmpublZ6e3udruFwuJScnhzUAABC7BjygtLS0qL6+XhkZGZKkSZMmafjw4aqsrAzNaWxs1P79+5WXlzfQ5QAAgEEg4lM8bW1tev/990PbtbW12rdvn1JSUpSSkqI1a9boyiuvVEZGhj788EP96le/UmpqqubOnStJ8ng8uvbaa7VixQqNGjVKKSkpWrlypcaNGxf6Vg8AABjaIg4ob775pqZPnx7aPnZtyOLFi/Xggw/q7bff1uOPP65PPvlEGRkZmj59ujZv3qykpKTQPvfdd5/i4+M1f/58tbe3a8aMGdq4caPi4uKicEgAAGCws2zbtp0uIlKBQEAej0d+v5/rUYAY0t7eHrrP0o4dO5SYmOhwRQCiKZLPb57FAwAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYJ+pPM8ZXY9u2Ojo6nC4DMMrnfyf4/QD65na7ZVmW02UMOAKKQzo6OkJ3zATQ27HndwEIN1TusswpHgAAYBxWUAzQ9p1FsofxTwHItqWeo5/9PCxeGgLL2MBXYfUc1df2PeV0GacUn4oGsIfFS3HDnS4DMESC0wUAxhl0T/WNAk7xAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcHhZogu4upysAAJhsCH5OEFAMkPSPTU6XAACAUTjFAwAAjMMKigFaxy+U4oY7XQYAwFTdXUNutZ2AYoK44QQUAAA+h1M8AADAOBEHlD179mj27NnKzMyUZVnaunVraKyrq0u33HKLxo0bp5EjRyozM1NXX321Dh06FPYa+fn5siwrrC1cuPCkDwYAAMSGiAPKkSNHNH78eK1fv77X2Keffqq9e/fqtttu0969e/X000/rX//6l6644opec5cuXarGxsZQe+ihh07sCAAAQMyJ+BqUwsJCFRYW9jnm8XhUWVkZ1vf73/9eU6dOVV1dnbKyskL9I0aMkNfrjfTtAQDAEDDg16D4/X5ZlqWvf/3rYf3l5eVKTU3V2WefrZUrV6q1tbXf1wgGgwoEAmENAADErgH9Fk9HR4d++ctfqqioSMnJyaH+q666Sjk5OfJ6vdq/f79Wr16tf/zjH71WX44pLS3VnXfeOZClAgAAgwxYQOnq6tLChQvV09OjBx54IGxs6dKloZ9zc3M1duxYTZ48WXv37tXEiRN7vdbq1atVUlIS2g4EAvL5fANVOgAAcNiABJSuri7Nnz9ftbW1eumll8JWT/oyceJEDR8+XAcPHuwzoLhcLrlcroEoFQAAGCjqAeVYODl48KBefvlljRo16kv3OXDggLq6upSRkRHtcgAAwCAUcUBpa2vT+++/H9qura3Vvn37lJKSoszMTP3gBz/Q3r179eyzz6q7u1tNTU2SpJSUFCUkJOiDDz5QeXm5vve97yk1NVXvvPOOVqxYoQkTJuj888+P3pEBAIBBK+KA8uabb2r69Omh7WPXhixevFhr1qzRtm3bJEnf+c53wvZ7+eWXlZ+fr4SEBL344otat26d2tra5PP5dPnll+uOO+5QXFzcSRwKAACIFREHlPz8fNm23e/48cYkyefzaffu3ZG+LQAAGEJ4WKABrJ6jOn6sA4YI25Z6jn7287B4ybKcrQcwhHXs92IIIaAY4Gv7nnK6BAAAjMLTjAEAgHFYQXGI2+3Wjh07nC4DMEpHR4fmzp0rSdqyZYvcbrfDFQHmGSq/FwQUh1iWpcTERKfLAIzldrv5HQGGME7xAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcSIOKHv27NHs2bOVmZkpy7K0devWsHHbtrVmzRplZmYqMTFR+fn5OnDgQNicYDCo5cuXKzU1VSNHjtQVV1yhhoaGkzoQAAAQOyIOKEeOHNH48eO1fv36PsfvuecelZWVaf369aqurpbX69Wll16q1tbW0Jzi4mJt2bJFmzZt0quvvqq2tjbNmjVL3d3dJ34kAAAgZsRHukNhYaEKCwv7HLNtW/fff79uvfVWzZs3T5L02GOPKT09XRUVFbruuuvk9/v1yCOP6IknntAll1wiSXryySfl8/m0c+dOzZw58yQOBwAAxIKoXoNSW1urpqYmFRQUhPpcLpcuuugiVVVVSZJqamrU1dUVNiczM1O5ubmhOV8UDAYVCATCGgAAiF1RDShNTU2SpPT09LD+9PT00FhTU5MSEhJ02mmn9Tvni0pLS+XxeELN5/NFs2wAAGCYAfkWj2VZYdu2bffq+6LjzVm9erX8fn+o1dfXR61WAABgnqgGFK/XK0m9VkKam5tDqyper1ednZ06fPhwv3O+yOVyKTk5OawBAIDYFdWAkpOTI6/Xq8rKylBfZ2endu/erby8PEnSpEmTNHz48LA5jY2N2r9/f2gOAAAY2iL+Fk9bW5vef//90HZtba327dunlJQUZWVlqbi4WGvXrtXYsWM1duxYrV27ViNGjFBRUZEkyePx6Nprr9WKFSs0atQopaSkaOXKlRo3blzoWz0AAGBoizigvPnmm5o+fXpou6SkRJK0ePFibdy4UatWrVJ7e7tuuOEGHT58WNOmTdMLL7ygpKSk0D733Xef4uPjNX/+fLW3t2vGjBnauHGj4uLionBIAABgsLNs27adLiJSgUBAHo9Hfr+f61GAGNLe3h66z9KOHTuUmJjocEUAoimSz2+exQMAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgRf80YiDW2baujo8PpMiCF/Tvwb2IWt9v9pY8sAaKJgIIhr6OjI/TVVphj7ty5TpeAz+Fr3zjVOMUDAACMwwoKhjy3260dO3Y4XQb02em2YDAo6bOHhHJKwRxut9vpEjDEEFAw5FmWxdK1QUaMGOF0CQAMwCkeAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAFglKqqKi1YsEBVVVVOlwLAQQQUAMbo6OhQWVmZPvroI5WVlamjo8PpkgA4hIACwBjl5eVqaWmRJLW0tKiiosLhigA4hYACwAgNDQ2qqKiQbduSJNu2VVFRoYaGBocrA+AEAgoAx9m2rXXr1vXbfyy0ABg6CCgAHFdXV6fq6mp1d3eH9Xd3d6u6ulp1dXUOVQbAKQQUAI7LysrSlClTFBcXF9YfFxenqVOnKisry6HKADiFgALAcZZl6aabbuq337IsB6oC4CQCCgAjjBkzRkVFRaEwYlmWioqKdPrppztcGQAnRD2gfOMb35BlWb3asmXLJElLlizpNXbuuedGuwwAg9BVV12lUaNGSZJSU1NVVFTkcEUAnBL1gFJdXa3GxsZQq6yslCT98Ic/DM257LLLwuZs37492mUAGITcbrdKSkqUnp6um2++WW632+mSADgkPtovOHr06LDt3/zmN/rWt76liy66KNTncrnk9Xqj/dYAYkBeXp7y8vKcLgOAwwb0GpTOzk49+eSTuuaaa8Iuctu1a5fS0tJ0xhlnaOnSpWpubj7u6wSDQQUCgbAGAABi14AGlK1bt+qTTz7RkiVLQn2FhYUqLy/XSy+9pHvvvVfV1dW6+OKLFQwG+32d0tJSeTyeUPP5fANZNgAAcJhlD+AtGmfOnKmEhAT97W9/63dOY2OjsrOztWnTJs2bN6/POcFgMCzABAIB+Xw++f1+JScnR71uAAAQfYFAQB6P5yt9fkf9GpRj/vOf/2jnzp16+umnjzsvIyND2dnZOnjwYL9zXC6XXC5XtEsEAACGGrBTPBs2bFBaWpouv/zy485raWlRfX29MjIyBqoUAAAwyAxIQOnp6dGGDRu0ePFixcf//yJNW1ubVq5cqddee00ffvihdu3apdmzZys1NVVz584diFIAAMAgNCCneHbu3Km6ujpdc801Yf1xcXF6++239fjjj+uTTz5RRkaGpk+frs2bNyspKWkgSgEAAIPQgF4kO1AiucgGAACYIZLPb57FAwAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwTtQDypo1a2RZVljzer2hcdu2tWbNGmVmZioxMVH5+fk6cOBAtMsAAACD2ICsoJx99tlqbGwMtbfffjs0ds8996isrEzr169XdXW1vF6vLr30UrW2tg5EKQAAYBAakIASHx8vr9cbaqNHj5b02erJ/fffr1tvvVXz5s1Tbm6uHnvsMX366aeqqKgYiFIAAMAgNCAB5eDBg8rMzFROTo4WLlyof//735Kk2tpaNTU1qaCgIDTX5XLpoosuUlVVVb+vFwwGFQgEwhoAAIhdUQ8o06ZN0+OPP67nn39ef/7zn9XU1KS8vDy1tLSoqalJkpSenh62T3p6emisL6WlpfJ4PKHm8/miXTYAADBI1ANKYWGhrrzySo0bN06XXHKJnnvuOUnSY489FppjWVbYPrZt9+r7vNWrV8vv94dafX19tMsGAAAGGfCvGY8cOVLjxo3TwYMHQ9/m+eJqSXNzc69Vlc9zuVxKTk4OawAAIHYNeEAJBoN69913lZGRoZycHHm9XlVWVobGOzs7tXv3buXl5Q10KQAAYJCIj/YLrly5UrNnz1ZWVpaam5v161//WoFAQIsXL5ZlWSouLtbatWs1duxYjR07VmvXrtWIESNUVFQU7VIAAMAgFfWA0tDQoEWLFunjjz/W6NGjde655+r1119Xdna2JGnVqlVqb2/XDTfcoMOHD2vatGl64YUXlJSUFO1SAADAIGXZtm07XUSkAoGAPB6P/H4/16MAADBIRPL5zbN4AACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGiXpAKS0t1ZQpU5SUlKS0tDTNmTNH7733XticJUuWyLKssHbuuedGuxQAADBIRT2g7N69W8uWLdPrr7+uyspKHT16VAUFBTpy5EjYvMsuu0yNjY2htn379miXAgAABqn4aL/g3//+97DtDRs2KC0tTTU1NbrwwgtD/S6XS16vN9pvDwAAYsCAX4Pi9/slSSkpKWH9u3btUlpams444wwtXbpUzc3N/b5GMBhUIBAIawAAIHZZtm3bA/Xitm3r+9//vg4fPqxXXnkl1L9582Z97WtfU3Z2tmpra3Xbbbfp6NGjqqmpkcvl6vU6a9as0Z133tmr3+/3Kzk5eaDKBwAAURQIBOTxeL7S5/eABpRly5bpueee06uvvqoxY8b0O6+xsVHZ2dnatGmT5s2b12s8GAwqGAyGtgOBgHw+HwEFAIBBJJKAEvVrUI5Zvny5tm3bpj179hw3nEhSRkaGsrOzdfDgwT7HXS5XnysrAAAgNkU9oNi2reXLl2vLli3atWuXcnJyvnSflpYW1dfXKyMjI9rlAACAQSjqF8kuW7ZMTz75pCoqKpSUlKSmpiY1NTWpvb1dktTW1qaVK1fqtdde04cffqhdu3Zp9uzZSk1N1dy5c6NdDgAAGISifg2KZVl99m/YsEFLlixRe3u75syZo7feekuffPKJMjIyNH36dN19993y+Xxf6T0iOYcFAADM4Og1KF+WdxITE/X8889H+20BAEAM4Vk8AADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAMEpVVZUWLFigqqoqp0sB4CBHA8oDDzygnJwcud1uTZo0Sa+88oqT5QBwWEdHh8rKyvTRRx+prKxMHR0dTpcEwCGOBZTNmzeruLhYt956q9566y1dcMEFKiwsVF1dnVMlAXBYeXm5WlpaJEktLS2qqKhwuCIATrFs27adeONp06Zp4sSJevDBB0N9Z511lubMmaPS0tLj7hsIBOTxeOT3+5WcnDzQpQI4BRoaGrR48WJ1d3eH+uLj47Vx40aNGTPGwcoAREskn9+OrKB0dnaqpqZGBQUFYf0FBQV9nncOBoMKBAJhDUDssG1b69at67ffob+jADjIkYDy8ccfq7u7W+np6WH96enpampq6jW/tLRUHo8n1Hw+36kqFcApUFdXp+rq6rDVE0nq7u5WdXU1p36BIcjRi2Qtywrbtm27V58krV69Wn6/P9Tq6+tPVYkAToGsrCxNmTJFcXFxYf1xcXGaOnWqsrKyHKoMgFMcCSipqamKi4vrtVrS3Nzca1VFklwul5KTk8MagNhhWZZuuummfvv7+sMFQGxzJKAkJCRo0qRJqqysDOuvrKxUXl6eEyUBcNiYMWNUVFQUCiOWZamoqEinn366w5UBcIJjp3hKSkr08MMP69FHH9W7776rm2++WXV1dbr++uudKgmAw6666iqNGjVK0mcrrUVFRQ5XBMAp8U698YIFC9TS0qK77rpLjY2Nys3N1fbt25Wdne1USQAc5na7VVJSonXr1ummm26S2+12uiQADnHsPigng/ugAAAw+Bh/HxQAAIDjIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMZx7Fb3J+PYzW8DgYDDlQAAgK/q2Of2V7mJ/aAMKK2trZIkn8/ncCUAACBSra2t8ng8x50zKJ/F09PTo0OHDikpKSn0aHYAsSEQCMjn86m+vp5nbQExxrZttba2KjMzU8OGHf8qk0EZUADELh4GCkDiIlkAAGAgAgoAADAOAQWAUVwul+644w65XC6nSwHgIK5BAQAAxmEFBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQABjlgQceUE5OjtxutyZNmqRXXnnF6ZIAOICAAsAYmzdvVnFxsW699Va99dZbuuCCC1RYWKi6ujqnSwNwivE1YwDGmDZtmiZOnKgHH3ww1HfWWWdpzpw5Ki0tdbAyAKcaKygAjNDZ2amamhoVFBSE9RcUFKiqqsqhqgA4hYACwAgff/yxuru7lZ6eHtafnp6upqYmh6oC4BQCCgCjWJYVtm3bdq8+ALGPgALACKmpqYqLi+u1WtLc3NxrVQVA7COgADBCQkKCJk2apMrKyrD+yspK5eXlOVQVAKfEO10AABxTUlKiH//4x5o8ebLOO+88/elPf1JdXZ2uv/56p0sDcIoRUAAYY8GCBWppadFdd92lxsZG5ebmavv27crOzna6NACnGPdBAQAAxuEaFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACM8397658wDRSk/AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(data[\"RestingBP\"])" ] }, { "cell_type": "code", "execution_count": 35, "id": "6f549d13-c001-4e9f-b08a-f6ca16225a23", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkaElEQVR4nO3df2xV933/8dfJ9Y9rqH0HdnJvL75GXmtNSW2SYogbdx2sgJFVypKsw+2lEdXQRkbKuBhERvljLKrswTQDEwsSVVQI4eJI07xVGqQ42+KFWdlunPAd0KnrVBTbwxcrlnWviXxtYs73D8RRLsYkFwifj+3nQzpSfM7H5n0V4fvk3HPPdVzXdQUAAGCRh0wPAAAAcCsCBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB18kwPcDeuX7+uy5cvq7i4WI7jmB4HAAB8Bq7ramRkROFwWA89dOdzJNMyUC5fvqxIJGJ6DAAAcBf6+vpUXl5+xzXTMlCKi4sl3XiAJSUlhqcBAACfRTqdViQS8Z7H72RaBsrNl3VKSkoIFAAAppnPcnkGF8kCAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgALBKd3e3mpqa1N3dbXoUAAYRKACskclk1NbWpitXrqitrU2ZTMb0SAAMIVAAWOPEiRMaGhqSJA0NDSkejxueCIApOQfK//3f/+n73/++SktLNWfOHD3xxBPq6enxjruuqz179igcDquoqEjLly/XxYsXs37G2NiYtmzZorKyMs2dO1dr165Vf3//vT8aANNWf3+/4vG4XNeVdON3STwe53cDMEvlFCjDw8P6+te/rvz8fJ0+fVq/+MUv9Nd//df6jd/4DW/Nvn371NbWpkOHDimRSCgUCmnVqlUaGRnx1sRiMXV0dKi9vV1nz57V1atXtWbNGk1MTNy3BwZg+nBdVwcPHpxy/81oATB7OG4Of/P/7M/+TP/+7/+ut99++7bHXddVOBxWLBbTiy++KOnG2ZJgMKi9e/dq06ZNSqVSevjhh3X8+HE1NTVJki5fvqxIJKJTp05p9erVnzpHOp1WIBBQKpXi04yBGeCDDz7Qhg0bpjx+7NgxLVy48AFOBODzkMvzd05nUH72s59pyZIl+oM/+AM98sgj+upXv6qf/OQn3vFLly4pmUyqoaHB21dYWKhly5Z5V+T39PTo2rVrWWvC4bCqq6unvGp/bGxM6XQ6awMwc1RUVGjp0qXy+XxZ+30+n5588klVVFQYmgyAKTkFyq9//WsdPnxYVVVV+vnPf67nn39ef/qnf6pXX31VkpRMJiVJwWAw6/uCwaB3LJlMqqCgQPPmzZtyza1aW1sVCAS8LRKJ5DI2AMs5jqOtW7dOud9xHANTATApp0C5fv26Fi9erJaWFn31q1/Vpk2b9Ed/9Ec6fPhw1rpbf5m4rvupv2DutGbXrl1KpVLe1tfXl8vYAKaB8vJyRaNR7/eA4ziKRqNasGCB4ckAmJBToHzxi1/UY489lrXv0UcfVW9vryQpFApJ0qQzIYODg95ZlVAopPHxcQ0PD0+55laFhYUqKSnJ2gDMPOvXr1dpaakkqaysTNFo1PBEAEzJKVC+/vWv65e//GXWvv/5n//xLl6rrKxUKBRSZ2end3x8fFxdXV2qr6+XJNXW1io/Pz9rzcDAgC5cuOCtATA7+f1+NTc3KxgMatu2bfL7/aZHAmBIXi6Lt23bpvr6erW0tGjdunX6z//8Tx05ckRHjhyRdOOUbCwWU0tLi6qqqlRVVaWWlhbNmTPH+5dQIBDQxo0btX37dpWWlmr+/PnasWOHampqtHLlyvv/CAFMK/X19fxjBUBugbJ06VJ1dHRo165deumll1RZWakDBw5o/fr13pqdO3dqdHRUmzdv1vDwsOrq6nTmzBkVFxd7a/bv36+8vDytW7dOo6OjWrFihY4ePTrpCn4AADA75XQfFFtwHxQAAKafz+0+KAAAAA8CgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAKt0d3erqalJ3d3dpkcBYBCBAsAamUxGbW1tunLlitra2pTJZEyPBMAQAgWANU6cOKGhoSFJ0tDQkOLxuOGJAJhCoACwQn9/v+LxuG5+PJjruorH4+rv7zc8GQATCBQAxrmuq4MHD065fxp+pimAe0SgADCut7dXiURCExMTWfsnJiaUSCTU29traDIAphAoAIyrqKjQ0qVL5fP5svb7fD49+eSTqqioMDQZAFMIFADGOY6jrVu3TrnfcRwDUwEwiUABYIXy8nJFo1EvRhzHUTQa1YIFCwxPBsAEAgWANdavX6/S0lJJUllZmaLRqOGJAJhCoACwht/vV3Nzs4LBoLZt2ya/3296JACG5JkeAAA+qb6+XvX19abHAGAYZ1AAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAFilu7tbTU1N6u7uNj0KAIMIFADWyGQyamtr05UrV9TW1qZMJmN6JACGECgArHHixAkNDQ1JkoaGhhSPxw1PBMAUAgWAFfr7+xWPx+W6riTJdV3F43H19/cbngyACQQKAONc19XBgwen3H8zWgDMHgQKAON6e3uVSCQ0MTGRtX9iYkKJREK9vb2GJgNgCoECwLiKigotXbpUPp8va7/P59OTTz6piooKQ5MBMIVAAWCc4zjaunXrlPsdxzEwFQCTCBQAVigvL9djjz2Wte+xxx7TggULDE0EwCQCBYAV+vv7dfHixax9Fy9e5F08wCxFoAAw7ua7dW73Ug7v4gFmJwIFgHG8iwfArQgUAMbxLh4AtyJQABjHu3gA3IpAAWCF8vJyRaNRL0Ycx1E0GuVdPMAsRaAAsMb69etVWloqSSorK1M0GjU8EQBTCBQA1vD7/WpublYwGNS2bdvk9/tNjwTAkJwCZc+ePXIcJ2sLhULecdd1tWfPHoXDYRUVFWn58uWT7mswNjamLVu2qKysTHPnztXatWu5zwEAT319vV5//XXV19ebHgWAQTmfQfnKV76igYEBbzt//rx3bN++fWpra9OhQ4eUSCQUCoW0atUqjYyMeGtisZg6OjrU3t6us2fP6urVq1qzZs2ktxcCAIDZKy/nb8jLyzprcpPrujpw4IB2796tZ599VpJ07NgxBYNBxeNxbdq0SalUSq+88oqOHz+ulStXSpJee+01RSIRvfnmm1q9evU9PhwAADAT5HwG5Ve/+pXC4bAqKyv13e9+V7/+9a8lSZcuXVIymVRDQ4O3trCwUMuWLVN3d7ckqaenR9euXctaEw6HVV1d7a25nbGxMaXT6awNAADMXDkFSl1dnV599VX9/Oc/109+8hMlk0nV19draGhIyWRSkhQMBrO+JxgMeseSyaQKCgo0b968KdfcTmtrqwKBgLdFIpFcxgYwjXR3d6upqemO/2gBMPPlFCiNjY36/d//fdXU1GjlypX6p3/6J0k3Xsq56dYbKrmu+6k3Wfq0Nbt27VIqlfK2vr6+XMYGME1kMhm1tbXpypUramtrUyaTMT0SAEPu6W3Gc+fOVU1NjX71q19516XceiZkcHDQO6sSCoU0Pj6u4eHhKdfcTmFhoUpKSrI2ADPPiRMnNDQ0JEkaGhpSPB43PBEAU+4pUMbGxvTf//3f+uIXv6jKykqFQiF1dnZ6x8fHx9XV1eW9XbC2tlb5+flZawYGBnThwgXeUgjMcv39/YrH494nF7uuq3g8zm0IgFkqp0DZsWOHurq6dOnSJf3Hf/yHvvOd7yidTmvDhg1yHEexWEwtLS3q6OjQhQsX9IMf/EBz5szx7gYZCAS0ceNGbd++Xf/8z/+s999/X9///ve9l4wAzE6u6+rgwYNT7r8ZLQBmj5zeZtzf36/vfe97+vDDD/Xwww/ra1/7mt555x0tXLhQkrRz506Njo5q8+bNGh4eVl1dnc6cOaPi4mLvZ+zfv195eXlat26dRkdHtWLFCh09enTSp5gCmD16e3uVSCQm7Z+YmFAikVBvb6/3ewbA7OC40/CfJul0WoFAQKlUiutRgBnAdV3t3LlT7733XtZNG30+n2pra7V3714+0RiYAXJ5/uazeAAY5ziOtm7dOuV+4gSYfQgUAFYoLy9XNBr1YsRxHEWjUS1YsMDwZABMIFAAWGP9+vUqLS2VJJWVlXkX2AOYfQgUANbw+/1qbm5WMBjUtm3b5Pf7TY8EwJCcPywQAD5P9fX13BcJAGdQAACAfQgUAFbhwwIBSAQKAItkMhm1trbqypUram1t5cMCgVmMQAFgjWPHjmlkZESSNDIyoldffdXwRABMIVAAWKG/v1/t7e1Z+06ePMmHBQKzFIECwDjXdbV3795JHwo41X4AMx+BAsC4Dz74QOfPn7/tsfPnz+uDDz54wBMBMI1AAQAA1iFQABi3cOFC1dTU3PbYokWLtHDhwgc8EQDTCBQAxjmOow0bNtz22IYNG/g0Y2AWIlAAGOe6rl5//fVJIeI4jtrb27lIFpiFCBQAxvX29iqRSNz2XTyJREK9vb2GJgNgCoECwLiKigotXbpUPp8va7/P59OTTz6piooKQ5MBMIVAAWCc4zjaunXrlPu5BgWYfQgUAFYoLy9XNBr1YsRxHEWjUS1YsMDwZABMIFAAWGP9+vUqLS2VJJWVlSkajRqeCIApBAoAa/j9fjU3NysYDGrbtm3y+/2mRwJgSJ7pAQDgk+rr61VfX296DACGcQYFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAFbp7u5WU1OTuru7TY8CwCACBYA1MpmM2tradOXKFbW1tSmTyZgeCYAhBAoAa5w4cUJDQ0OSpKGhIcXjccMTATCFQAFghf7+fsXjcbmuK0lyXVfxeFz9/f2GJwNgAoECwDjXdXXw4MEp99+MFgCzB4ECwLje3l4lEglNTExk7Z+YmFAikVBvb6+hyQCYQqAAMK6iokI1NTW3PbZo0SJVVFQ84IkAmEagALAaL+8AsxOBAsC43t5enT9//rbHzp8/z0s8wCyUZ3oAwDTXdbnfhmFlZWUqKSlROp2edKykpERlZWUaHR01MBlu8vv9chzH9BiYRe4pUFpbW/WjH/1IW7du1YEDByTd+GX/F3/xFzpy5IiGh4dVV1env/3bv9VXvvIV7/vGxsa0Y8cOnTx5UqOjo1qxYoVefvlllZeX39ODAe5GJpNRY2Oj6TEwhXQ6rW9961umx5j1Tp8+raKiItNjYBa565d4EomEjhw5okWLFmXt37dvn9ra2nTo0CElEgmFQiGtWrVKIyMj3ppYLKaOjg61t7fr7Nmzunr1qtasWTPpCn4AADA7Oe5dXIF29epVLV68WC+//LJ+/OMf64knntCBAwfkuq7C4bBisZhefPFFSTfOlgSDQe3du1ebNm1SKpXSww8/rOPHj6upqUmSdPnyZUUiEZ06dUqrV6/+1D8/nU4rEAgolUqppKQk1/GBLLzEY4fLly/rj//4j7P+oeLz+XTkyBGFw2GDk0HiJR7cH7k8f9/VSzwvvPCCvvWtb2nlypX68Y9/7O2/dOmSksmkGhoavH2FhYVatmyZuru7tWnTJvX09OjatWtZa8LhsKqrq9Xd3f2ZAgW4nxzH4dS1Bb70pS9p3bp1OnnypKQb/1/Wr1+vL33pS4YnA2BCzoHS3t6u9957T4lEYtKxZDIpSQoGg1n7g8GgPvjgA29NQUGB5s2bN2nNze+/1djYmMbGxryvb3chHYDp75OBUlpaqmg0angiAKbkdA1KX1+ftm7dqtdee01+v3/KdbeeBnRd91NPDd5pTWtrqwKBgLdFIpFcxgYwTXzy98oLL7xwx98zAGa2nAKlp6dHg4ODqq2tVV5envLy8tTV1aW/+Zu/UV5ennfm5NYzIYODg96xUCik8fFxDQ8PT7nmVrt27VIqlfK2vr6+XMYGMA197WtfMz0CAINyCpQVK1bo/PnzOnfunLctWbJE69ev17lz5/Sbv/mbCoVC6uzs9L5nfHxcXV1dqq+vlyTV1tYqPz8/a83AwIAuXLjgrblVYWGhSkpKsjYAADBz5XQNSnFxsaqrq7P2zZ07V6Wlpd7+WCymlpYWVVVVqaqqSi0tLZozZ473WnIgENDGjRu1fft2lZaWav78+dqxY4dqamq0cuXK+/SwAADAdHbf7yS7c+dOjY6OavPmzd6N2s6cOaPi4mJvzf79+5WXl6d169Z5N2o7evSofD7f/R4HAABMQ3d1HxTTuA8KMDONjo56d/XlzqXAzJPL8zcfFggAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsk1OgHD58WIsWLVJJSYlKSkr01FNP6fTp095x13W1Z88ehcNhFRUVafny5bp48WLWzxgbG9OWLVtUVlamuXPnau3aterv778/jwYAAMwIOQVKeXm5/vIv/1Lvvvuu3n33XX3zm9/U7/3e73kRsm/fPrW1tenQoUNKJBIKhUJatWqVRkZGvJ8Ri8XU0dGh9vZ2nT17VlevXtWaNWs0MTFxfx8ZAACYthzXdd17+QHz58/XX/3VX+kP//APFQ6HFYvF9OKLL0q6cbYkGAxq79692rRpk1KplB5++GEdP35cTU1NkqTLly8rEono1KlTWr169Wf6M9PptAKBgFKplEpKSu5lfAAWGR0dVWNjoyTp9OnTKioqMjwRgPspl+fvu74GZWJiQu3t7froo4/01FNP6dKlS0omk2poaPDWFBYWatmyZeru7pYk9fT06Nq1a1lrwuGwqqurvTW3MzY2pnQ6nbUBAICZK+dAOX/+vL7whS+osLBQzz//vDo6OvTYY48pmUxKkoLBYNb6YDDoHUsmkyooKNC8efOmXHM7ra2tCgQC3haJRHIdGwAATCM5B8pv/dZv6dy5c3rnnXf0J3/yJ9qwYYN+8YtfeMcdx8la77rupH23+rQ1u3btUiqV8ra+vr5cxwYAANNIzoFSUFCgL3/5y1qyZIlaW1v1+OOP6+DBgwqFQpI06UzI4OCgd1YlFAppfHxcw8PDU665ncLCQu+dQzc3AAAwc93zfVBc19XY2JgqKysVCoXU2dnpHRsfH1dXV5fq6+slSbW1tcrPz89aMzAwoAsXLnhrAAAA8nJZ/KMf/UiNjY2KRCIaGRlRe3u73nrrLb3xxhtyHEexWEwtLS2qqqpSVVWVWlpaNGfOHEWjUUlSIBDQxo0btX37dpWWlmr+/PnasWOHampqtHLlys/lAQIAgOknp0C5cuWKnnvuOQ0MDCgQCGjRokV64403tGrVKknSzp07NTo6qs2bN2t4eFh1dXU6c+aMiouLvZ+xf/9+5eXlad26dRodHdWKFSt09OhR+Xy++/vIAADAtHXP90ExgfugADMT90EBZrYHch8UAACAzwuBAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKyT02fx4P5xXVeZTMb0GIBVPvl3gr8fwO35/X45jmN6jM8dgWJIJpPxPnMEwGTPPPOM6REAK82Wz6niJR4AAGAdzqBY4OoT35P7EP8rALmudP3jG//9UJ40C05jA5+Fc/1jfeHcSdNjPFA8K1rAfShP8uWbHgOwRIHpAQDruKYHMICXeAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYJ8/0AJA0cc30BAAAm83C5wkCxQLF/6/d9AgAAFiFl3gAAIB1OINigZHHvyv58k2PAQCw1cS1WXe2nUCxgS+fQAEA4BN4iQcAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1skpUFpbW7V06VIVFxfrkUce0dNPP61f/vKXWWtc19WePXsUDodVVFSk5cuX6+LFi1lrxsbGtGXLFpWVlWnu3Llau3at+vv77/3RAACAGSGnQOnq6tILL7ygd955R52dnfr444/V0NCgjz76yFuzb98+tbW16dChQ0okEgqFQlq1apVGRka8NbFYTB0dHWpvb9fZs2d19epVrVmzRhMTE/fvkQEAgGkrpxu1vfHGG1lf//SnP9Ujjzyinp4e/c7v/I5c19WBAwe0e/duPfvss5KkY8eOKRgMKh6Pa9OmTUqlUnrllVd0/PhxrVy5UpL02muvKRKJ6M0339Tq1avv00MDAADT1T1dg5JKpSRJ8+fPlyRdunRJyWRSDQ0N3prCwkItW7ZM3d3dkqSenh5du3Yta004HFZ1dbW35lZjY2NKp9NZGwAAmLnuOlBc11Vzc7N++7d/W9XV1ZKkZDIpSQoGg1lrg8GgdyyZTKqgoEDz5s2bcs2tWltbFQgEvC0Sidzt2AAAYBq460D54Q9/qP/6r//SyZMnJx1zHCfra9d1J+271Z3W7Nq1S6lUytv6+vrudmwAADAN3FWgbNmyRT/72c/0r//6ryovL/f2h0IhSZp0JmRwcNA7qxIKhTQ+Pq7h4eEp19yqsLBQJSUlWRsAAJi5cgoU13X1wx/+UH//93+vf/mXf1FlZWXW8crKSoVCIXV2dnr7xsfH1dXVpfr6eklSbW2t8vPzs9YMDAzowoUL3hoAADC75fQunhdeeEHxeFz/+I//qOLiYu9MSSAQUFFRkRzHUSwWU0tLi6qqqlRVVaWWlhbNmTNH0WjUW7tx40Zt375dpaWlmj9/vnbs2KGamhrvXT0AAGB2yylQDh8+LElavnx51v6f/vSn+sEPfiBJ2rlzp0ZHR7V582YNDw+rrq5OZ86cUXFxsbd+//79ysvL07p16zQ6OqoVK1bo6NGj8vl89/ZoAADAjOC4ruuaHiJX6XRagUBAqVRq2l6PMjo6qsbGRknSyOLnJF++4YkAANaauKbi945Lkk6fPq2ioiLDA92dXJ6/+SweAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFgnp/ug4PPhXP9Y0+693sDnwXWl6x/f+O+H8qRP+QwvYLZwbv69mEUIFAt84dzkD1wEAGA24yUeAABgHc6gGOL3+3X69GnTYwBWyWQyeuaZZyRJHR0d8vv9hicC7DNb/l4QKIY4jjNtb1UMPAh+v5+/I8Asxks8AADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE7OgfJv//Zv+va3v61wOCzHcfQP//APWcdd19WePXsUDodVVFSk5cuX6+LFi1lrxsbGtGXLFpWVlWnu3Llau3at+vv77+mBAACAmSPnQPnoo4/0+OOP69ChQ7c9vm/fPrW1tenQoUNKJBIKhUJatWqVRkZGvDWxWEwdHR1qb2/X2bNndfXqVa1Zs0YTExN3/0gAAMCMkZfrNzQ2NqqxsfG2x1zX1YEDB7R79249++yzkqRjx44pGAwqHo9r06ZNSqVSeuWVV3T8+HGtXLlSkvTaa68pEonozTff1OrVq+/h4QAAgJngvl6DcunSJSWTSTU0NHj7CgsLtWzZMnV3d0uSenp6dO3ataw14XBY1dXV3ppbjY2NKZ1OZ20AAGDmuq+BkkwmJUnBYDBrfzAY9I4lk0kVFBRo3rx5U665VWtrqwKBgLdFIpH7OTYAALDM5/IuHsdxsr52XXfSvlvdac2uXbuUSqW8ra+v777NCgAA7HNfAyUUCknSpDMhg4OD3lmVUCik8fFxDQ8PT7nmVoWFhSopKcnaAADAzHVfA6WyslKhUEidnZ3evvHxcXV1dam+vl6SVFtbq/z8/Kw1AwMDunDhgrcGAADMbjm/i+fq1av63//9X+/rS5cu6dy5c5o/f74qKioUi8XU0tKiqqoqVVVVqaWlRXPmzFE0GpUkBQIBbdy4Udu3b1dpaanmz5+vHTt2qKamxntXDwAAmN1yDpR3331Xv/u7v+t93dzcLEnasGGDjh49qp07d2p0dFSbN2/W8PCw6urqdObMGRUXF3vfs3//fuXl5WndunUaHR3VihUrdPToUfl8vvvwkAAAwHTnuK7rmh4iV+l0WoFAQKlUiutRcM9c11UmkzE9BiRlMhk988wzkqSOjg75/X7DE+Emv9//qW92AD5NLs/fOZ9BAWaaTCYz5c0HYc7NUIEdTp8+raKiItNjYBbhwwIBAIB1OIOCWc/v9+v06dOmx4BuvNw2NjYm6cbtBXhJwR683IYHjUDBrOc4DqeuLTJnzhzTIwCwAC/xAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwTp7pAQDgk5YvX+7991tvvWVsDgBmGT2D8vLLL6uyslJ+v1+1tbV6++23TY4DwLBPxsntvgYwexgLlNdff12xWEy7d+/W+++/r2984xtqbGxUb2+vqZEAAIAlHNd1XRN/cF1dnRYvXqzDhw97+x599FE9/fTTam1tveP3ptNpBQIBpVIplZSUfN6jAngA7nS2hJd6gJkhl+dvI2dQxsfH1dPTo4aGhqz9DQ0N6u7unrR+bGxM6XQ6awMwc3znO9+5p+MAZh4jgfLhhx9qYmJCwWAwa38wGFQymZy0vrW1VYFAwNsikciDGhXAA/Dhhx/e03EAM4/Ri2Qdx8n62nXdSfskadeuXUqlUt7W19f3oEYE8ACUlZXd03EAM4+RQCkrK5PP55t0tmRwcHDSWRVJKiwsVElJSdYGYOb4u7/7u3s6DmDmMRIoBQUFqq2tVWdnZ9b+zs5O1dfXmxgJgGFTXQjLBbLA7GTsRm3Nzc167rnntGTJEj311FM6cuSIent79fzzz5saCQAAWMJYoDQ1NWloaEgvvfSSBgYGVF1drVOnTmnhwoWmRgJg2FtvvcWdZAFIMngflHvBfVAAAJh+rL8PCgAAwJ0QKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrGLvV/b24efPbdDpteBIAAPBZ3Xze/iw3sZ+WgTIyMiJJikQihicBAAC5GhkZUSAQuOOaaflZPNevX9fly5dVXFwsx3FMjwPgPkqn04pEIurr6+OztoAZxnVdjYyMKBwO66GH7nyVybQMFAAzFx8GCkDiIlkAAGAhAgUAAFiHQAFglcLCQv35n/+5CgsLTY8CwCCuQQEAANbhDAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgCrvPzyy6qsrJTf71dtba3efvtt0yMBMIBAAWCN119/XbFYTLt379b777+vb3zjG2psbFRvb6/p0QA8YLzNGIA16urqtHjxYh0+fNjb9+ijj+rpp59Wa2urwckAPGicQQFghfHxcfX09KihoSFrf0NDg7q7uw1NBcAUAgWAFT788ENNTEwoGAxm7Q8Gg0omk4amAmAKgQLAKo7jZH3tuu6kfQBmPgIFgBXKysrk8/kmnS0ZHBycdFYFwMxHoACwQkFBgWpra9XZ2Zm1v7OzU/X19YamAmBKnukBAOCm5uZmPffcc1qyZImeeuopHTlyRL29vXr++edNjwbgASNQAFijqalJQ0NDeumllzQwMKDq6mqdOnVKCxcuND0agAeM+6AAAADrcA0KAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOv8fk1n5z2sAns0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(data[\"Cholesterol\"])" ] }, { "cell_type": "code", "execution_count": 36, "id": "e18b333b-6651-48f1-9ec8-b18d44e923f4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh70lEQVR4nO3df3RT9f3H8Vdo2jTwbSMtMzEjRTwHFS1DrchWmcAByqqAw+OKwzHcOA4PghbKr465oWe2o9OC2olz46wIq/jHLOJmlTIRZNUdKOIO6mRsPdIKWTfXk1BM09re7x8c7ln4NYPRfNo+H+fcc8j9Ed85PZgnN/emDsuyLAEAABhkQLIHAAAAOB2BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4zmQPcCF6enp09OhRZWRkyOFwJHscAADwKViWpePHj8vv92vAgPOfI+mVgXL06FEFAoFkjwEAAC5Ac3Ozhg4det59emWgZGRkSDr5AjMzM5M8DQAA+DTC4bACgYD9Pn4+vTJQTn2sk5mZSaAAANDLfJrLM7hIFgAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHF65e/iARLJsix1dHQkewzo5M8iGo1Kklwu16f6fR34YqSnp/PzwBeKQEG/19HRocLCwmSPARitrq5Obrc72WOgH+EjHgAAYJy4zqCUl5fr+eef11//+le53W7l5+drzZo1uuKKK+x9LMvSgw8+qKefflptbW0aO3asfvGLX+jqq6+294lGo1q6dKmeffZZRSIRTZo0SU8++aSGDh2auFcGfErp6emqq6tL9hjQybNZM2fOlCTV1tYqPT09yRPhFH4W+KLFFSi7du3SvffeqzFjxuiTTz7RqlWrVFBQoHfffVeDBg2SJFVUVKiyslLV1dW6/PLL9dOf/lRTpkzR+++/r4yMDElScXGxXnzxRW3ZskXZ2dkqKSnRtGnT1NjYqJSUlMS/SuA8HA4Hp64NlJ6ezs8F6McclmVZF3rwv/71L1188cXatWuXbrrpJlmWJb/fr+LiYq1YsULSybMlXq9Xa9as0fz58xUKhfSlL31JmzZt0qxZsyRJR48eVSAQ0EsvvaSpU6f+z/9uOByWx+NRKBRSZmbmhY4PwDCRSMS+HohrHoC+J5737890DUooFJIkZWVlSZKampoUDAZVUFBg7+NyuTR+/Hg1NDRIkhobG9XV1RWzj9/vV25urr3P6aLRqMLhcMwCAAD6rgsOFMuytGTJEo0bN065ubmSpGAwKEnyer0x+3q9XntbMBhUWlqaBg8efM59TldeXi6Px2MvgUDgQscGAAC9wAUHysKFC/WXv/xFzz777BnbTr9X3rKs/3n//Pn2KS0tVSgUspfm5uYLHRsAAPQCFxQoixYt0rZt27Rz586YO298Pp8knXEmpLW11T6r4vP51NnZqba2tnPuczqXy6XMzMyYBQAA9F1xBYplWVq4cKGef/55vfrqqxo+fHjM9uHDh8vn86m+vt5e19nZqV27dik/P1+SlJeXp9TU1Jh9jh07poMHD9r7AACA/i2u24zvvfde1dTU6IUXXlBGRoZ9psTj8cjtdsvhcKi4uFhlZWUaMWKERowYobKyMg0cOFCzZ8+29503b55KSkqUnZ2trKwsLV26VKNGjdLkyZMT/woBAECvE1egrF+/XpI0YcKEmPW/+c1vdNddd0mSli9frkgkogULFthf1LZ9+3b7O1Akae3atXI6nSoqKrK/qK26uprvQAEAAJI+4/egJAvfgwL0TXwPCtC3fWHfgwIAAPB5IFAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYJ+5A2b17t6ZPny6/3y+Hw6GtW7fGbG9vb9fChQs1dOhQud1ujRw5UuvXr4/ZJxqNatGiRRoyZIgGDRqkGTNmqKWl5TO9EAAA0HfEHSgnTpzQ6NGjVVVVddbtixcv1ssvv6zNmzfrvffe0+LFi7Vo0SK98MIL9j7FxcWqra3Vli1btGfPHrW3t2vatGnq7u6+8FcCAAD6DGe8BxQWFqqwsPCc29944w3NnTtXEyZMkCT94Ac/0C9/+Uvt27dPt956q0KhkDZs2KBNmzZp8uTJkqTNmzcrEAhox44dmjp16oW9EgAA0Gck/BqUcePGadu2bfrwww9lWZZ27typQ4cO2eHR2Niorq4uFRQU2Mf4/X7l5uaqoaEh0eMAAIBeKO4zKP/L448/rrvvvltDhw6V0+nUgAED9Otf/1rjxo2TJAWDQaWlpWnw4MExx3m9XgWDwbM+ZzQaVTQatR+Hw+FEjw0AAAyS8DMojz/+uN58801t27ZNjY2NevTRR7VgwQLt2LHjvMdZliWHw3HWbeXl5fJ4PPYSCAQSPTYAADBIQgMlEonohz/8oSorKzV9+nR95Stf0cKFCzVr1iw98sgjkiSfz6fOzk61tbXFHNva2iqv13vW5y0tLVUoFLKX5ubmRI4NAAAMk9BA6erqUldXlwYMiH3alJQU9fT0SJLy8vKUmpqq+vp6e/uxY8d08OBB5efnn/V5XS6XMjMzYxYAANB3xX0NSnt7uw4fPmw/bmpq0oEDB5SVlaWcnByNHz9ey5Ytk9vt1rBhw7Rr1y4988wzqqyslCR5PB7NmzdPJSUlys7OVlZWlpYuXapRo0bZd/UAAID+Le5A2bdvnyZOnGg/XrJkiSRp7ty5qq6u1pYtW1RaWqo777xT//nPfzRs2DA9/PDDuueee+xj1q5dK6fTqaKiIkUiEU2aNEnV1dVKSUlJwEsCAAC9ncOyLCvZQ8QrHA7L4/EoFArxcQ/Qh0QiEft7lurq6uR2u5M8EYBEiuf9m9/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjBN3oOzevVvTp0+X3++Xw+HQ1q1bz9jnvffe04wZM+TxeJSRkaGvfvWrOnLkiL09Go1q0aJFGjJkiAYNGqQZM2aopaXlM70QAADQd8QdKCdOnNDo0aNVVVV11u1///vfNW7cOF155ZV67bXX9Pbbb+uBBx5Qenq6vU9xcbFqa2u1ZcsW7dmzR+3t7Zo2bZq6u7sv/JUAAIA+wxnvAYWFhSosLDzn9lWrVunmm29WRUWFve6yyy6z/xwKhbRhwwZt2rRJkydPliRt3rxZgUBAO3bs0NSpU+MdCQAA9DEJvQalp6dHf/jDH3T55Zdr6tSpuvjiizV27NiYj4EaGxvV1dWlgoICe53f71dubq4aGhrO+rzRaFThcDhmAQAAfVdCA6W1tVXt7e362c9+pm984xvavn27Zs6cqdtuu027du2SJAWDQaWlpWnw4MExx3q9XgWDwbM+b3l5uTwej70EAoFEjg0AAAyT8DMoknTrrbdq8eLFuuaaa7Ry5UpNmzZNTz311HmPtSxLDofjrNtKS0sVCoXspbm5OZFjAwAAwyQ0UIYMGSKn06mrrroqZv3IkSPtu3h8Pp86OzvV1tYWs09ra6u8Xu9Zn9flcikzMzNmAQAAfVdCAyUtLU1jxozR+++/H7P+0KFDGjZsmCQpLy9Pqampqq+vt7cfO3ZMBw8eVH5+fiLHAQAAvVTcd/G0t7fr8OHD9uOmpiYdOHBAWVlZysnJ0bJlyzRr1izddNNNmjhxol5++WW9+OKLeu211yRJHo9H8+bNU0lJibKzs5WVlaWlS5dq1KhR9l09AACgf4s7UPbt26eJEyfaj5csWSJJmjt3rqqrqzVz5kw99dRTKi8v13333acrrrhCv/vd7zRu3Dj7mLVr18rpdKqoqEiRSESTJk1SdXW1UlJSEvCSAABAb+ewLMtK9hDxCofD8ng8CoVCXI8C9CGRSMT+nqW6ujq53e4kTwQgkeJ5/477DAoSw7IsdXR0JHsMwCj//XeCvx/A2aWnp5/zrte+hEBJko6OjvN+Iy/Q382cOTPZIwBG6i9nF/ltxgAAwDicQTFA+zXfljWAHwUgy5J6Pjn55wFOqR+cxgY+DUfPJ/q/A88me4wvFO+KBrAGOKWU1GSPARgiLdkDAMbpdXezJAAf8QAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTtyBsnv3bk2fPl1+v18Oh0Nbt249577z58+Xw+HQunXrYtZHo1EtWrRIQ4YM0aBBgzRjxgy1tLTEOwoAAOij4g6UEydOaPTo0aqqqjrvflu3btWf//xn+f3+M7YVFxertrZWW7Zs0Z49e9Te3q5p06apu7s73nEAAEAf5Iz3gMLCQhUWFp53nw8//FALFy7UK6+8oltuuSVmWygU0oYNG7Rp0yZNnjxZkrR582YFAgHt2LFDU6dOjXckAADQxyT8GpSenh7NmTNHy5Yt09VXX33G9sbGRnV1damgoMBe5/f7lZubq4aGhrM+ZzQaVTgcjlkAAEDflfBAWbNmjZxOp+67776zbg8Gg0pLS9PgwYNj1nu9XgWDwbMeU15eLo/HYy+BQCDRYwMAAIMkNFAaGxv12GOPqbq6Wg6HI65jLcs65zGlpaUKhUL20tzcnIhxAQCAoRIaKK+//rpaW1uVk5Mjp9Mpp9OpDz74QCUlJbr00kslST6fT52dnWpra4s5trW1VV6v96zP63K5lJmZGbMAAIC+K+6LZM9nzpw59oWvp0ydOlVz5szR9773PUlSXl6eUlNTVV9fr6KiIknSsWPHdPDgQVVUVCRynN6juyvZEwAATNYP3yfiDpT29nYdPnzYftzU1KQDBw4oKytLOTk5ys7Ojtk/NTVVPp9PV1xxhSTJ4/Fo3rx5KikpUXZ2trKysrR06VKNGjXqjLjpLzLe3pLsEQAAMErcgbJv3z5NnDjRfrxkyRJJ0ty5c1VdXf2pnmPt2rVyOp0qKipSJBLRpEmTVF1drZSUlHjHAQAAfZDDsiwr2UPEKxwOy+PxKBQK9drrUSKRiP19MsdH3yGlpCZ5IgCAsbq77LPtdXV1crvdSR7owsTz/p3Qa1BwgVJSCRQAAP4LvywQAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAceIOlN27d2v69Ony+/1yOBzaunWrva2rq0srVqzQqFGjNGjQIPn9fn33u9/V0aNHY54jGo1q0aJFGjJkiAYNGqQZM2aopaXlM78YAADQN8QdKCdOnNDo0aNVVVV1xraPP/5Y+/fv1wMPPKD9+/fr+eef16FDhzRjxoyY/YqLi1VbW6stW7Zoz549am9v17Rp09Td3X3hrwQAAPQZzngPKCwsVGFh4Vm3eTwe1dfXx6x74okndMMNN+jIkSPKyclRKBTShg0btGnTJk2ePFmStHnzZgUCAe3YsUNTp069gJcBAAD6krgDJV6hUEgOh0MXXXSRJKmxsVFdXV0qKCiw9/H7/crNzVVDQ0O/DBRHzyeykj0EYALLkno+OfnnAU7J4UjuPIAhHKf+XvQjn2ugdHR0aOXKlZo9e7YyMzMlScFgUGlpaRo8eHDMvl6vV8Fg8KzPE41GFY1G7cfhcPjzGzoJ/u/As8keAQAAo3xud/F0dXXpjjvuUE9Pj5588sn/ub9lWXKc419L5eXl8ng89hIIBBI9LgAAMMjncgalq6tLRUVFampq0quvvmqfPZEkn8+nzs5OtbW1xZxFaW1tVX5+/lmfr7S0VEuWLLEfh8PhXh8p6enpqqurS/YYgFE6Ojo0c+ZMSVJtba3S09OTPBFgnv7y9yLhgXIqTv72t79p586dys7Ojtmel5en1NRU1dfXq6ioSJJ07NgxHTx4UBUVFWd9TpfLJZfLlehRk8rhcMjtdid7DMBY6enp/B0B+rG4A6W9vV2HDx+2Hzc1NenAgQPKysqS3+/X7bffrv379+v3v/+9uru77etKsrKylJaWJo/Ho3nz5qmkpETZ2dnKysrS0qVLNWrUKPuuHgAA0L/FHSj79u3TxIkT7cenPnqZO3euVq9erW3btkmSrrnmmpjjdu7cqQkTJkiS1q5dK6fTqaKiIkUiEU2aNEnV1dVKSUm5wJcBAAD6EodlWb3uDtdwOCyPx6NQKBRzfQuA3i0Sidjfs1RXV8dHPEAfE8/7N7+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfuQNm9e7emT58uv98vh8OhrVu3xmy3LEurV6+W3++X2+3WhAkT9M4778TsE41GtWjRIg0ZMkSDBg3SjBkz1NLS8pleCAAA6DviDpQTJ05o9OjRqqqqOuv2iooKVVZWqqqqSnv37pXP59OUKVN0/Phxe5/i4mLV1tZqy5Yt2rNnj9rb2zVt2jR1d3df+CsBAAB9hjPeAwoLC1VYWHjWbZZlad26dVq1apVuu+02SdLGjRvl9XpVU1Oj+fPnKxQKacOGDdq0aZMmT54sSdq8ebMCgYB27NihqVOnfoaXAwAA+oKEXoPS1NSkYDCogoICe53L5dL48ePV0NAgSWpsbFRXV1fMPn6/X7m5ufY+p4tGowqHwzELAADouxIaKMFgUJLk9Xpj1nu9XntbMBhUWlqaBg8efM59TldeXi6Px2MvgUAgkWMDAADDfC538TgcjpjHlmWdse5059untLRUoVDIXpqbmxM2KwAAME9CA8Xn80nSGWdCWltb7bMqPp9PnZ2damtrO+c+p3O5XMrMzIxZAABA35XQQBk+fLh8Pp/q6+vtdZ2dndq1a5fy8/MlSXl5eUpNTY3Z59ixYzp48KC9DwAA6N/ivounvb1dhw8fth83NTXpwIEDysrKUk5OjoqLi1VWVqYRI0ZoxIgRKisr08CBAzV79mxJksfj0bx581RSUqLs7GxlZWVp6dKlGjVqlH1XDwAA6N/iDpR9+/Zp4sSJ9uMlS5ZIkubOnavq6motX75ckUhECxYsUFtbm8aOHavt27crIyPDPmbt2rVyOp0qKipSJBLRpEmTVF1drZSUlAS8JAAA0Ns5LMuykj1EvMLhsDwej0KhENejAH1IJBKxv2eprq5Obrc7yRMBSKR43r/5XTwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjJDxQPvnkE/3oRz/S8OHD5Xa7ddlll+mhhx5ST0+PvY9lWVq9erX8fr/cbrcmTJigd955J9GjAACAXirhgbJmzRo99dRTqqqq0nvvvaeKigr9/Oc/1xNPPGHvU1FRocrKSlVVVWnv3r3y+XyaMmWKjh8/nuhxAABAL5TwQHnjjTd066236pZbbtGll16q22+/XQUFBdq3b5+kk2dP1q1bp1WrVum2225Tbm6uNm7cqI8//lg1NTWJHgcAAPRCCQ+UcePG6Y9//KMOHTokSXr77be1Z88e3XzzzZKkpqYmBYNBFRQU2Me4XC6NHz9eDQ0NZ33OaDSqcDgcswAAgL7LmegnXLFihUKhkK688kqlpKSou7tbDz/8sL797W9LkoLBoCTJ6/XGHOf1evXBBx+c9TnLy8v14IMPJnpUAABgqISfQXnuuee0efNm1dTUaP/+/dq4caMeeeQRbdy4MWY/h8MR89iyrDPWnVJaWqpQKGQvzc3NiR4bAAAYJOFnUJYtW6aVK1fqjjvukCSNGjVKH3zwgcrLyzV37lz5fD5JJ8+kXHLJJfZxra2tZ5xVOcXlcsnlciV6VAAAYKiEn0H5+OOPNWBA7NOmpKTYtxkPHz5cPp9P9fX19vbOzk7t2rVL+fn5iR4HAAD0Qgk/gzJ9+nQ9/PDDysnJ0dVXX6233npLlZWV+v73vy/p5Ec7xcXFKisr04gRIzRixAiVlZVp4MCBmj17dqLHAQAAvVDCA+WJJ57QAw88oAULFqi1tVV+v1/z58/Xj3/8Y3uf5cuXKxKJaMGCBWpra9PYsWO1fft2ZWRkJHocAADQCzksy7KSPUS8wuGwPB6PQqGQMjMzkz0OgASJRCIqLCyUJNXV1cntdid5IgCJFM/7N7+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMZxJnsAINksy1JHR0eyx4AU83PgZ2KW9PR0ORyOZI+BfoRAQb/X0dGhwsLCZI+B08ycOTPZI+C/1NXVye12J3sM9CN8xAMAAIzDGRT0e+np6aqrq0v2GNDJj9ui0agkyeVy8ZGCQdLT05M9AvoZAgX9nsPh4NS1QQYOHJjsEQAYgI94AACAcQgUAEZpaGjQrFmz1NDQkOxRACQRgQLAGB0dHaqsrNQ///lPVVZWcqsx0I8RKACM8dvf/lYfffSRJOmjjz5STU1NkicCkCwECgAjtLS0qKamRpZlSTp5R09NTY1aWlqSPBmAZCBQACSdZVl67LHHzrn+VLQA6D8IFABJd+TIEe3du1fd3d0x67u7u7V3714dOXIkSZMBSBYCBUDS5eTkaMyYMUpJSYlZn5KSohtuuEE5OTlJmgxAshAoAJLO4XDo/vvvP+d6vlEW6H8+l0D58MMP9Z3vfEfZ2dkaOHCgrrnmGjU2NtrbLcvS6tWr5ff75Xa7NWHCBL3zzjufxygAeomhQ4eqqKgoZl1RUZG+/OUvJ2kiAMmU8EBpa2vTjTfeqNTUVNXV1endd9/Vo48+qosuusjep6KiQpWVlaqqqtLevXvl8/k0ZcoUHT9+PNHjAACAXshhJfjy+JUrV+pPf/qTXn/99bNutyxLfr9fxcXFWrFihSQpGo3K6/VqzZo1mj9//v/8b4TDYXk8HoVCIWVmZiZyfABJ0tLSorlz58ZcKOt0OlVdXa2hQ4cmcTIAiRLP+3fCz6Bs27ZN119/vb71rW/p4osv1rXXXqtf/epX9vampiYFg0EVFBTY61wul8aPH3/Or7aORqMKh8MxC4C+g9uMAZwu4YHyj3/8Q+vXr9eIESP0yiuv6J577tF9992nZ555RpIUDAYlSV6vN+Y4r9drbztdeXm5PB6PvQQCgUSPDSCJuM0YwOkSHig9PT267rrrVFZWpmuvvVbz58/X3XffrfXr18fsd/pV+ZZlnfNK/dLSUoVCIXtpbm5O9NgAkojbjAGcLuGBcskll+iqq66KWTdy5Ej7X0A+n0+Szjhb0traesZZlVNcLpcyMzNjFgB9B7cZAzhdwgPlxhtv1Pvvvx+z7tChQxo2bJgkafjw4fL5fKqvr7e3d3Z2ateuXcrPz0/0OAB6iaFDh2r27Nl2jDgcDs2ePZvbjIF+KuGBsnjxYr355psqKyvT4cOHVVNTo6efflr33nuvpJP/0ykuLlZZWZlqa2t18OBB3XXXXRo4cKBmz56d6HEA9CJ33nmnsrOzJUlDhgzh/wlAP+ZM9BOOGTNGtbW1Ki0t1UMPPaThw4dr3bp1uvPOO+19li9frkgkogULFqitrU1jx47V9u3blZGRkehxAPQi6enpWrJkiR577DHdf//9Sk9PT/ZIAJIk4d+D8kXge1AAAOh9kvo9KAAAAJ8VgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTsK/6v6LcOrLb8PhcJInAQAAn9ap9+1P8yX2vTJQjh8/LkkKBAJJngQAAMTr+PHj8ng8592nV/4unp6eHh09elQZGRn2r2YH0DeEw2EFAgE1Nzfzu7aAPsayLB0/flx+v18DBpz/KpNeGSgA+i5+GSgAiYtkAQCAgQgUAABgHAIFgFFcLpd+8pOfyOVyJXsUAEnENSgAAMA4nEEBAADGIVAAAIBxCBQAAGAcAgUAABiHQAFglCeffFLDhw9Xenq68vLy9Prrryd7JABJQKAAMMZzzz2n4uJirVq1Sm+99Za+/vWvq7CwUEeOHEn2aAC+YNxmDMAYY8eO1XXXXaf169fb60aOHKlvfvObKi8vT+JkAL5onEEBYITOzk41NjaqoKAgZn1BQYEaGhqSNBWAZCFQABjh3//+t7q7u+X1emPWe71eBYPBJE0FIFkIFABGcTgcMY8tyzpjHYC+j0ABYIQhQ4YoJSXljLMlra2tZ5xVAdD3ESgAjJCWlqa8vDzV19fHrK+vr1d+fn6SpgKQLM5kDwAApyxZskRz5szR9ddfr6997Wt6+umndeTIEd1zzz3JHg3AF4xAAWCMWbNm6aOPPtJDDz2kY8eOKTc3Vy+99JKGDRuW7NEAfMH4HhQAAGAcrkEBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAY5/8B3Id3ni9D9jEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(data[\"MaxHR\"])" ] }, { "cell_type": "code", "execution_count": 37, "id": "0a92e979-1c5c-4cf1-991b-5f89c9082a69", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Age 13.00\n", "Sex 0.00\n", "ChestPainType 2.00\n", "RestingBP 20.00\n", "Cholesterol 93.75\n", "FastingBS 0.00\n", "RestingECG 0.00\n", "MaxHR 36.00\n", "ExerciseAngina 1.00\n", "Oldpeak 1.50\n", "ST_Slope 1.00\n", "HeartDisease 1.00\n", "dtype: float64" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#### Remove the outlier\n", "Q1 = data.quantile(0.25)\n", "Q3 = data.quantile(0.75)\n", "IQR = Q3-Q1\n", "IQR" ] }, { "cell_type": "code", "execution_count": 38, "id": "ecc614ef-39c9-43f3-bc46-8b1763721b20", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(278, 12)" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis = 1)]\n", "data.shape" ] }, { "cell_type": "code", "execution_count": 39, "id": "b6e0e66c-3014-4d13-a7b8-e29eca3c03f4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh40lEQVR4nO3dfUyd9f3/8dclNwfK4IwD89CznXZu1uqEYIeuim6WgeCZFNs6qevSdUu3uJjVMGh1zLjVGUVdJm4l2rhg6Gj2xSwT5h2rdJttCUln6ZjWbCoLTcFyxnTsnJ6OHpBevz9Mr9+Opeqp0PMBno/kSnrdnb5PSHueuc51DpZt27YAAAAMcl6iBwAAAHgvAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcZITPcDZOHnypI4eParMzExZlpXocQAAwIdg27aOHTsmn8+n8857/2skszJQjh49Kr/fn+gxAADAWRgcHNSnPvWp9z1mVgZKZmampHefYFZWVoKnAQAAH0Y4HJbf73dex9/PrAyUU2/rZGVlESgAAMwyH+b2DG6SBQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMaJO1D27t2rlStXyufzybIsdXR0xOy3LGvK5ac//alzTDQa1aZNm5Sbm6uMjAxVVVVpaGjoIz8ZAAAwN8QdKMePH1dhYaGampqm3D88PByzPPHEE7IsSzfddJNzTE1Njdrb29XW1qbu7m5FIhFVVlZqcnLy7J8JAACYMyzbtu2zPtmy1N7erlWrVp3xmFWrVunYsWP6wx/+IEkKhUL6xCc+odbWVq1du1bS///txM8//7wqKio+8O8Nh8Nyu90KhUL8Lh58ZLZt68SJE4keA3r3ZxGNRiVJLpfrQ/2+DpwbaWlp/DzwkcXz+j2jvyzwn//8p5577jnt2LHD2dbb26uJiQmVl5c723w+n/Lz89XT0zNloESjUec/LendJwhMlxMnTigQCCR6DMBonZ2dSk9PT/QYmEdm9CbZHTt2KDMzU2vWrHG2BYNBpaamKjs7O+ZYr9erYDA45eM0NDTI7XY7i9/vn8mxAQBAgs3oFZQnnnhCX//615WWlvaBx9q2fcbLh/X19aqtrXXWw+EwkYJpk5aWps7OzkSPAb17NWv16tWSpPb29g/1fwfODX4WONdmLFD27dun1157TU8++WTM9ry8PI2Pj2t0dDTmKsrIyIiKi4unfCyXyyWXyzVTo2KesyyLS9cGSktL4+cCzGMz9hZPc3OzioqKVFhYGLO9qKhIKSkp6urqcrYNDw/r0KFDZwwUAAAwv8R9BSUSiai/v99ZHxgYUF9fnzwejxYtWiTp3bdgfvOb3+hnP/vZaee73W5t3LhRdXV1ysnJkcfj0ebNm1VQUKCysrKP8FQAAMBcEXegHDhwQCUlJc76qXtDNmzYoJaWFklSW1ubbNvW1772tSkfo7GxUcnJyaqurtbY2JhKS0vV0tKipKSks3gKAABgrvlI34OSKHwPCjA3jY2NOR/55mOtwNwTz+s3v4sHAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJy4A2Xv3r1auXKlfD6fLMtSR0fHacf87W9/U1VVldxutzIzM3XllVfqyJEjzv5oNKpNmzYpNzdXGRkZqqqq0tDQ0Ed6IgAAYO6IO1COHz+uwsJCNTU1Tbn/H//4h6655hpdfPHFevHFF/XXv/5Vd999t9LS0pxjampq1N7erra2NnV3dysSiaiyslKTk5Nn/0wAAMCckRzvCYFAQIFA4Iz777rrLn3lK1/RQw895Gz7zGc+4/w5FAqpublZra2tKisrkyTt3LlTfr9fu3fvVkVFRbwjAQCAOWZa70E5efKknnvuOV100UWqqKjQ+eefr+XLl8e8DdTb26uJiQmVl5c723w+n/Lz89XT0zOd4wAAgFlqWgNlZGREkUhEDzzwgK6//nq98MILWr16tdasWaM9e/ZIkoLBoFJTU5WdnR1zrtfrVTAYnPJxo9GowuFwzAIAAOauuN/ieT8nT56UJN144436/ve/L0m67LLL1NPTo+3bt+vaa68947m2bcuyrCn3NTQ06J577pnOUQEAgMGm9QpKbm6ukpOT9bnPfS5m+yWXXOJ8iicvL0/j4+MaHR2NOWZkZERer3fKx62vr1coFHKWwcHB6RwbAAAYZloDJTU1VVdccYVee+21mO2vv/66Fi9eLEkqKipSSkqKurq6nP3Dw8M6dOiQiouLp3xcl8ulrKysmAUAAMxdcb/FE4lE1N/f76wPDAyor69PHo9HixYt0pYtW7R27Vp96UtfUklJiX7/+9/rmWee0YsvvihJcrvd2rhxo+rq6pSTkyOPx6PNmzeroKDA+VQPAACY3+IOlAMHDqikpMRZr62tlSRt2LBBLS0tWr16tbZv366GhgbdfvvtWrp0qX7729/qmmuucc5pbGxUcnKyqqurNTY2ptLSUrW0tCgpKWkanhIAAJjtLNu27UQPEa9wOCy3261QKMTbPcAcMjY25nzPUmdnp9LT0xM8EYDpFM/rN7+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcuANl7969WrlypXw+nyzLUkdHR8z+b37zm7IsK2a58sorY46JRqPatGmTcnNzlZGRoaqqKg0NDX2kJwIAAOaOuAPl+PHjKiwsVFNT0xmPuf766zU8POwszz//fMz+mpoatbe3q62tTd3d3YpEIqqsrNTk5GT8zwAAAMw5yfGeEAgEFAgE3vcYl8ulvLy8KfeFQiE1NzertbVVZWVlkqSdO3fK7/dr9+7dqqioiHckAAAwx8zIPSgvvviizj//fF100UX6zne+o5GREWdfb2+vJiYmVF5e7mzz+XzKz89XT0/PTIwDAABmmbivoHyQQCCgm2++WYsXL9bAwIDuvvtuffnLX1Zvb69cLpeCwaBSU1OVnZ0dc57X61UwGJzyMaPRqKLRqLMeDoene2wAAGCQaQ+UtWvXOn/Oz8/X5ZdfrsWLF+u5557TmjVrzniebduyLGvKfQ0NDbrnnnume1QAAGCoGf+Y8cKFC7V48WK98cYbkqS8vDyNj49rdHQ05riRkRF5vd4pH6O+vl6hUMhZBgcHZ3psAACQQDMeKG+//bYGBwe1cOFCSVJRUZFSUlLU1dXlHDM8PKxDhw6puLh4ysdwuVzKysqKWQAAwNwV91s8kUhE/f39zvrAwID6+vrk8Xjk8Xi0detW3XTTTVq4cKEOHz6sH/7wh8rNzdXq1aslSW63Wxs3blRdXZ1ycnLk8Xi0efNmFRQUOJ/qAQAA81vcgXLgwAGVlJQ467W1tZKkDRs26LHHHtMrr7yiX/3qV/rPf/6jhQsXqqSkRE8++aQyMzOdcxobG5WcnKzq6mqNjY2ptLRULS0tSkpKmoanBAAAZjvLtm070UPEKxwOy+12KxQK8XYPMIeMjY0537PU2dmp9PT0BE8EYDrF8/rN7+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxok7UPbu3auVK1fK5/PJsix1dHSc8dhbb71VlmXpkUceidkejUa1adMm5ebmKiMjQ1VVVRoaGop3FAAAMEfFHSjHjx9XYWGhmpqa3ve4jo4O7d+/Xz6f77R9NTU1am9vV1tbm7q7uxWJRFRZWanJycl4xwEAAHNQcrwnBAIBBQKB9z3mzTff1Pe+9z3t2rVLN9xwQ8y+UCik5uZmtba2qqysTJK0c+dO+f1+7d69WxUVFfGONCvZtq0TJ04kegzAKP/7b4J/H8DU0tLSZFlWoseYcXEHygc5efKk1q9fry1btujSSy89bX9vb68mJiZUXl7ubPP5fMrPz1dPT8+UgRKNRhWNRp31cDg83WOfcydOnPjA0APms9WrVyd6BMBInZ2dSk9PT/QYM27ab5J98MEHlZycrNtvv33K/cFgUKmpqcrOzo7Z7vV6FQwGpzynoaFBbrfbWfx+/3SPDQAADDKtV1B6e3v185//XAcPHoz78pNt22c8p76+XrW1tc56OByeU5ESuexrss+b9otZwOxj29LJd97983nJ0jy4jA18GNbJd/Sxvv9L9Bjn1LS+Ku7bt08jIyNatGiRs21yclJ1dXV65JFHdPjwYeXl5Wl8fFyjo6MxV1FGRkZUXFw85eO6XC65XK7pHNUo9nnJUlJKoscADJGa6AEA49iJHiABpvUtnvXr1+vll19WX1+fs/h8Pm3ZskW7du2SJBUVFSklJUVdXV3OecPDwzp06NAZAwUAAMwvcV9BiUQi6u/vd9YHBgbU19cnj8ejRYsWKScnJ+b4lJQU5eXlaenSpZIkt9utjRs3qq6uTjk5OfJ4PNq8ebMKCgqcT/UAAID5Le5AOXDggEpKSpz1U/eGbNiwQS0tLR/qMRobG5WcnKzq6mqNjY2ptLRULS0tSkpKinccAAAwB8UdKCtWrJBtf/h3ww4fPnzatrS0NG3btk3btm2L968HAADzAL+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcuANl7969WrlypXw+nyzLUkdHR8z+rVu36uKLL1ZGRoays7NVVlam/fv3xxwTjUa1adMm5ebmKiMjQ1VVVRoaGvpITwQAAMwdcQfK8ePHVVhYqKampin3X3TRRWpqatIrr7yi7u5uffrTn1Z5ebn+9a9/OcfU1NSovb1dbW1t6u7uViQSUWVlpSYnJ8/+mQAAgDkjOd4TAoGAAoHAGfevW7cuZv3hhx9Wc3OzXn75ZZWWlioUCqm5uVmtra0qKyuTJO3cuVN+v1+7d+9WRUVFvCPNfpMTiZ4AAGCyefg6EXegxGN8fFyPP/643G63CgsLJUm9vb2amJhQeXm5c5zP51N+fr56enqmDJRoNKpoNOqsh8PhmRz7nMv8a1uiRwAAwCgzcpPss88+q4997GNKS0tTY2Ojurq6lJubK0kKBoNKTU1VdnZ2zDler1fBYHDKx2toaJDb7XYWv98/E2MDAABDzMgVlJKSEvX19emtt97SL3/5S1VXV2v//v06//zzz3iObduyLGvKffX19aqtrXXWw+HwnIqUY4W3SEkpiR4DAGCqyYl5d7V9RgIlIyNDF154oS688EJdeeWVWrJkiZqbm1VfX6+8vDyNj49rdHQ05irKyMiIiouLp3w8l8sll8s1E6OaISmFQAEA4H+ck+9BsW3buYekqKhIKSkp6urqcvYPDw/r0KFDZwwUAAAwv8R9BSUSiai/v99ZHxgYUF9fnzwej3JycnTfffepqqpKCxcu1Ntvv61HH31UQ0NDuvnmmyVJbrdbGzduVF1dnXJycuTxeLR582YVFBQ4n+oBAADzW9yBcuDAAZWUlDjrp+4N2bBhg7Zv366///3v2rFjh9566y3l5OToiiuu0L59+3TppZc65zQ2Nio5OVnV1dUaGxtTaWmpWlpalJSUNA1PCQAAzHZxB8qKFStk2/YZ9z/11FMf+BhpaWnatm2btm3bFu9fDwAA5gF+Fw8AADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOHEHyt69e7Vy5Ur5fD5ZlqWOjg5n38TEhO68804VFBQoIyNDPp9P3/jGN3T06NGYx4hGo9q0aZNyc3OVkZGhqqoqDQ0NfeQnAwAA5oa4A+X48eMqLCxUU1PTafv++9//6uDBg7r77rt18OBBPfXUU3r99ddVVVUVc1xNTY3a29vV1tam7u5uRSIRVVZWanJy8uyfCQAAmDOS4z0hEAgoEAhMuc/tdqurqytm27Zt2/SFL3xBR44c0aJFixQKhdTc3KzW1laVlZVJknbu3Cm/36/du3eroqLiLJ7G7GadfEd2oocATGDb0sl33v3zecmSZSV2HsAQ1ql/F/NI3IESr1AoJMuy9PGPf1yS1Nvbq4mJCZWXlzvH+Hw+5efnq6enZ8pAiUajikajzno4HJ7psc+pj/X9X6JHAADAKDN6k+yJEyf0gx/8QOvWrVNWVpYkKRgMKjU1VdnZ2THHer1eBYPBKR+noaFBbrfbWfx+/0yODQAAEmzGrqBMTEzolltu0cmTJ/Xoo49+4PG2bcs6w+Xc+vp61dbWOuvhcHjWR0paWpo6OzsTPQZglBMnTmj16tWSpPb2dqWlpSV4IsA88+XfxYwEysTEhKqrqzUwMKA//vGPztUTScrLy9P4+LhGR0djrqKMjIyouLh4ysdzuVxyuVwzMWrCWJal9PT0RI8BGCstLY1/I8A8Nu1v8ZyKkzfeeEO7d+9WTk5OzP6ioiKlpKTE3Ew7PDysQ4cOnTFQAADA/BL3FZRIJKL+/n5nfWBgQH19ffJ4PPL5fPrqV7+qgwcP6tlnn9Xk5KRzX4nH41Fqaqrcbrc2btyouro65eTkyOPxaPPmzSooKHA+1QMAAOa3uAPlwIEDKikpcdZP3RuyYcMGbd26VU8//bQk6bLLLos5709/+pNWrFghSWpsbFRycrKqq6s1Njam0tJStbS0KCkp6SyfBgAAmEss27Zn3VdwhMNhud1uhUKhmPtbAMxuY2NjzvcsdXZ2cg8KMMfE8/rN7+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfuQNm7d69Wrlwpn88ny7LU0dERs/+pp55SRUWFcnNzZVmW+vr6TnuMaDSqTZs2KTc3VxkZGaqqqtLQ0NDZPgcAADDHxB0ox48fV2FhoZqams64/+qrr9YDDzxwxseoqalRe3u72tra1N3drUgkosrKSk1OTsY7DgAAmIOS4z0hEAgoEAiccf/69eslSYcPH55yfygUUnNzs1pbW1VWViZJ2rlzp/x+v3bv3q2Kiop4RwIAAHPMOb8Hpbe3VxMTEyovL3e2+Xw+5efnq6enZ8pzotGowuFwzAIAAOaucx4owWBQqampys7Ojtnu9XoVDAanPKehoUFut9tZ/H7/uRgVAAAkiDGf4rFtW5ZlTbmvvr5eoVDIWQYHB8/xdAAA4Fw654GSl5en8fFxjY6OxmwfGRmR1+ud8hyXy6WsrKyYBQAAzF3nPFCKioqUkpKirq4uZ9vw8LAOHTqk4uLicz0OAAAwUNyf4olEIurv73fWBwYG1NfXJ4/Ho0WLFunf//63jhw5oqNHj0qSXnvtNUnvXjnJy8uT2+3Wxo0bVVdXp5ycHHk8Hm3evFkFBQXOp3oAAMD8FvcVlAMHDmjZsmVatmyZJKm2tlbLli3Tj370I0nS008/rWXLlumGG26QJN1yyy1atmyZtm/f7jxGY2OjVq1aperqal199dVasGCBnnnmGSUlJU3HcwIAALOcZdu2negh4hUOh+V2uxUKhbgfBZhDxsbGnO9Z6uzsVHp6eoInAjCd4nn9NuZTPAAAAKcQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME3eg7N27VytXrpTP55NlWero6IjZb9u2tm7dKp/Pp/T0dK1YsUKvvvpqzDHRaFSbNm1Sbm6uMjIyVFVVpaGhoY/0RAAAwNwRd6AcP35chYWFampqmnL/Qw89pIcfflhNTU166aWXlJeXp+uuu07Hjh1zjqmpqVF7e7va2trU3d2tSCSiyspKTU5Onv0zAQAAc0ZyvCcEAgEFAoEp99m2rUceeUR33XWX1qxZI0nasWOHvF6vfv3rX+vWW29VKBRSc3OzWltbVVZWJknauXOn/H6/du/erYqKio/wdAAAwFwwrfegDAwMKBgMqry83Nnmcrl07bXXqqenR5LU29uriYmJmGN8Pp/y8/OdY94rGo0qHA7HLAAAYO6a1kAJBoOSJK/XG7Pd6/U6+4LBoFJTU5WdnX3GY96roaFBbrfbWfx+/3SODQAADDMjn+KxLCtm3bbt07a91/sdU19fr1Ao5CyDg4PTNisAADDPtAZKXl6eJJ12JWRkZMS5qpKXl6fx8XGNjo6e8Zj3crlcysrKilkAAMDcNa2BcsEFFygvL09dXV3OtvHxce3Zs0fFxcWSpKKiIqWkpMQcMzw8rEOHDjnHAACA+S3uT/FEIhH19/c76wMDA+rr65PH49GiRYtUU1Oj+++/X0uWLNGSJUt0//33a8GCBVq3bp0kye12a+PGjaqrq1NOTo48Ho82b96sgoIC51M9AABgfos7UA4cOKCSkhJnvba2VpK0YcMGtbS06I477tDY2Jhuu+02jY6Oavny5XrhhReUmZnpnNPY2Kjk5GRVV1drbGxMpaWlamlpUVJS0jQ8JQAAMNtZtm3biR4iXuFwWG63W6FQiPtRgDlkbGzM+Z6lzs5OpaenJ3giANMpntdvfhcPAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTnKiBwASzbZtnThxItFjQIr5OfAzMUtaWposy0r0GJhHCBTMeydOnFAgEEj0GHiP1atXJ3oE/I/Ozk6lp6cnegzMI7zFAwAAjMMVFMx7aWlp6uzsTPQY0Ltvt0WjUUmSy+XiLQWDpKWlJXoEzDMECuY9y7K4dG2QBQsWJHoEAAbgLR4AAGAcAgUAABhnRgLl2LFjqqmp0eLFi5Wenq7i4mK99NJLzn7btrV161b5fD6lp6drxYoVevXVV2diFAAAMAvNSKB8+9vfVldXl1pbW/XKK6+ovLxcZWVlevPNNyVJDz30kB5++GE1NTXppZdeUl5enq677jodO3ZsJsYBAACzjGXbtj2dDzg2NqbMzEz97ne/0w033OBsv+yyy1RZWal7771XPp9PNTU1uvPOOyVJ0WhUXq9XDz74oG699dYP/DvC4bDcbrdCoZCysrKmc3wAADBD4nn9nvYrKO+8844mJydP+0haenq6uru7NTAwoGAwqPLycmefy+XStddeq56enikfMxqNKhwOxywAAGDumvZAyczM1FVXXaV7771XR48e1eTkpHbu3Kn9+/dreHhYwWBQkuT1emPO83q9zr73amhokNvtdha/3z/dYwMAAIPMyD0ora2tsm1bn/zkJ+VyufSLX/xC69atU1JSknPMe7+AybbtM34pU319vUKhkLMMDg7OxNgAAMAQMxIon/3sZ7Vnzx5FIhENDg7qz3/+syYmJnTBBRcoLy9Pkk67WjIyMnLaVZVTXC6XsrKyYhYAADB3zej3oGRkZGjhwoUaHR3Vrl27dOONNzqR0tXV5Rw3Pj6uPXv2qLi4eCbHAQAAs8SMfNX9rl27ZNu2li5dqv7+fm3ZskVLly7Vt771LVmWpZqaGt1///1asmSJlixZovvvv18LFizQunXrZmIcAAAwy8xIoIRCIdXX12toaEgej0c33XST7rvvPqWkpEiS7rjjDo2Njem2227T6Oioli9frhdeeEGZmZkzMQ4AAJhlpv17UM4FvgcFAIDZJ57X71n524xPNRXfhwIAwOxx6nX7w1wbmZWBcuor8fk+FAAAZp9jx47J7Xa/7zGz8i2ekydP6ujRo8rMzDzjd6cAmJ3C4bD8fr8GBwd5CxeYY2zb1rFjx+Tz+XTeee//QeJZGSgA5i7uMQMgzfD3oAAAAJwNAgUAABiHQAFgFJfLpR//+MdyuVyJHgVAAnEPCgAAMA5XUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQABjl0Ucf1QUXXKC0tDQVFRVp3759iR4JQAIQKACM8eSTT6qmpkZ33XWX/vKXv+iLX/yiAoGAjhw5kujRAJxjfMwYgDGWL1+uz3/+83rsscecbZdccolWrVqlhoaGBE4G4FzjCgoAI4yPj6u3t1fl5eUx28vLy9XT05OgqQAkCoECwAhvvfWWJicn5fV6Y7Z7vV4Fg8EETQUgUQgUAEaxLCtm3bbt07YBmPsIFABGyM3NVVJS0mlXS0ZGRk67qgJg7iNQABghNTVVRUVF6urqitne1dWl4uLiBE0FIFGSEz0AAJxSW1ur9evX6/LLL9dVV12lxx9/XEeOHNF3v/vdRI8G4BwjUAAYY+3atXr77bf1k5/8RMPDw8rPz9fzzz+vxYsXJ3o0AOcY34MCAACMwz0oAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4/w/w8c1Ytd0U/EAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(data[\"RestingBP\"])" ] }, { "cell_type": "code", "execution_count": 40, "id": "d5482366-f3d5-4c7a-b3e0-01daaf022efc", "metadata": {}, "outputs": [], "source": [ "label = data[\"HeartDisease\"].copy()\n", "data = data.drop(\"HeartDisease\",axis=1)" ] }, { "cell_type": "code", "execution_count": null, "id": "b54c2525-5e46-4dfb-9eea-07186ec88519", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "35e25dfd-4b17-4049-8bd8-d9db61c43574", "metadata": {}, "source": [ "## Train Test Split\n" ] }, { "cell_type": "code", "execution_count": 41, "id": "e68d6405-3820-4eb6-bb2b-8b0b7cf5b9a9", "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(data, label, test_size = 0.2, random_state = 42)" ] }, { "cell_type": "code", "execution_count": 43, "id": "c117be1c-dc30-4ea8-b48b-fd5f25fdd4ac", "metadata": {}, "outputs": [], "source": [ "scale = StandardScaler()\n", "X_train = scale.fit_transform(X_train)\n", "X_test = scale.fit_transform(X_test)" ] }, { "cell_type": "code", "execution_count": 44, "id": "c2a87620-4461-4b3d-af02-915739ae12f3", "metadata": {}, "outputs": [], "source": [ "import pickle" ] }, { "cell_type": "code", "execution_count": 45, "id": "c125509e-99e7-4484-be96-b9d46f8a6f1d", "metadata": {}, "outputs": [], "source": [ "with open('scaler.pkl','wb') as f:\n", " pickle.dump(scale, f)" ] }, { "cell_type": "code", "execution_count": 46, "id": "7eb74d73-76ea-4225-a245-30245b9e2217", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.84 0.90 0.87 29\n", " 1 0.88 0.81 0.85 27\n", "\n", " accuracy 0.86 56\n", " macro avg 0.86 0.86 0.86 56\n", "weighted avg 0.86 0.86 0.86 56\n", "\n" ] } ], "source": [ "lor = LogisticRegression()\n", "lor.fit(X_train, y_train)\n", "y_pred = lor.predict(X_test)\n", "print(classification_report(y_test, y_pred))" ] }, { "cell_type": "code", "execution_count": null, "id": "64875722-03a3-42a5-a0c6-0efe349442df", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 47, "id": "75a96873-9c98-48a1-9c22-b2a9c52a688a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsZElEQVR4nO3de3QU9f3/8deGJJsASTBCbhJCQG4KIhKE4AWwgkTlEGktiG3BgpaCUr5RsUrRaAsRWxGVQpF+C+hXKv5sQauI4gVQEUsiiAKlIAGCkHIRCAkkIbvz+yOydQVhN7Ob3dl5Ps6ZIzM7l3diTt55vz+fmXEYhmEIAABYUlSoAwAAAA1HIgcAwMJI5AAAWBiJHAAACyORAwBgYSRyAAAsjEQOAICFRYc6ADPcbrf27dunhIQEORyOUIcDAPCTYRg6fvy4MjIyFBUVvNqyurpatbW1ps8TGxuruLi4AEQUOJZO5Pv27VNmZmaowwAAmFRWVqbWrVsH5dzV1dXKzmqu8gMu0+dKS0tTaWlpWCVzSyfyhIQESdLuT9sqsTmjBIhMt3TsFuoQgKCp0yl9qOWe3+fBUFtbq/IDLu0uaavEhIbniorjbmX13KXa2loSeaCcbqcnNo8y9T8HCGfRjphQhwAEzzcPCW+M4dHmCQ41T2j4ddwKzyFcSydyAAB85TLccpl4u4jLcAcumAAikQMAbMEtQ241PJObOTaY6EcDAGBhVOQAAFtwyy0zzXFzRwcPiRwAYAsuw5DLaHh73MyxwURrHQAAC6MiBwDYQqROdiORAwBswS1DrghM5LTWAQCwMCpyAIAtRGprnYocAGALp2etm1n8UVRUpF69eikhIUEpKSnKz8/Xtm3bvPYZPXq0HA6H19KnTx+/rkMiBwAgCFavXq0JEyZo3bp1Wrlyperq6jRo0CBVVVV57Td48GDt37/fsyxfvtyv69BaBwDYgvubxczxklRRUeG13el0yul0nrH/ihUrvNYXLFiglJQUlZSU6Nprr/U6Pi0trcFxUZEDAGzB9c2sdTOLJGVmZiopKcmzFBUV+XT9Y8eOSZKSk5O9tq9atUopKSnq2LGj7rzzTh04cMCvr4uKHABgCy5DJt9+Vv/fsrIyJSYmerafrRr/LsMwVFBQoKuvvlpdu3b1bM/Ly9Ott96qrKwslZaWaurUqbruuutUUlLi03klEjkAAH5JTEz0SuS+uPvuu7Vp0yZ9+OGHXtuHDx/u+XfXrl2Vk5OjrKwsvfHGGxo2bJhP5yaRAwBsIVBj5P6655579Nprr2nNmjVq3br1OfdNT09XVlaWtm/f7vP5SeQAAFtwyyGXHKaO94dhGLrnnnu0dOlSrVq1StnZ2ec95vDhwyorK1N6errP12GyGwAAQTBhwgT93//9nxYvXqyEhASVl5ervLxcJ0+elCRVVlbqvvvu08cff6xdu3Zp1apVGjJkiFq2bKlbbrnF5+tQkQMAbMFt1C9mjvfH3LlzJUn9+/f32r5gwQKNHj1aTZo00eeff67nn39eR48eVXp6ugYMGKAlS5YoISHB5+uQyAEAtuAy2Vr391jjPE+Ci4+P11tvvdXgeE6jtQ4AgIVRkQMAbKGxK/LGQiIHANiC23DIbZiYtW7i2GCitQ4AgIVRkQMAbIHWOgAAFuZSlFwmGtGuAMYSSCRyAIAtGCbHyA3GyAEAQKBRkQMAbIExcgAALMxlRMllmBgjN/F412CitQ4AgIVRkQMAbMEth9wm6le3wrMkJ5EDAGwhUsfIaa0DAGBhVOQAAFswP9mN1joAACFTP0Zu4qUptNYBAECgUZEDAGzBbfJZ68xaBwAghBgjBwDAwtyKisj7yBkjBwDAwqjIAQC24DIccpl4FamZY4OJRA4AsAWXycluLlrrAAAg0KjIAQC24Dai5DYxa93NrHUAAEKH1joAAAg7VOQAAFtwy9zMc3fgQgkoEjkAwBbMPxAmPJvY4RkVAADwCRU5AMAWzD9rPTxrXxI5AMAWIvV95CRyAIAtRGpFHp5RAQAAn1CRAwBswfwDYcKz9iWRAwBswW045DZzH3mYvv0sPP+8AAAAPqEiBwDYgttkaz1cHwhDIgcA2IL5t5+FZyIPz6gAAIBPqMgBALbgkkMuEw91MXNsMJHIAQC2QGsdAACEHSpyAIAtuGSuPe4KXCgBRSIHANhCpLbWSeQAAFvgpSkAACDsUJEDAGzBMPk+coPbzwAACB1a6wAAIOxQkQMAbCFSX2NKIgcA2ILL5NvPzBwbTOEZFQAA8AkVOQDAFmitAwBgYW5FyW2iEW3m2GAKz6gAAIBPqMgBALbgMhxymWiPmzk2mEjkAABbYIwcAAALM0y+/czgyW4AACDQqMgBALbgkkMuEy8+MXNsMJHIAQC24DbMjXO7jQAGE0C01gEAsDAqcpzhpWdT9NHyFirb4VRsnFuX5JzQmCn7lHlxjdd+e7Y79b+/y9Cmdc1luKWsTtWa8qddSml9KkSRAw1z888O6aafHVZqZq0kafe2OL34VKqK308McWQIJLfJyW5mjg0mEjnOsOnj5hoy+pA6Xn5Crjpp4Yx0PXRbe81f/S/FNXVLkvbtilVBfgcNHnFYP72vXM0SXdqzPU6xcWHaewLO4eD+GP1lerr27XJKkgbe+rUKF+zShEEdtfvfcSGODoHilkNuE+PcZo4NppD/eTFnzhxlZ2crLi5OPXv21AcffBDqkGxv+uKdGjT8a7XtVK32l1br3qf26MBXsdq+Kd6zz8LH03XldRUaO3W/Lu52UulZtep9fYVatKwLYeRAw3yyMknr30vUVzud+mqnUwtnpKu6Kkqde1aFOjTgvEKayJcsWaJJkyZpypQp2rBhg6655hrl5eVpz549oQwL31FV0USSlNDCJUlyu6V/vpuoi9rV6KHb2unH3S7VxJs6aO2bSaEMEwiIqChD/YYekbOpW1uLm4U6HATQ6Se7mVnCUUgT+cyZMzVmzBiNHTtWXbp00axZs5SZmam5c+eGMix8i2FIzxVepEuvrFTbztWSpKOHonWyqomWzE5RzoDjKvrrTl01+JgeG9tWmz7mFx+sqW3nk1q2/XO9vmuTJj6+V4+Naas922mrR5LTY+RmlnAUsjHy2tpalZSU6Ne//rXX9kGDBmnt2rVnPaampkY1Nf+dcFVRURHUGCH98aGLVLo1Xk8u2+7ZZtQPkyv3hgoNu+ugJKl915PaUtxMbzzfUpfl0o6E9ez90qnxAzuqWaJLV990TPc9vUf3D7uYZI6wF7I/Lw4dOiSXy6XU1FSv7ampqSovLz/rMUVFRUpKSvIsmZmZjRGqbf1xykX6+O0kPfHKDrXK+O9M9MRkl5pEG8rqWO21f2aHah34KqaxwwQCou5UlPbtcmr7pqZaUJSu0i3xyh97MNRhIYDccniet96gxc/JbkVFRerVq5cSEhKUkpKi/Px8bdu2zWsfwzBUWFiojIwMxcfHq3///tq8ebNf1wl5n8Dh8P7GGIZxxrbTHnzwQR07dsyzlJWVNUaItmMY0uyHLtJHbybpif+3Q2ltar0+j4k11LH7Ce390um1/audTm49Q0SJieUujEhifDNrvaGL4WciX716tSZMmKB169Zp5cqVqqur06BBg1RV9d+u5RNPPKGZM2dq9uzZWr9+vdLS0jRw4EAdP37c5+uErLXesmVLNWnS5Izq+8CBA2dU6ac5nU45nc6zfobAmf1Qa72/9AIVLtip+OZufX2g/sekWYJLzvj6X2y3jj+g6eOy1LVPpbr3rVTx+4latzJJv39lRyhDBxrkjl/v1/r3EnRwX6zim7vUf+hRXda3Ur+5vV2oQ0MANfbbz1asWOG1vmDBAqWkpKikpETXXnutDMPQrFmzNGXKFA0bNkyStGjRIqWmpmrx4sX6xS9+4dN1QpbIY2Nj1bNnT61cuVK33HKLZ/vKlSs1dOjQUIUFSa8vailJuv+HHby23/vUHg0a/rUk6aq8Y5r4+F69NDtVc6e2Vut2NZo6v1RdezM+Dutp0apO9z+7R8kpdTpxvIlKt8bpN7e306drEkIdGsLQd+dn+VpkHjt2TJKUnJwsSSotLVV5ebkGDRrkda5+/fpp7dq14Z/IJamgoEA//elPlZOTo9zcXD333HPas2ePxo0bF8qwbO+tfRt92u+G277WDbd9HdxggEbw1L3Mt7GDQD3Z7bvzsx555BEVFhae81jDMFRQUKCrr75aXbt2lSRPR/psc8V2797tc1whTeTDhw/X4cOH9dhjj2n//v3q2rWrli9frqysrFCGBQCIQIFqrZeVlSkx8b+P7/WlGr/77ru1adMmffjhh2d85s9csbMJ+SNax48fr/Hjx4c6DAAAfJKYmOiVyM/nnnvu0WuvvaY1a9aodevWnu1paWmS6ivz9PR0z/ZzzRU7m5DPWgcAoDGYmbHekOe0G4ahu+++W3//+9/13nvvKTs72+vz7OxspaWlaeXKlZ5ttbW1Wr16tfr27evzdUJekQMA0Bgae9b6hAkTtHjxYr366qtKSEjwjIknJSUpPj5eDodDkyZN0vTp09WhQwd16NBB06dPV9OmTTVy5Eifr0MiBwAgCE4/brx///5e2xcsWKDRo0dLkiZPnqyTJ09q/PjxOnLkiHr37q23335bCQm+3zFBIgcA2EJjV+SGcf4HCjkcDhUWFp531vu5kMgBALbQ2Im8sTDZDQAAC6MiBwDYQqRW5CRyAIAtGJLft5B99/hwRCIHANhCpFbkjJEDAGBhVOQAAFuI1IqcRA4AsIVITeS01gEAsDAqcgCALURqRU4iBwDYgmE4ZJhIxmaODSZa6wAAWBgVOQDAFhryTvHvHh+OSOQAAFuI1DFyWusAAFgYFTkAwBYidbIbiRwAYAuR2lonkQMAbCFSK3LGyAEAsDAqcgCALRgmW+vhWpGTyAEAtmBIMgxzx4cjWusAAFgYFTkAwBbccsjBk90AALAmZq0DAICwQ0UOALAFt+GQgwfCAABgTYZhctZ6mE5bp7UOAICFUZEDAGwhUie7kcgBALZAIgcAwMIidbIbY+QAAFgYFTkAwBYiddY6iRwAYAv1idzMGHkAgwkgWusAAFgYFTkAwBaYtQ4AgIUZMvdO8TDtrNNaBwDAyqjIAQC2QGsdAAAri9DeOokcAGAPJityhWlFzhg5AAAWRkUOALAFnuwGAICFRepkN1rrAABYGBU5AMAeDIe5CWthWpGTyAEAthCpY+S01gEAsDAqcgCAPfBAGAAArCtSZ637lMifeeYZn084ceLEBgcDAAD841Mif+qpp3w6mcPhIJEDAMJXmLbHzfApkZeWlgY7DgAAgipSW+sNnrVeW1urbdu2qa6uLpDxAAAQHEYAljDkdyI/ceKExowZo6ZNm+rSSy/Vnj17JNWPjT/++OMBDxAAAHw/vxP5gw8+qM8++0yrVq1SXFycZ/v111+vJUuWBDQ4AAACxxGAJfz4ffvZsmXLtGTJEvXp00cOx3+/qEsuuURffvllQIMDACBgIvQ+cr8r8oMHDyolJeWM7VVVVV6JHQAABJ/fibxXr1564403POunk/f8+fOVm5sbuMgAAAikCJ3s5ndrvaioSIMHD9aWLVtUV1enp59+Wps3b9bHH3+s1atXByNGAADMi9C3n/ldkfft21cfffSRTpw4ofbt2+vtt99WamqqPv74Y/Xs2TMYMQIAgO/RoGetd+vWTYsWLQp0LAAABE2kvsa0QYnc5XJp6dKl2rp1qxwOh7p06aKhQ4cqOpp3sAAAwlSEzlr3O/N+8cUXGjp0qMrLy9WpUydJ0r///W+1atVKr732mrp16xbwIAEAwNn5PUY+duxYXXrppdq7d68+/fRTffrppyorK9Nll12mu+66KxgxAgBg3unJbmaWMOR3Rf7ZZ5+puLhYF1xwgWfbBRdcoGnTpqlXr14BDQ4AgEBxGPWLmePDkd8VeadOnfSf//znjO0HDhzQxRdfHJCgAAAIuAi9j9ynRF5RUeFZpk+frokTJ+qVV17R3r17tXfvXr3yyiuaNGmSZsyYEex4AQDAt/jUWm/RooXX41cNw9CPf/xjzzbjmzn5Q4YMkcvlCkKYAACYFKEPhPEpkb///vvBjgMAgOBq5NvP1qxZo9///vcqKSnR/v37tXTpUuXn53s+Hz169BnPZOndu7fWrVvn13V8SuT9+vXz66QAANhdVVWVunfvrjvuuEM//OEPz7rP4MGDtWDBAs96bGys39dp8BNcTpw4oT179qi2ttZr+2WXXdbQUwIAEDyNXJHn5eUpLy/vnPs4nU6lpaWZCKoBifzgwYO644479Oabb571c8bIAQBhKUCJvKKiwmuz0+mU0+ls0ClXrVqllJQUtWjRQv369dO0adPO+qrwc/H79rNJkybpyJEjWrduneLj47VixQotWrRIHTp00Guvvebv6QAAsJTMzEwlJSV5lqKiogadJy8vTy+++KLee+89Pfnkk1q/fr2uu+461dTU+HUevyvy9957T6+++qp69eqlqKgoZWVlaeDAgUpMTFRRUZFuuukmf08JAEDwBWjWellZmRITEz2bG1qNDx8+3PPvrl27KicnR1lZWXrjjTc0bNgwn8/jdyKvqqrylP3Jyck6ePCgOnbsqG7duunTTz/193QAADSKQD3ZLTEx0SuRB0p6erqysrK0fft2v45r0JPdtm3bJkm6/PLLNW/ePH311Vf605/+pPT0dH9PBwAAJB0+fFhlZWV+51K/K/JJkyZp//79kqRHHnlEN9xwg1588UXFxsZq4cKF/p4OAIDG0ciz1isrK7Vjxw7PemlpqTZu3Kjk5GQlJyersLBQP/zhD5Wenq5du3bpoYceUsuWLXXLLbf4dR2/E/ntt9/u+XePHj20a9cu/etf/1KbNm3UsmVLf08HAEBEKi4u1oABAzzrBQUFkqRRo0Zp7ty5+vzzz/X888/r6NGjSk9P14ABA7RkyRIlJCT4dZ0G30d+WtOmTXXFFVeYPQ0AAEHlkMkxcj/379+/v+cR5mfz1ltvNTyYb/EpkZ/+K8IXM2fObHAwAADAPz4l8g0bNvh0sm+/WKUx3Xr9YEVHNWz6PxDubvhic6hDAIKmurJOq3o30sV4aQoAABbWyJPdGovft58BAIDwYXqyGwAAlhChFTmJHABgC4F6slu4obUOAICFUZEDAOwhQlvrDarIX3jhBV111VXKyMjQ7t27JUmzZs3Sq6++GtDgAAAIGCMASxjyO5HPnTtXBQUFuvHGG3X06FG5XC5JUosWLTRr1qxAxwcAAM7B70T+7LPPav78+ZoyZYqaNGni2Z6Tk6PPP/88oMEBABAopye7mVnCkd9j5KWlperRo8cZ251Op6qqqgISFAAAARehT3bzuyLPzs7Wxo0bz9j+5ptv6pJLLglETAAABF6EjpH7XZHff//9mjBhgqqrq2UYhv75z3/qr3/9q4qKivTnP/85GDECAIDv4Xciv+OOO1RXV6fJkyfrxIkTGjlypC666CI9/fTTGjFiRDBiBADAtEh9IEyD7iO/8847deedd+rQoUNyu91KSUkJdFwAAARWhN5HbuqBMC1btgxUHAAAoAH8TuTZ2dnnfO/4zp07TQUEAEBQmL2FLFIq8kmTJnmtnzp1Shs2bNCKFSt0//33ByouAAACi9Z6vV/96ldn3f7HP/5RxcXFpgMCAAC+C9jbz/Ly8vS3v/0tUKcDACCwuI/83F555RUlJycH6nQAAAQUt599o0ePHl6T3QzDUHl5uQ4ePKg5c+YENDgAAHBufify/Px8r/WoqCi1atVK/fv3V+fOnQMVFwAA8IFfibyurk5t27bVDTfcoLS0tGDFBABA4EXorHW/JrtFR0frl7/8pWpqaoIVDwAAQRGprzH1e9Z67969tWHDhmDEAgAA/OT3GPn48eN17733au/everZs6eaNWvm9flll10WsOAAAAioMK2qzfA5kf/85z/XrFmzNHz4cEnSxIkTPZ85HA4ZhiGHwyGXyxX4KAEAMCtCx8h9TuSLFi3S448/rtLS0mDGAwAA/OBzIjeM+j9FsrKyghYMAADBwgNhpHO+9QwAgLBm99a6JHXs2PG8yfzrr782FRAAAPCdX4n80UcfVVJSUrBiAQAgaGitSxoxYoRSUlKCFQsAAMEToa11nx8Iw/g4AADhx+9Z6wAAWFKEVuQ+J3K32x3MOAAACCrGyAEAsLIIrcj9fmkKAAAIH1TkAAB7iNCKnEQOALCFSB0jp7UOAICFUZEDAOyB1joAANZFax0AAIQdKnIAgD3QWgcAwMIiNJHTWgcAwMKoyAEAtuD4ZjFzfDgikQMA7CFCW+skcgCALXD7GQAACDtU5AAAe6C1DgCAxYVpMjaD1joAABZGRQ4AsIVInexGIgcA2EOEjpHTWgcAwMKoyAEAtkBrHQAAK6O1DgAAwg0VOQDAFmitAwBgZRHaWieRAwDsIUITOWPkAABYGBU5AMAWGCMHAMDKaK0DAIBwQ0UOALAFh2HIYTS8rDZzbDBRkQMA7MEIwOKHNWvWaMiQIcrIyJDD4dCyZcu8wzEMFRYWKiMjQ/Hx8erfv782b97s95dFIgcAIAiqqqrUvXt3zZ49+6yfP/HEE5o5c6Zmz56t9evXKy0tTQMHDtTx48f9ug6tdQCALQRq1npFRYXXdqfTKafTecb+eXl5ysvLO+u5DMPQrFmzNGXKFA0bNkyStGjRIqWmpmrx4sX6xS9+4XNcVOQAAHsIUGs9MzNTSUlJnqWoqMjvUEpLS1VeXq5BgwZ5tjmdTvXr109r167161xU5AAA+KGsrEyJiYme9bNV4+dTXl4uSUpNTfXanpqaqt27d/t1LhI5AMAWAtVaT0xM9ErkpmJyOLzWDcM4Y9v50FoHANhDI89aP5e0tDRJ/63MTztw4MAZVfr5kMgBALZwuiI3swRKdna20tLStHLlSs+22tparV69Wn379vXrXLTWAQAIgsrKSu3YscOzXlpaqo0bNyo5OVlt2rTRpEmTNH36dHXo0EEdOnTQ9OnT1bRpU40cOdKv65DIAQD20MjPWi8uLtaAAQM86wUFBZKkUaNGaeHChZo8ebJOnjyp8ePH68iRI+rdu7fefvttJSQk+HUdEjkAwDYa8w1m/fv3l3GOx7o6HA4VFhaqsLDQ1HUYIwcAwMKoyAEA9mAY9YuZ48MQiRwAYAuBuo883NBaBwDAwqjIAQD20Miz1hsLiRwAYAsOd/1i5vhwRGsdAAALoyLHeY0cs023j93ute3IYad+cvPAEEUENNzO+bH6zzsxqiqNUpM4Qy0ud6nj/9SoWXZ9ueU+JW1/1qlDH0Tr5N4oRTc3dGGfOnX4nxrFpYRpbxW+obUOO9v1ZYJ+M7G3Z93l9u/tPEC4+Lo4Wm1uq1VSV5fcddKOZ5wqvquprnq1UtFNJVe1dHxLE7X/RY0SOrl1qsKhf81wasPdTZX7clWow4cJzFoPgjVr1mjIkCHKyMiQw+HQsmXLQhkOzsHtcujI13GepeKo/+/fBcJBzrwTuij/lJpf7FZiZ7e6/q5a1fujVLGliSQpJkHK+fMJpQ2uU7Nst1p0d6nLg9Wq2NJEJ/fzB6ylnb6P3MwShkKayKuqqtS9e3fNnj07lGHABxmZVXr+tZX637+9q8mPfaq0DCoTRIZTlfX/jUn6/l/SdZUOyWEoJiE8f5HD3kLaWs/Ly1NeXp7P+9fU1KimpsazXlFREYyw8B3bNl+gJx+7XF+VNdMFyTUaPnq7/vDcWv1yZD8dr4gNdXhAgxmGtO2JOLW4ok4JHc4+JdlVI/37qTil33hK0c0bOUAEFK31MFBUVKSkpCTPkpmZGeqQbKFkXYrWrkrX7i8TtXF9KxXee6Uk6Qc37g1xZIA5W6fF6fi/m6j7EyfP+rn7lLTp/ngZhnTJ1OpGjg4BZwRgCUOWSuQPPvigjh075lnKyspCHZIt1VRHa9eXCcrIpL0O69o6PU4H349Wr79UKS7tzN/Q7lPSZ/fG68TeKOXMP0E1jrBlqVnrTqdTTieTrEItOsalzLaV2vxZcqhDAfxmGPVJ/MC70eq14ISatj5HEt8TpV5/OaHYFmFaisEvkdpat1QiR2iMuWeLPvkwVQfL49XighoNv2O7mjar0zvLW4c6NMBvW38Xp/3LY9TjmROKbmao5lD9TPTo5oaaxEnuOmljQbyOb2miHn88IcMtzz4xSYaiYkIZPUzh7WewqwtbVWvyo58qsUWtjh2N1bYvLlDB2Kt0sLxpqEMD/Fa2pH6C5vo7mnlt7/q7k7oo/5Rq/uPQwffrs/XHP/Lup/f6S5WSr3Q1TqCAj0KayCsrK7Vjxw7PemlpqTZu3Kjk5GS1adMmhJHh2554+IpQhwAEzA1fnPtul/iLjPPuA2uitR4ExcXFGjBggGe9oKBAkjRq1CgtXLgwRFEBACISj2gNvP79+8sI0zEHAACsgDFyAIAt0FoHAMDK3Eb9Yub4MEQiBwDYQ4SOkVvqyW4AAMAbFTkAwBYcMjlGHrBIAotEDgCwhwh9shutdQAALIyKHABgC9x+BgCAlTFrHQAAhBsqcgCALTgMQw4TE9bMHBtMJHIAgD24v1nMHB+GaK0DAGBhVOQAAFugtQ4AgJVF6Kx1EjkAwB54shsAAAg3VOQAAFvgyW4AAFgZrXUAABBuqMgBALbgcNcvZo4PRyRyAIA90FoHAADhhoocAGAPPBAGAADritRHtNJaBwDAwqjIAQD2EKGT3UjkAAB7MGTuneLhmcdJ5AAAe2CMHAAAhB0qcgCAPRgyOUYesEgCikQOALCHCJ3sRmsdAAALoyIHANiDW5LD5PFhiEQOALAFZq0DAICwQ0UOALCHCJ3sRiIHANhDhCZyWusAAFgYFTkAwB4itCInkQMA7IHbzwAAsC5uPwMAAGGHihwAYA+MkQMAYGFuQ3KYSMbu8EzktNYBALAwKnIAgD3QWgcAwMpMJnKFZyKntQ4AgIWRyAEA9nC6tW5m8UNhYaEcDofXkpaWFvAvi9Y6AMAe3IZMtccbMGv90ksv1TvvvONZb9KkScOv/z1I5AAABEl0dHRQqvBvo7UOALAHw21+kVRRUeG11NTUfO8lt2/froyMDGVnZ2vEiBHauXNnwL8sEjkAwB4CNEaemZmppKQkz1JUVHTWy/Xu3VvPP/+83nrrLc2fP1/l5eXq27evDh8+HNAvi9Y6AMAeAjRGXlZWpsTERM9mp9N51t3z8vI8/+7WrZtyc3PVvn17LVq0SAUFBQ2P4ztI5AAA+CExMdErkfuqWbNm6tatm7Zv3x7QeGitAwDsoZFvP/uumpoabd26Venp6QH6guqRyAEA9mDIZCL373L33XefVq9erdLSUn3yySf60Y9+pIqKCo0aNSqgXxatdQAAgmDv3r267bbbdOjQIbVq1Up9+vTRunXrlJWVFdDrkMgBAPbQyC9Neemllxp+LT+QyAEA9uB2S3KbPD78MEYOAICFUZEDAOyB95EDAGBhEZrIaa0DAGBhVOQAAHsIwWtMGwOJHABgC4bhlmE0fOa5mWODiUQOALAHwzBXVTNGDgAAAo2KHABgD4bJMfIwrchJ5AAAe3C7JYeJce4wHSOntQ4AgIVRkQMA7IHWOgAA1mW43TJMtNbD9fYzWusAAFgYFTkAwB5orQMAYGFuQ3JEXiKntQ4AgIVRkQMA7MEwJJm5jzw8K3ISOQDAFgy3IcNEa90gkQMAEEKGW+Yqcm4/AwAAAUZFDgCwBVrrAABYWYS21i2dyE//dVTnrg1xJEDwVFfWhToEIGhO/3w3RrVbp1OmngdTp1OBCyaAHEa49gp8sHfvXmVmZoY6DACASWVlZWrdunVQzl1dXa3s7GyVl5ebPldaWppKS0sVFxcXgMgCw9KJ3O12a9++fUpISJDD4Qh1OLZQUVGhzMxMlZWVKTExMdThAAHFz3fjMwxDx48fV0ZGhqKigjf/urq6WrW15ru3sbGxYZXEJYu31qOiooL2FxzOLTExkV90iFj8fDeupKSkoF8jLi4u7BJwoHD7GQAAFkYiBwDAwkjk8IvT6dQjjzwip9MZ6lCAgOPnG1Zk6cluAADYHRU5AAAWRiIHAMDCSOQAAFgYiRwAAAsjkcNnc+bMUXZ2tuLi4tSzZ0998MEHoQ4JCIg1a9ZoyJAhysjIkMPh0LJly0IdEuAzEjl8smTJEk2aNElTpkzRhg0bdM011ygvL0979uwJdWiAaVVVVerevbtmz54d6lAAv3H7GXzSu3dvXXHFFZo7d65nW5cuXZSfn6+ioqIQRgYElsPh0NKlS5Wfnx/qUACfUJHjvGpra1VSUqJBgwZ5bR80aJDWrl0boqgAABKJHD44dOiQXC6XUlNTvbanpqYG5LWAAICGI5HDZ999VaxhGLw+FgBCjESO82rZsqWaNGlyRvV94MCBM6p0AEDjIpHjvGJjY9WzZ0+tXLnSa/vKlSvVt2/fEEUFAJCk6FAHAGsoKCjQT3/6U+Xk5Cg3N1fPPfec9uzZo3HjxoU6NMC0yspK7dixw7NeWlqqjRs3Kjk5WW3atAlhZMD5cfsZfDZnzhw98cQT2r9/v7p27aqnnnpK1157bajDAkxbtWqVBgwYcMb2UaNGaeHChY0fEOAHEjkAABbGGDkAABZGIgcAwMJI5AAAWBiJHAAACyORAwBgYSRyAAAsjEQOAICFkcgBALAwEjlgUmFhoS6//HLP+ujRo5Wfn9/ocezatUsOh0MbN2783n3atm2rWbNm+XzOhQsXqkWLFqZjczgcWrZsmenzADgTiRwRafTo0XI4HHI4HIqJiVG7du103333qaqqKujXfvrpp31+rKcvyRcAzoWXpiBiDR48WAsWLNCpU6f0wQcfaOzYsaqqqtLcuXPP2PfUqVOKiYkJyHWTkpICch4A8AUVOSKW0+lUWlqaMjMzNXLkSN1+++2e9u7pdvhf/vIXtWvXTk6nU4Zh6NixY7rrrruUkpKixMREXXfddfrss8+8zvv4448rNTVVCQkJGjNmjKqrq70+/25r3e12a8aMGbr44ovldDrVpk0bTZs2TZKUnZ0tSerRo4ccDof69+/vOW7BggXq0qWL4uLi1LlzZ82ZM8frOv/85z/Vo0cPxcXFKScnRxs2bPD7ezRz5kx169ZNzZo1U2ZmpsaPH6/Kysoz9lu2bJk6duyouLg4DRw4UGVlZV6f/+Mf/1DPnj0VFxendu3a6dFHH1VdXZ3f8QDwH4kcthEfH69Tp0551nfs2KGXX35Zf/vb3zyt7Ztuuknl5eVavny5SkpKdMUVV+gHP/iBvv76a0nSyy+/rEceeUTTpk1TcXGx0tPTz0iw3/Xggw9qxowZmjp1qrZs2aLFixcrNTVVUn0ylqR33nlH+/fv19///ndJ0vz58zVlyhRNmzZNW7du1fTp0zV16lQtWrRIklRVVaWbb75ZnTp1UklJiQoLC3Xffff5/T2JiorSM888oy+++EKLFi3Se++9p8mTJ3vtc+LECU2bNk2LFi3SRx99pIqKCo0YMcLz+VtvvaWf/OQnmjhxorZs2aJ58+Zp4cKFnj9WAASZAUSgUaNGGUOHDvWsf/LJJ8aFF15o/PjHPzYMwzAeeeQRIyYmxjhw4IBnn3fffddITEw0qqurvc7Vvn17Y968eYZhGEZubq4xbtw4r8979+5tdO/e/azXrqioMJxOpzF//vyzxllaWmpIMjZs2OC1PTMz01i8eLHXtt/+9rdGbm6uYRiGMW/ePCM5OdmoqqryfD537tyznuvbsrKyjKeeeup7P3/55ZeNCy+80LO+YMECQ5Kxbt06z7atW7cakoxPPvnEMAzDuOaaa4zp06d7neeFF14w0tPTPeuSjKVLl37vdQE0HGPkiFivv/66mjdvrrq6Op06dUpDhw7Vs88+6/k8KytLrVq18qyXlJSosrJSF154odd5Tp48qS+//FKStHXrVo0bN87r89zcXL3//vtnjWHr1q2qqanRD37wA5/jPnjwoMrKyjRmzBjdeeednu11dXWe8fetW7eqe/fuatq0qVcc/nr//fc1ffp0bdmyRRUVFaqrq1N1dbWqqqrUrFkzSVJ0dLRycnI8x3Tu3FktWrTQ1q1bdeWVV6qkpETr16/3qsBdLpeqq6t14sQJrxgBBB6JHBFrwIABmjt3rmJiYpSRkXHGZLbTieo0t9ut9PR0rVq16oxzNfQWrPj4eL+Pcbvdkurb67179/b6rEmTJpIkwzAaFM+37d69WzfeeKPGjRun3/72t0pOTtaHH36oMWPGeA1BSPW3j33X6W1ut1uPPvqohg0bdsY+cXFxpuMEcG4kckSsZs2a6eKLL/Z5/yuuuELl5eWKjo5W27Ztz7pPly5dtG7dOv3sZz/zbFu3bt33nrNDhw6Kj4/Xu+++q7Fjx57xeWxsrKT6Cva01NRUXXTRRdq5c6duv/32s573kksu0QsvvKCTJ096/lg4VxxnU1xcrLq6Oj355JOKiqqfLvPyyy+fsV9dXZ2Ki4t15ZVXSpK2bdumo0ePqnPnzpLqv2/btm3z63sNIHBI5MA3rr/+euXm5io/P18zZsxQp06dtG/fPi1fvlz5+fnKycnRr371K40aNUo5OTm6+uqr9eKLL2rz5s1q167dWc8ZFxenBx54QJMnT1ZsbKyuuuoqHTx4UJs3b9aYMWOUkpKi+Ph4rVixQq1bt1ZcXJySkpJUWFioiRMnKjExUXl5eaqpqVFxcbGOHDmigoICjRw5UlOmTNGYMWP0m9/8Rrt27dIf/vAHv77e9u3bq66uTs8++6yGDBmijz76SH/605/O2C8mJkb33HOPnnnmGcXExOjuu+9Wnz59PIn94Ycf1s0336zMzEzdeuutioqK0qZNm/T555/rd7/7nf//IwD4hVnrwDccDoeWL1+ua6+9Vj//+c/VsWNHjRgxQrt27fLMMh8+fLgefvhhPfDAA+rZs6d2796tX/7yl+c879SpU3Xvvffq4YcfVpcuXTR8+HAdOHBAUv348zPPPKN58+YpIyNDQ4cOlSSNHTtWf/7zn7Vw4UJ169ZN/fr108KFCz23qzVv3lz/+Mc/tGXLFvXo0UNTpkzRjBkz/Pp6L7/8cs2cOVMzZsxQ165d9eKLL6qoqOiM/Zo2baoHHnhAI0eOVG5uruLj4/XSSy95Pr/hhhv0+uuva+XKlerVq5f69OmjmTNnKisry694ADSMwwjEYBsAAAgJKnIAACyMRA4AgIWRyAEAsDASOQAAFkYiBwDAwkjkAABYGIkcAAALI5EDAGBhJHIAACyMRA4AgIWRyAEAsLD/DzJe5+GUrL9qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm = confusion_matrix(y_test, y_pred, labels=lor.classes_)\n", "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lor.classes_)\n", "disp.plot()" ] }, { "cell_type": "code", "execution_count": 48, "id": "5bf01287-c2cc-49a5-afe0-dc48a6ccf9bc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy of Logistic Regression model is 85.71428571428571\n" ] } ], "source": [ "#printing the accuracy for test set\n", "print('Accuracy of Logistic Regression model is {}'.format(accuracy_score(y_test,y_pred)*100))" ] }, { "cell_type": "code", "execution_count": 49, "id": "67ffcb57-1ecc-4898-9dd3-7b2684b4109f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ3klEQVR4nO3dd1RU1/o38O9QhiZFpSNixV7BBq/XaKx4bYlRo7EQMUGNiFw1es0VNYncNEWjWAkYYyEqau61kkTFepUWCyYaRUCFKBZAQJBhv3+4mJ8jA84cBpDh+1lr1nL22Wef55xB5mHvs8+WCSEEiIiIiPSEQU0HQERERKRLTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhIiIivWJU0wFUt5KSEty9exeWlpaQyWQ1HQ4RERFpQAiB3NxcODs7w8Cg4r6ZOpfc3L17F66urjUdBhEREUmQnp6ORo0aVVinziU3lpaWAJ5fHCsrqxqOhoiIiDSRk5MDV1dX5fd4RepcclM6FGVlZcXkhoiIqJbR5JYS3lBMREREeoXJDREREekVJjdERESkV5jcEBERkV5hckNERER6hckNERER6RUmN0RERKRXmNwQERGRXmFyQ0RERHqFyQ0RERHplRpNbmJjYzFs2DA4OztDJpNh3759r9znxIkT8PDwgKmpKZo1a4b169dXfaBERERUa9RocpOXl4dOnTphzZo1GtVPSUmBj48PevfujcTERPzzn/9EQEAA9uzZU8WREhERUW1RowtnDhkyBEOGDNG4/vr169G4cWOEhoYCANq0aYO4uDh8/fXXePvtt6soSiIiIu0JIVDwTFHTYdQYM2NDjRa5rAq1alXws2fPYuDAgSplgwYNQnh4OJ49ewZjY+My+xQWFqKwsFD5Picnp8rjJCKiuk0IgdHrzyI+9VFNh1JjkpcNgrm8ZtKMWnVDcWZmJhwcHFTKHBwcUFxcjKysLLX7hISEwNraWvlydXWtjlCJiKgOK3imqNOJTU2rVT03AMp0cQkh1JaXWrhwIYKCgpTvc3JymOAQEVG1ifukP8zlhjUdRrUzM665c65VyY2joyMyMzNVyu7duwcjIyM0bNhQ7T4mJiYwMTGpjvCIiIjKMJcb1tjwTF1Vq4alevXqhZiYGJWyo0ePwtPTU+39NkRERFT31Ghy8+TJEyQlJSEpKQnA86neSUlJSEtLA/B8SGnSpEnK+v7+/khNTUVQUBCuXr2K7777DuHh4Zg7d25NhE9ERESvoRrtJ4uLi0Pfvn2V70vvjZk8eTIiIyORkZGhTHQAoGnTpjh48CDmzJmDtWvXwtnZGatXr+Y0cCIiIlKq0eTmjTfeUN4QrE5kZGSZsj59+iAhIaEKoyIiIqLarFbdc0NERET0KkxuiIiISK8wuSEiIiK9won3RHVQXV/zhqiq5Rfx/1dNYnJDVMdwzRsi0nccliKqY7jmDVH18XSrX6PLENRV7LkhqsPq6po3RNXFzNiw3LUPqeowuSGqw7jmDRHpIw5LERERkV5hckNERER6hckNERER6RUmN0RERKRXmNwQERGRXmFyQ0RERHqFyQ0RERHpFSY3REREpFf49C6iWqgyC19yQT8i0ndMbohqGS58SURUMQ5LEdUyulr4kgv6EZG+Ys8NUS1WmYUvuaAfEekrJjdEtRgXviQiKovDUkRERKRXmNwQERGRXmFyQ0RERHqFyQ0RERHpFSY3REREpFeY3BAREZFeYXJDREREeoUPyKBKq8w6R6Q9rg1FRFQxJjdUKVzniIiIXjcclqJK0dU6R6Q9rg1FRKQee25IZyqzzhFpj2tDERGpx+SGdIbrHBER0euAw1JERESkV5jcEBERkV5hckNERER6hckNERER6RUmN0RERKRXmNwQERGRXtF63m52djb27t2LkydP4tatW8jPz4ednR26dOmCQYMGwcvLqyriJCIiItKIxj03GRkZmDZtGpycnLBs2TLk5eWhc+fOePPNN9GoUSMcO3YMAwYMQNu2bREVFVWVMRMRERGVS+Oem06dOmHSpEk4f/482rdvr7ZOQUEB9u3bhxUrViA9PR1z587VWaBUtaQufslFHImI6HWjcXJz5coV2NnZVVjHzMwM7777Lt59913cv3+/0sFR9eDil0REpE80HpZ6VWJT2fpUc3Sx+CUXcSQioteFThcCevToEf7zn/9g0qRJumyWqpHUxS+5iCMREb0udDoVPC0tDb6+vrpskqpZ6eKX2r6Y2BAR0etCq56bnJycCrfn5uZWKhgiIiKiytIqubGxsanwL3QhBP+CJyIiohqlVXJjaWmJRYsWoUePHmq3X79+HR9++KFOAiMiIiKSQqvkpmvXrgCAPn36qN1uY2MDIUTloyIiIiKSSKsbisePHw9TU9Nytzs6OiI4OLjSQRERERFJpVXPzbRp0yrc7uDgwOSGiIiIahRXBSciIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr1S48lNWFgYmjZtClNTU3h4eODkyZMV1t+2bRs6deoEc3NzODk5wdfXFw8ePKimaImIiOh1Jzm56du3L6ZMmaJSNnnyZPTr10/jNqKiohAYGIhFixYhMTERvXv3xpAhQ5CWlqa2/qlTpzBp0iRMnToVV65cwa5du3DhwgX4+flJPQ0iIiLSM5KTmyZNmsDZ2VmlzMXFBW5ubhq3sWLFCkydOhV+fn5o06YNQkND4erqinXr1qmtf+7cOTRp0gQBAQFo2rQp/t//+3/48MMPERcXV+4xCgsLkZOTo/IiIiIi/SU5uYmIiMDy5ctVypYvX46IiAiN9i8qKkJ8fDwGDhyoUj5w4ECcOXNG7T5eXl64ffs2Dh48CCEE/vrrL+zevRtDhw4t9zghISGwtrZWvlxdXTWKj4iIiGqnGrvnJisrCwqFAg4ODirlDg4OyMzMVLuPl5cXtm3bhrFjx0Iul8PR0RE2Njb49ttvyz3OwoULkZ2drXylp6fr9DyIiIjo9aLx8gurV6/WuNGAgACN68pkMpX3QogyZaWSk5MREBCAxYsXY9CgQcjIyMC8efPg7++P8PBwtfuYmJjAxMRE43iIiIiodtM4uVm5cqVG9WQymUbJja2tLQwNDcv00ty7d69Mb06pkJAQeHt7Y968eQCAjh07wsLCAr1798Znn30GJycnjWIkIiIi/aVxcpOSkqLTA8vlcnh4eCAmJgajRo1SlsfExGDEiBFq98nPz4eRkWrIhoaGAJ73+BARERFV6p6boqIi/PHHHyguLpa0f1BQEDZv3ozvvvsOV69exZw5c5CWlgZ/f38Az++XmTRpkrL+sGHDEB0djXXr1uHmzZs4ffo0AgIC0L179zIzt4iIiKhu0rjn5kX5+fmYNWsWtmzZAgC4du0amjVrhoCAADg7O2PBggUatTN27Fg8ePAAy5YtQ0ZGBtq3b4+DBw8qp5NnZGSoPPNmypQpyM3NxZo1a/CPf/wDNjY26NevH7744gspp6FXhBAoeKaQtG9+kbT9iIiIXkcyIWE8Z/bs2Th9+jRCQ0MxePBgXLx4Ec2aNcNPP/2E4OBgJCYmVkWsOpGTkwNra2tkZ2fDysqqpsPRCSEERq8/i/jUR5VuK3nZIJjLJeW8REREVUab729J32L79u1DVFQUevbsqTKzqW3btrhx44aUJqkSCp4pdJLYeLrVh5mxoQ4iIiIiqjmSkpv79+/D3t6+THleXl6507ipesR90h/mcmkJipmxIT8/IiKq9STdUNytWzccOHBA+b70C3HTpk3o1auXbiIjSczlhjCXG0l6MbEhIiJ9IKnnJiQkBIMHD0ZycjKKi4uxatUqXLlyBWfPnsWJEyd0HSMRERGRxiT13Hh5eeH06dPIz89H8+bNcfToUTg4OODs2bPw8PDQdYxEREREGpM8LaZDhw7KqeBERERErwvJyY1CocDevXtx9epVyGQytGnTBiNGjCjzBGEiIiKi6iQpE7l8+TJGjBiBzMxMtGrVCsDzB/nZ2dnhp59+QocOHXQaJBEREZGmJN1z4+fnh3bt2uH27dtISEhAQkIC0tPT0bFjR3zwwQe6jpGIiIhIY5J6bn777TfExcWhfv36yrL69evj888/R7du3XQWHBEREZG2JPXctGrVCn/99VeZ8nv37qFFixaVDoqIiIhIKo2Tm5ycHOVr+fLlCAgIwO7du3H79m3cvn0bu3fvRmBgIBexJCIiohql8bCUjY2NyhNshRAYM2aMsqx0/c1hw4ZBoeAq00RERFQzNE5ujh07VpVxEBEREemExslNnz59qjIOIiIiIp2o1BP38vPzkZaWhqKiIpXyjh07ViooIiIiIqkkJTf379+Hr68vDh06pHY777khIiKimiJpKnhgYCAePXqEc+fOwczMDIcPH8aWLVvQsmVL/PTTT7qOkYiIiEhjknpufv31V+zfvx/dunWDgYEB3NzcMGDAAFhZWSEkJARDhw7VdZxEREREGpHUc5OXlwd7e3sAQIMGDXD//n0Az1cKT0hI0F10RERERFqS/ITiP/74AwDQuXNnbNiwAXfu3MH69evh5OSk0wCJiIiItCFpWCowMBAZGRkAgODgYAwaNAjbtm2DXC5HZGSkLuMjIiIi0oqk5GbChAnKf3fp0gW3bt3C77//jsaNG8PW1lZnwdUlQggUPJM2yyy/iLPTiIiISlXqOTelzM3N0bVrV100VScJITB6/VnEpz6q6VCIiIhqPY2Tm6CgII0bXbFihaRg6qqCZwqdJDaebvVhZmyog4iIiIhqL42Tm8TERI3qvbi4Jmkv7pP+MJdLS1DMjA15/YmIqM7jwpmvGXO5IczlOhktJCIiqpMkTQUnIiIiel0xuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIr0hObrZu3Qpvb284OzsjNTUVABAaGor9+/frLDgiIiIibUlKbtatW4egoCD4+Pjg8ePHUCieP/7fxsYGoaGhuoyPiIiISCuSkptvv/0WmzZtwqJFi2Bo+H8PnPP09MSlS5d0FhwRERGRtiQlNykpKejSpUuZchMTE+Tl5VU6KCIiIiKpJCU3TZs2RVJSUpnyQ4cOoW3btpWNiYiIiEgySc/5nzdvHmbOnImnT59CCIHz589jx44dCAkJwebNm3UdIxEREZHGJCU3vr6+KC4uxvz585Gfn4/x48fDxcUFq1atwrhx43QdIxEREZHGJK/QOG3aNEybNg1ZWVkoKSmBvb29LuMiIiIikkTSPTdLly7FjRs3AAC2trZMbIiIiOi1ISm52bNnD9zd3dGzZ0+sWbMG9+/f13VcRERERJJISm4uXryIixcvol+/flixYgVcXFzg4+OD7du3Iz8/X9cxEhEREWlM8vIL7dq1w/Lly3Hz5k0cO3YMTZs2RWBgIBwdHXUZHxEREZFWdLJwpoWFBczMzCCXy/Hs2TNdNElEREQkieTkJiUlBZ9//jnatm0LT09PJCQkYMmSJcjMzNRlfERERERakTQVvFevXjh//jw6dOgAX19f5XNuiIiIiGqapOSmb9++2Lx5M9q1a6freIiIiIgqRVJys3z5cl3HQURERKQTGic3QUFB+PTTT2FhYYGgoKAK665YsaLSgRERERFJoXFyk5iYqJwJlZiYWGUBEREREVWGxsnNsWPH1P6biIiI6HUiaSr4+++/j9zc3DLleXl5eP/99ysdFBEREZFUkpKbLVu2oKCgoEx5QUEBvv/++0oHRURERCSVVrOlcnJyIISAEAK5ubkwNTVVblMoFDh48CBXCCciIqIapVVyY2NjA5lMBplMBnd39zLbZTIZli5dqrPgiIiIiLSl1bDUsWPH8Msvv0AIgd27d+PXX39Vvk6dOoW0tDQsWrRIqwDCwsLQtGlTmJqawsPDAydPnqywfmFhIRYtWgQ3NzeYmJigefPm+O6777Q6JhEREekvrXpu+vTpA+D5ulKNGzeGTCar1MGjoqIQGBiIsLAweHt7Y8OGDRgyZAiSk5PRuHFjtfuMGTMGf/31F8LDw9GiRQvcu3cPxcXFlYqDiIiI9IdMCCE0qXjx4kW0b98eBgYGuHjxYoV1O3bsqNHBe/Toga5du2LdunXKsjZt2mDkyJEICQkpU//w4cMYN24cbt68iQYNGmh0jMLCQhQWFirf5+TkwNXVFdnZ2bCystKojaqWX1SMtouPAACSlw2CuVzSg6OJiIj0Vk5ODqytrTX6/tb4W7Rz587IzMyEvb09OnfuDJlMBnV5kUwmg0KheGV7RUVFiI+Px4IFC1TKBw4ciDNnzqjd56effoKnpye+/PJLbN26FRYWFhg+fDg+/fRTmJmZqd0nJCSE9wERERHVIRonNykpKbCzs1P+u7KysrKgUCjg4OCgUu7g4IDMzEy1+9y8eROnTp2Cqakp9u7di6ysLMyYMQMPHz4s976bhQsXqiwXUdpzQ0RERPpJ4+TGzc1N7b8r6+X7doQQ5d7LU1JSAplMhm3btsHa2hrA83WsRo8ejbVr16rtvTExMYGJiYnO4iUiIqLXm+SH+B04cED5fv78+bCxsYGXlxdSU1M1asPW1haGhoZlemnu3btXpjenlJOTE1xcXJSJDfD8Hh0hBG7fvi3hTIiIiEjfSEpuli9fruwlOXv2LNasWYMvv/wStra2mDNnjkZtyOVyeHh4ICYmRqU8JiYGXl5eavfx9vbG3bt38eTJE2XZtWvXYGBggEaNGkk5FSIiItIzkpKb9PR0tGjRAgCwb98+jB49Gh988AFCQkJe+ZyaFwUFBWHz5s347rvvcPXqVcyZMwdpaWnw9/cH8Px+mUmTJinrjx8/Hg0bNoSvry+Sk5MRGxuLefPm4f333y/3hmIiIiKqWyTNOa5Xrx4ePHiAxo0b4+jRo8reGlNTU7VrTpVn7NixePDgAZYtW4aMjAy0b98eBw8eVN7Tk5GRgbS0NJXjxsTEYNasWfD09ETDhg0xZswYfPbZZ1JOg4iIiPSQpORmwIAB8PPzQ5cuXXDt2jUMHToUAHDlyhU0adJEq7ZmzJiBGTNmqN0WGRlZpqx169ZlhrKIiIiISkkallq7di169eqF+/fvY8+ePWjYsCEAID4+Hu+++65OAyQiIiLShqSeGxsbG6xZs6ZMOR+WR0RERDVN8nP+Hz9+jPDwcFy9ehUymQxt2rTB1KlTVaZpExEREVU3ScNScXFxaN68OVauXImHDx8iKysLK1euRPPmzZGQkKDrGImIiIg0JqnnZs6cORg+fDg2bdoEI6PnTRQXF8PPzw+BgYGIjY3VaZBEREREmpKU3MTFxakkNgBgZGSE+fPnw9PTU2fBEREREWlL0rCUlZWVyvNnSqWnp8PS0rLSQRERERFJJSm5GTt2LKZOnYqoqCikp6fj9u3b2LlzJ/z8/DgVnIiIiGqUpGGpr7/+GjKZDJMmTUJxcTEAwNjYGNOnT8e///1vnQZIREREpA1JyY1cLseqVasQEhKCGzduQAiBFi1awNzcXNfxEREREWlFq2Gp/Px8zJw5Ey4uLrC3t4efnx+cnJzQsWNHJjZERET0WtAquQkODkZkZCSGDh2KcePGISYmBtOnT6+q2IiIiIi0ptWwVHR0NMLDwzFu3DgAwHvvvQdvb28oFAoYGhpWSYBERERE2tCq5yY9PR29e/dWvu/evTuMjIxw9+5dnQdGREREJIVWyY1CoYBcLlcpMzIyUs6YIiIiIqppWg1LCSEwZcoUmJiYKMuePn0Kf39/WFhYKMuio6N1FyERERGRFrRKbiZPnlym7L333tNZMERERESVpVVyExERUVVxEBEREemEpOUXiIiIiF5XGic3/v7+SE9P16huVFQUtm3bJjkoIiIiIqk0Hpays7ND+/bt4eXlheHDh8PT0xPOzs4wNTXFo0ePkJycjFOnTmHnzp1wcXHBxo0bqzJuIiIiIrU0Tm4+/fRTzJo1C+Hh4Vi/fj0uX76sst3S0hL9+/fH5s2bMXDgQJ0HSkRERKQJrW4otre3x8KFC7Fw4UI8fvwYqampKCgogK2tLZo3bw6ZTFZVcRIRERFpRNKq4ABgY2MDGxsbHYZCREREVHmcLUVERER6hckNERER6RUmN0RERKRXmNwQERGRXpGc3BQXF+Pnn3/Ghg0bkJubCwC4e/cunjx5orPgiIiIiLQlabZUamoqBg8ejLS0NBQWFmLAgAGwtLTEl19+iadPn2L9+vW6jpOIiIhII5J6bmbPng1PT088evQIZmZmyvJRo0bhl19+0VlwRERERNqS1HNz6tQpnD59GnK5XKXczc0Nd+7c0UlgRERERFJI6rkpKSmBQqEoU3779m1YWlpWOigiIiIiqSQlNwMGDEBoaKjyvUwmw5MnTxAcHAwfHx9dxUZERESkNUnDUitXrkTfvn3Rtm1bPH36FOPHj8f169dha2uLHTt26DpGIiIiIo1JSm6cnZ2RlJSEnTt3Ij4+HiUlJZg6dSomTJigcoMxERERUXWTlNzExsbCy8sLvr6+8PX1VZYXFxcjNjYWf/vb33QWIBEREZE2JN1z07dvXzx8+LBMeXZ2Nvr27VvpoIiIiIikkpTcCCEgk8nKlD948AAWFhaVDoqIiIhIKq2Gpd566y0Az2dHTZkyBSYmJsptCoUCFy9ehJeXl24jJCIiItKCVsmNtbU1gOc9N5aWlio3D8vlcvTs2RPTpk3TbYREREREWtAquYmIiAAANGnSBHPnzuUQFBEREb12JM2WCg4O1nUcRERERDohKbkBgN27d+PHH39EWloaioqKVLYlJCRUOjAiIiIiKSTNllq9ejV8fX1hb2+PxMREdO/eHQ0bNsTNmzcxZMgQXcdIREREpDFJyU1YWBg2btyINWvWQC6XY/78+YiJiUFAQACys7N1HSMRERGRxiQlN2lpacop32ZmZsjNzQUATJw4kWtLERERUY2SlNw4OjriwYMHAAA3NzecO3cOAJCSkgIhhO6iIyIiItKSpOSmX79++M9//gMAmDp1KubMmYMBAwZg7NixGDVqlE4DJCIiItKGpNlSGzduRElJCQDA398fDRo0wKlTpzBs2DD4+/vrNEAiIiIibUhKbgwMDGBg8H+dPmPGjMGYMWMAAHfu3IGLi4tuoiMiIiLSkqRhKXUyMzMxa9YstGjRQldNEhEREWlNq+Tm8ePHmDBhAuzs7ODs7IzVq1ejpKQEixcvRrNmzXDu3Dl89913VRUrERER0StpNSz1z3/+E7GxsZg8eTIOHz6MOXPm4PDhw3j69CkOHTqEPn36VFWcRERERBrRKrk5cOAAIiIi0L9/f8yYMQMtWrSAu7s7QkNDqyg8IiIiIu1oldzcvXsXbdu2BQA0a9YMpqam8PPzq5LAaiMhBAqeKbTeL79I+32IiIhIPa2Sm5KSEhgbGyvfGxoawsLColIBhIWF4auvvkJGRgbatWuH0NBQ9O7d+5X7nT59Gn369EH79u2RlJRUqRh0QQiB0evPIj71UU2HQkREVKdpldwIITBlyhSYmJgAAJ4+fQp/f/8yCU50dLRG7UVFRSEwMBBhYWHw9vbGhg0bMGTIECQnJ6Nx48bl7pednY1JkybhzTffxF9//aXNKVSZgmeKSic2nm71YWZsqKOIiIiI6iaZ0GK9BF9fX43qRUREaFSvR48e6Nq1K9atW6csa9OmDUaOHImQkJBy9xs3bhxatmwJQ0ND7Nu3T6uem5ycHFhbWyM7OxtWVlYa7/cq+UXFaLv4CAAg7pP+MJdrn6SYGRtCJpPpLCYiIiJ9oc33t1Y9N5omLZooKipCfHw8FixYoFI+cOBAnDlzpsIYbty4gR9++AGfffbZK49TWFiIwsJC5fucnBzpQWvIXG4Ic7mk5yMSERFRJensIX7aysrKgkKhgIODg0q5g4MDMjMz1e5z/fp1LFiwANu2bYORkWbJQ0hICKytrZUvV1fXSsdOREREr68aS25KvTwMI4RQOzSjUCgwfvx4LF26FO7u7hq3v3DhQmRnZytf6enplY6ZiIiIXl81NnZia2sLQ0PDMr009+7dK9ObAwC5ubmIi4tDYmIiPvroIwDPZ28JIWBkZISjR4+iX79+ZfYzMTFR3gBNRERE+q/Gem7kcjk8PDwQExOjUh4TEwMvL68y9a2srHDp0iUkJSUpX/7+/mjVqhWSkpLQo0eP6gqdiIiIXmM1etdrUFAQJk6cCE9PT/Tq1QsbN25EWloa/P39ATwfUrpz5w6+//57GBgYoH379ir729vbw9TUtEw5ERER1V2Se262bt0Kb29vODs7IzU1FQAQGhqK/fv3a9zG2LFjERoaimXLlqFz586IjY3FwYMH4ebmBgDIyMhAWlqa1BCJiIioDpKU3Kxbtw5BQUHw8fHB48ePoVA8Xz7AxsZG63WmZsyYgVu3bqGwsBDx8fH429/+ptwWGRmJ48ePl7vvkiVLXounExMREdHrQ1Jy8+2332LTpk1YtGgRDA3/72F1np6euHTpks6CIyIiItKWpOQmJSUFXbp0KVNuYmKCvLy8SgdFREREJJWk5KZp06Zqh4MOHTqkXDWciIiIqCZImi01b948zJw5E0+fPoUQAufPn8eOHTsQEhKCzZs36zpGIiIiIo1JSm58fX1RXFyM+fPnIz8/H+PHj4eLiwtWrVqFcePG6TpGIiIiIo1Jfs7NtGnTMG3aNGRlZaGkpAT29va6jIuIiIhIEkn33CxduhQ3btwA8HwZBSY2RERE9LqQlNzs2bMH7u7u6NmzJ9asWYP79+/rOi4iIiIiSSQlNxcvXsTFixfRr18/rFixAi4uLvDx8cH27duRn5+v6xiJiIiINCZ5+YV27dph+fLluHnzJo4dO4amTZsiMDAQjo6OuoyPiIiISCs6WRXcwsICZmZmkMvlePbsmS6aJCIiIpJEcnKTkpKCzz//HG3btoWnpycSEhKwZMkSZGZm6jI+IiIiIq1Imgreq1cvnD9/Hh06dICvr6/yOTdERERENU1SctO3b19s3rwZ7dq103U8RERERJUiKblZvny5ruMgIiIi0gmNk5ugoCB8+umnsLCwQFBQUIV1V6xYUenAiIiIiKTQOLlJTExUzoRKTEyssoCIiIiIKkPj5ObYsWNq/01ERET0OpE0Ffz9999Hbm5umfK8vDy8//77lQ6KiIiISCpJyc2WLVtQUFBQprygoADff/99pYMiIiIikkqr2VI5OTkQQkAIgdzcXJiamiq3KRQKHDx4kCuEExERUY3SKrmxsbGBTCaDTCaDu7t7me0ymQxLly7VWXBERERE2tIquTl27BiEEOjXrx/27NmDBg0aKLfJ5XK4ubnB2dlZ50ESERERaUqr5KZPnz4Anq8r1bhxY8hksioJioiIiEgqjZObixcvon379jAwMEB2djYuXbpUbt2OHTvqJDgiIiIibWmc3HTu3BmZmZmwt7dH586dIZPJIIQoU08mk0GhUOg0SCIiIiJNaZzcpKSkwM7OTvlvIiIioteRxsmNm5ub2n8TERERvU4kP8TvwIEDyvfz58+HjY0NvLy8kJqaqrPgiIiIiLQlKblZvnw5zMzMAABnz57FmjVr8OWXX8LW1hZz5szRaYBERERE2tBqKnip9PR0tGjRAgCwb98+jB49Gh988AG8vb3xxhtv6DI+IiIiIq1I6rmpV68eHjx4AAA4evQo+vfvDwAwNTVVu+YUERERUXWR1HMzYMAA+Pn5oUuXLrh27RqGDh0KALhy5QqaNGmiy/iIiIiItCKp52bt2rXo1asX7t+/jz179qBhw4YAgPj4eLz77rs6DZCIiIhIG5J6bmxsbLBmzZoy5Vw0k4iIiGqapOQGAB4/fozw8HBcvXoVMpkMbdq0wdSpU2Ftba3L+IiIiIi0ImlYKi4uDs2bN8fKlSvx8OFDZGVlYeXKlWjevDkSEhJ0HSMRERGRxiT13MyZMwfDhw/Hpk2bYGT0vIni4mL4+fkhMDAQsbGxOg2SiIiISFOSkpu4uDiVxAYAjIyMMH/+fHh6euosOCIiIiJtSRqWsrKyQlpaWpny9PR0WFpaVjooIiIiIqkkJTdjx47F1KlTERUVhfT0dNy+fRs7d+6En58fp4ITERFRjZI0LPX1119DJpNh0qRJKC4uBgAYGxtj+vTp+Pe//63TAImIiIi0ISm5kcvlWLVqFUJCQnDjxg0IIdCiRQuYm5vrOj4iIiIirWg1LJWfn4+ZM2fCxcUF9vb28PPzg5OTEzp27MjEhoiIiF4LWiU3wcHBiIyMxNChQzFu3DjExMRg+vTpVRUbERERkda0GpaKjo5GeHg4xo0bBwB477334O3tDYVCAUNDwyoJkIiIiEgbWvXcpKeno3fv3sr33bt3h5GREe7evavzwIiIiIik0Cq5USgUkMvlKmVGRkbKGVNERERENU2rYSkhBKZMmQITExNl2dOnT+Hv7w8LCwtlWXR0tO4iJCIiItKCVsnN5MmTy5S99957OguGiIiIqLK0Sm4iIiKqKg4iIiIinZC0/AIRERHR64rJDREREekVJjdERESkV5jcEBERkV5hckNERER6RXJys3XrVnh7e8PZ2RmpqakAgNDQUOzfv1+rdsLCwtC0aVOYmprCw8MDJ0+eLLdudHQ0BgwYADs7O1hZWaFXr144cuSI1FMgIiIiPSQpuVm3bh2CgoLg4+ODx48fQ6FQAABsbGwQGhqqcTtRUVEIDAzEokWLkJiYiN69e2PIkCFIS0tTWz82NhYDBgzAwYMHER8fj759+2LYsGFITEyUchpERESkh2RCCKHtTm3btsXy5csxcuRIWFpa4rfffkOzZs1w+fJlvPHGG8jKytKonR49eqBr165Yt26dsqxNmzYYOXIkQkJCNGqjXbt2GDt2LBYvXqxR/ZycHFhbWyM7OxtWVlYa7aOJ/KJitF38vBcpedkgmMu1eoQQERERVUCb729JPTcpKSno0qVLmXITExPk5eVp1EZRURHi4+MxcOBAlfKBAwfizJkzGrVRUlKC3NxcNGjQoNw6hYWFyMnJUXkRERGR/pKU3DRt2hRJSUllyg8dOoS2bdtq1EZWVhYUCgUcHBxUyh0cHJCZmalRG9988w3y8vIwZsyYcuuEhITA2tpa+XJ1ddWobSIiIqqdJI2dzJs3DzNnzsTTp08hhMD58+exY8cOhISEYPPmzVq1JZPJVN4LIcqUqbNjxw4sWbIE+/fvh729fbn1Fi5ciKCgIOX7nJwcJjhERER6TFJy4+vri+LiYsyfPx/5+fkYP348XFxcsGrVKowbN06jNmxtbWFoaFiml+bevXtlenNeFhUVhalTp2LXrl3o379/hXVNTExUVjEnIiIi/SZ5Kvi0adOQmpqKe/fuITMzE+np6Zg6darG+8vlcnh4eCAmJkalPCYmBl5eXuXut2PHDkyZMgXbt2/H0KFDpYZPREREeqrSU3psbW0l7xsUFISJEyfC09MTvXr1wsaNG5GWlgZ/f38Az4eU7ty5g++//x7A88Rm0qRJWLVqFXr27Kns9TEzM4O1tXVlT4WIiIj0gKTkpmnTphXeF3Pz5k2N2hk7diwePHiAZcuWISMjA+3bt8fBgwfh5uYGAMjIyFB55s2GDRtQXFyMmTNnYubMmcryyZMnIzIyUsqpEBERkZ6RlNwEBgaqvH/27BkSExNx+PBhzJs3T6u2ZsyYgRkzZqjd9nLCcvz4ca3aJiIiorpHUnIze/ZsteVr165FXFxcpQIiIiIiqgydLpw5ZMgQ7NmzR5dNEhEREWlFp8nN7t27K3xaMBEREVFVkzQs1aVLF5UbioUQyMzMxP379xEWFqaz4IiIiIi0JSm5GTlypMp7AwMD2NnZ4Y033kDr1q11ERcRERGRJFonN8XFxWjSpAkGDRoER0fHqoiJiIiISDKt77kxMjLC9OnTUVhYWBXxEBEREVWKpBuKe/TogcTERF3HQkRERFRpku65mTFjBv7xj3/g9u3b8PDwgIWFhcr2jh076iQ4IiIiIm1pldy8//77CA0NxdixYwEAAQEBym0ymQxCCMhkMigUCt1GSURERKQhrZKbLVu24N///jdSUlKqKh4iIiKiStEquRFCAIByYUsiIiKi143WNxRXtBo4ERERUU3T+oZid3f3VyY4Dx8+lBwQERERUWVondwsXboU1tbWVRELERERUaVpndyMGzcO9vb2VRELERERUaVpdc8N77chIiKi151WyU3pbCkiIiKi15VWw1IlJSVVFQcRERGRTkhaW4qIiIjodcXkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhIiIivWJU0wEQkf4QQqC4uBgKhaKmQyGiWsjY2BiGhoaVbofJDRHpRFFRETIyMpCfn1/ToRBRLSWTydCoUSPUq1evUu0wuSGiSispKUFKSgoMDQ3h7OwMuVwOmUxW02ERUS0ihMD9+/dx+/ZttGzZslI9OExuiKjSioqKUFJSAldXV5ibm9d0OERUS9nZ2eHWrVt49uxZpZIb3lBMRDpjYMBfKUQkna56fPmbiIiIiPQKkxsiIiLSK0xuiIiqWJMmTRAaGip5/8jISNjY2Ogsntrq1q1bkMlkSEpKqvJjFRUVoUWLFjh9+nSVH6uuuHfvHuzs7HDnzp0qPxaTGyKq06ZMmYKRI0dW6TEuXLiADz74QKO66hKhsWPH4tq1axof74033oBMJoNMJoNcLkfz5s2xcOFCFBYWahP2a8fV1RUZGRlo3759lR9r48aNcHNzg7e3d5ltH3zwAQwNDbFz584y28r7eUpKSoJMJsOtW7eUZUIIbNy4ET169EC9evVgY2MDT09PhIaGVukjFR49eoSJEyfC2toa1tbWmDhxIh4/flzhPn/99RemTJkCZ2dnmJubY/Dgwbh+/bpKnY0bN+KNN96AlZUVZDJZmTbt7e0xceJEBAcH6/iMymJyQ0RUxezs7Co1i8zMzAz29vZa7TNt2jRkZGTgzz//xJdffom1a9diyZIlkmPQhEKhQElJSZW1b2hoCEdHRxgZVf1E32+//RZ+fn5lyvPz8xEVFYV58+YhPDy8UseYOHEiAgMDMWLECBw7dgxJSUn417/+hf379+Po0aOVarsi48ePR1JSEg4fPozDhw8jKSkJEydOLLe+EAIjR47EzZs3sX//fiQmJsLNzQ39+/dHXl6esl5+fj4GDx6Mf/7zn+W25evri23btuHRo0c6PSd1Qdcp2dnZAoDIzs7Wabt5hc+E28f/FW4f/1fkFT7TadtEr7uCggKRnJwsCgoKlGUlJSUir/BZjbxKSko0jn3y5MlixIgR5W4/fvy46Natm5DL5cLR0VF8/PHH4tmz//s/npOTI8aPHy/Mzc2Fo6OjWLFihejTp4+YPXu2so6bm5tYuXKl8n1wcLBwdXUVcrlcODk5iVmzZgkhhOjTp48AoPISQoiIiAhhbW2tEtf+/fuFh4eHMDExEQ0bNhSjRo1Sbnv5+EII8dZbb4muXbsq35eUlIgvvvhCNG3aVJiamoqOHTuKXbt2lTlGixYthKmpqXjjjTdEZGSkACAePXqkEtd//vMf0aZNG2FoaChu3rwpCgsLxbx584Szs7MwNzcX3bt3F8eOHVO2e+vWLfH3v/9d2NjYCHNzc9G2bVtx4MABIYQQDx8+FOPHjxe2trbC1NRUtGjRQnz33XdCCCFSUlIEAJGYmKjx59OnTx8xa9YsMW/ePFG/fn3h4OAggoODy37QL4iPjxcGBgZqvyciIyNFz549xePHj4WZmZlISUlR2V7ez1NiYqIAoKwfFRUlAIh9+/aVqVtSUiIeP35cYYxSJScnCwDi3LlzyrKzZ88KAOL3339Xu88ff/whAIjLly8ry4qLi0WDBg3Epk2bytQ/duyYys/Jy5o0aSLCw8PVblP3u6SUNt/ffM4NEVWJgmcKtF18pEaOnbxsEMzllf/1dufOHfj4+GDKlCn4/vvv8fvvv2PatGkwNTVV9oIEBQXh9OnT+Omnn+Dg4IDFixcjISEBnTt3Vtvm7t27sXLlSuzcuRPt2rVDZmYmfvvtNwBAdHQ0OnXqhA8++ADTpk0rN64DBw7grbfewqJFi7B161YUFRXhwIED5db/7bffcPr0aTRp0kRZ9sknnyA6Ohrr1q1Dy5YtERsbi/feew92dnbo06cPbt26hdGjR2P27Nnw8/NDYmIi5s6dW6bt/Px8hISEYPPmzWjYsCHs7e3h6+uLW7duYefOnXB2dsbevXsxePBgXLp0CS1btsTMmTNRVFSE2NhYWFhYIDk5WflE2n/9619ITk7GoUOHYGtriz///BMFBQWSPx8A2LJlC4KCgvC///0PZ8+exZQpU+Dt7Y0BAwaobTc2Nhbu7u6wsrIqsy08PBzvvfcerK2t4ePjg4iICCxdurTca1+ebdu2oVWrVhgxYkSZbTKZDNbW1uXu+6qn9/bu3RuHDh1Su+3s2bOwtrZGjx49lGU9e/aEtbU1zpw5g1atWpXZp3Q409TUVFlmaGgIuVyOU6dOqe3hqkj37t1x8uRJvP/++1rtp40aT27CwsLw1VdfISMjA+3atUNoaCh69+5dbv0TJ04gKCgIV65cgbOzM+bPnw9/f/9qjJiI6oqwsDC4urpizZo1kMlkaN26Ne7evYuPP/4YixcvRl5eHrZs2YLt27fjzTffBABERETA2dm53DbT0tLg6OiI/v37w9jYGI0bN0b37t0BAA0aNIChoSEsLS3h6OhYbhuff/45xo0bp/Kl2qlTpzKxb968Gc+ePUNRUREMDAywdu1aAEBeXh5WrFiBX3/9Fb169QIANGvWDKdOncKGDRvQp08frF+/Hq1atcJXX30FAGjVqhUuX76Mzz//XOU4z549Q1hYmPL4N27cwI4dO3D79m3ldZg7dy4OHz6MiIgILF++HGlpaXj77bfRoUMH5bFfvD5dunSBp6cnAKgkZC971edT+tyljh07Ku/zaNmyJdasWYNffvml3OTm1q1baj/D69ev49y5c4iOjgYAvPfeewgICEBwcLDWz3i6fv262kRCE6+6odrMzKzcbZmZmWqHOO3t7ZGZmal2n9atW8PNzQ0LFy7Ehg0bYGFhgRUrViAzMxMZGRlaxQ4ALi4uSExM1Ho/bdRochMVFYXAwECEhYXB29sbGzZswJAhQ5CcnIzGjRuXqZ+SkgIfHx9MmzYNP/zwA06fPo0ZM2bAzs4Ob7/9dg2cARGVx8zYEMnLBtXYsXXh6tWr6NWrl8qDxby9vfHkyRPcvn0bjx49wrNnz5TJCQBYW1tX+KX1zjvvIDQ0FM2aNcPgwYPh4+ODYcOGaXUfSVJSUoU9OwAwYcIELFq0CDk5Ofjiiy9gZWWl/D2ZnJyMp0+flvlyLyoqQpcuXQAAf/zxB7p166ay/cXzLCWXy9GxY0fl+4SEBAgh4O7urlKvsLAQDRs2BAAEBARg+vTpOHr0KPr374+3335b2cb06dPx9ttvIyEhAQMHDsTIkSPh5eWl9hxf9fmUfo+8GB8AODk54d69e+VcOaCgoECll6JUeHg4Bg0aBFtbWwCAj48Ppk6dip9//hkDBw4stz11hBCSH1jXokULSfuVUnfciuIxNjbGnj17MHXqVGUC3r9/fwwZMkTS8c3MzKp8DboaTW5WrFiBqVOnKru0QkNDceTIEaxbtw4hISFl6q9fvx6NGzdWziRo06YN4uLi8PXXXzO5IXrNyGQynQwN1SR1v/CFEACen9+L/1ZXRx1XV1f88ccfiImJwc8//4wZM2bgq6++wokTJ2BsbKxRXBX9ZV7K2tpa+SX4ww8/oF27dggPD8fUqVOVN/0eOHAALi4uKvuZmJgoz0GT8zIzM1OpV1JSAkNDQ8THx5d5fH7pcIqfnx8GDRqEAwcO4OjRowgJCcE333yDWbNmYciQIUhNTcWBAwfw888/480338TMmTPx9ddflzn2qz6fUi9fV5lMVuGNz7a2trh06ZJKmUKhwPfff4/MzEyVRFShUCA8PFyZ3FhZWSE1NbVMm6Uzh0qHm9zd3XH16tVyY6hIZYalHB0d8ddff5Upv3//PhwcHMpt08PDA0lJScjOzkZRURHs7OzQo0cPZQ+bNh4+fAg7Ozut99NGjc2WKioqQnx8fJlsd+DAgThz5ozafc6ePVum/qBBgxAXF4dnz56p3aewsBA5OTkqLyIiTbRt2xZnzpxR+VI/c+YMLC0t4eLigubNm8PY2Bjnz59Xbs/JySkzRfZlZmZmGD58OFavXo3jx4/j7Nmzyi9TuVwOhUJR4f4dO3bEL7/8ovF5GBsb45///Cc++eQT5Ofno23btjAxMUFaWhpatGih8nJ1dQXwfCjiwoULKu3ExcW98lhdunSBQqHAvXv3yrT94lCbq6sr/P39ER0djX/84x/YtGmTcpudnR2mTJmCH374AaGhodi4caPaY73q85GqS5cu+P3331XaPXjwIHJzc5GYmIikpCTla9euXdi3bx8ePHgA4Pl1u3z5Mp4+farS5oULF2BnZ4f69esDeD5j6dq1a9i/f3+Z4wshkJ2dXW58Lx5f3Wvz5s3l7turVy9kZ2er/Mz+73//Q3Z2drk9ZC+ytraGnZ0drl+/jri4OLX3DL3K5cuXlT2EVaXGkpusrCwoFIoymaKDg0O5436ZmZlq6xcXFyMrK0vtPiEhIcq5/NbW1sr/uEREpbKzs8t8QaSlpWHGjBlIT0/HrFmz8Pvvv2P//v0IDg5GUFAQDAwMYGlpicmTJ2PevHk4duwYrly5gvfffx8GBgbldvFHRkYiPDwcly9fxs2bN7F161aYmZnBzc0NwPN7TGJjY3Hnzp1yf68FBwdjx44dCA4OxtWrV3Hp0iV8+eWXFZ7j+PHjIZPJEBYWBktLS8ydOxdz5szBli1bcOPGDSQmJmLt2rXYsmULAODDDz/E77//jo8//hjXrl3Djz/+iMjISAAVr//j7u6OCRMmYNKkSYiOjkZKSgouXLiAL774AgcPHgQABAYG4siRI0hJSUFCQgJ+/fVXtGnTBgCwePFi7N+/H3/++SeuXLmC//73v8ptL3vV5yNV3759kZeXhytXrijLwsPDMXToUHTq1Ant27dXvt5++23Y2dnhhx9+APB8ONDIyAgTJ05EXFwcbty4gR9++AEhISGYN2+esr0xY8Zg7NixePfddxESEoK4uDikpqbiv//9L/r3749jx46VG9/LSePLr4oSuzZt2mDw4MGYNm0azp07h3PnzmHatGn4+9//rjKc2rp1a+zdu1f5fteuXTh+/LhyOviAAQMwcuRIlQ6HzMxMJCUl4c8//wQAXLp0CUlJSXj48KGyTn5+vtqODZ175XyqKnLnzh0BQJw5c0al/LPPPhOtWrVSu0/Lli3F8uXLVcpOnTolAIiMjAy1+zx9+lRkZ2crX+np6VUyFfzFaa/aTEMl0gcVTd983U2ePLnM9GsAYvLkyUIIaVPBu3fvLhYsWKCs8+JU8L1794oePXoIKysrYWFhIXr27Cl+/vlnZd2zZ8+Kjh07ChMTkwqngu/Zs0d07txZyOVyYWtrK9566y3lNnVTwYUQ4vPPPxd2dnYiNzdXlJSUiFWrVolWrVoJY2NjYWdnJwYNGiROnDihrF86FdzExES88cYbYt26dQKA8nNWF5cQQhQVFYnFixeLJk2aCGNjY+Ho6ChGjRolLl68KIQQ4qOPPhLNmzcXJiYmws7OTkycOFFkZWUJIYT49NNPRZs2bYSZmZlo0KCBGDFihLh586YQQvpU8JevxYgRI5Sfb3nGjRun/AwzMzOFkZGR+PHHH9XWnTVrlujQoYPy/fXr18Xbb78tXFxchIWFhejQoYNYs2aNUCgUKvspFAqxbt060a1bN2Fubi6srKyEh4eHWLVqlcjPz68wvsp48OCBmDBhgrC0tBSWlpZiwoQJZaZtAxARERHK96tWrRKNGjUSxsbGonHjxuKTTz4RhYWFKvsEBwer/b/0Yjvbt28v9zteCN1NBa+x5KawsFAYGhqK6OholfKAgADxt7/9Te0+vXv3FgEBASpl0dHRwsjISBQVFWl03Kp6zg1RXVabkxtde/LkibC2thabN2+u6VB07rPPPhONGjWq6TCqxcWLF4W9vb3Iycmp6VD0Srdu3cS2bdvK3a6r5KbGhqXkcjk8PDwQExOjUh4TE1PuuF+vXr3K1D969Cg8PT01vhGPiEiXEhMTsWPHDty4cQMJCQmYMGECAEi6F+F1ExYWhgsXLiiHz7766itMnjy5psOqFh06dMCXX36pslwCVc69e/cwevRovPvuu1V/sEqlYJW0c+dOYWxsLMLDw0VycrIIDAwUFhYW4tatW0IIIRYsWCAmTpyorH/z5k1hbm4u5syZI5KTk0V4eLgwNjYWu3fv1viY7Lkh0r263HOTkJAgunbtKiwsLET9+vVF//79lcMvtV1gYKBwcnISJiYmomXLlmLZsmUqQz5EuqYXTygeO3YsHjx4gGXLlikXQzt48KDyxrqMjAykpaUp6zdt2hQHDx7EnDlzsHbtWjg7O2P16tWcBk5ENaZLly6Ij4+v6TCqxMqVK7Fy5cqaDoNIazIhKngggx7KycmBtbU1srOz1T5am4i09/TpU6SkpKBp06ZqH35GRKSJin6XaPP9zVXBiUhn6tjfSkSkY7r6HcLkhogqrfSG/qp+pDoR6beioiIAKPN0a23V7mejE9FrwdDQEDY2Nsr1eszNzSWvm0NEdVNJSQnu378Pc3NzrdZaU4fJDRHpROmj9StakJCIqCIGBgZo3Lhxpf84YnJDRDohk8ng5OQEe3v7ctd6IyKqiFwur9TSGaWY3BCRThkaGlZ6vJyIqDJ4QzERERHpFSY3REREpFeY3BAREZFeqXP33JQ+ICgnJ6eGIyEiIiJNlX5va/KgvzqX3OTm5gIAXF1dazgSIiIi0lZubi6sra0rrFPn1pYqKSnB3bt3YWlpqfOHjOXk5MDV1RXp6elct6oK8TpXD17n6sHrXH14ratHVV1nIQRyc3Ph7Oz8yunida7nxsDAAI0aNarSY1hZWfE/TjXgda4evM7Vg9e5+vBaV4+quM6v6rEpxRuKiYiISK8wuSEiIiK9wuRGh0xMTBAcHAwTE5OaDkWv8TpXD17n6sHrXH14ravH63Cd69wNxURERKTf2HNDREREeoXJDREREekVJjdERESkV5jcEBERkV5hcqOlsLAwNG3aFKampvDw8MDJkycrrH/ixAl4eHjA1NQUzZo1w/r166sp0tpNm+scHR2NAQMGwM7ODlZWVujVqxeOHDlSjdHWXtr+PJc6ffo0jIyM0Llz56oNUE9oe50LCwuxaNEiuLm5wcTEBM2bN8d3331XTdHWXtpe523btqFTp04wNzeHk5MTfH198eDBg2qKtnaKjY3FsGHD4OzsDJlMhn379r1ynxr5HhSksZ07dwpjY2OxadMmkZycLGbPni0sLCxEamqq2vo3b94U5ubmYvbs2SI5OVls2rRJGBsbi927d1dz5LWLttd59uzZ4osvvhDnz58X165dEwsXLhTGxsYiISGhmiOvXbS9zqUeP34smjVrJgYOHCg6depUPcHWYlKu8/Dhw0WPHj1ETEyMSElJEf/73//E6dOnqzHq2kfb63zy5ElhYGAgVq1aJW7evClOnjwp2rVrJ0aOHFnNkdcuBw8eFIsWLRJ79uwRAMTevXsrrF9T34NMbrTQvXt34e/vr1LWunVrsWDBArX158+fL1q3bq1S9uGHH4qePXtWWYz6QNvrrE7btm3F0qVLdR2aXpF6nceOHSs++eQTERwczORGA9pe50OHDglra2vx4MGD6ghPb2h7nb/66ivRrFkzlbLVq1eLRo0aVVmM+kaT5Kamvgc5LKWhoqIixMfHY+DAgSrlAwcOxJkzZ9Tuc/bs2TL1Bw0ahLi4ODx79qzKYq3NpFznl5WUlCA3NxcNGjSoihD1gtTrHBERgRs3biA4OLiqQ9QLUq7zTz/9BE9PT3z55ZdwcXGBu7s75s6di4KCguoIuVaScp29vLxw+/ZtHDx4EEII/PXXX9i9ezeGDh1aHSHXGTX1PVjnFs6UKisrCwqFAg4ODirlDg4OyMzMVLtPZmam2vrFxcXIysqCk5NTlcVbW0m5zi/75ptvkJeXhzFjxlRFiHpBynW+fv06FixYgJMnT8LIiL86NCHlOt+8eROnTp2Cqakp9u7di6ysLMyYMQMPHz7kfTflkHKdvby8sG3bNowdOxZPnz5FcXExhg8fjm+//bY6Qq4zaup7kD03WpLJZCrvhRBlyl5VX105qdL2OpfasWMHlixZgqioKNjb21dVeHpD0+usUCgwfvx4LF26FO7u7tUVnt7Q5ue5pKQEMpkM27ZtQ/fu3eHj44MVK1YgMjKSvTevoM11Tk5ORkBAABYvXoz4+HgcPnwYKSkp8Pf3r45Q65Sa+B7kn18asrW1haGhYZm/Au7du1cmKy3l6Oiotr6RkREaNmxYZbHWZlKuc6moqChMnToVu3btQv/+/asyzFpP2+ucm5uLuLg4JCYm4qOPPgLw/EtYCAEjIyMcPXoU/fr1q5bYaxMpP89OTk5wcXGBtbW1sqxNmzYQQuD27dto2bJllcZcG0m5ziEhIfD29sa8efMAAB07doSFhQV69+6Nzz77jD3rOlJT34PsudGQXC6Hh4cHYmJiVMpjYmLg5eWldp9evXqVqX/06FF4enrC2Ni4ymKtzaRcZ+B5j82UKVOwfft2jplrQNvrbGVlhUuXLiEpKUn58vf3R6tWrZCUlIQePXpUV+i1ipSfZ29vb9y9exdPnjxRll27dg0GBgZo1KhRlcZbW0m5zvn5+TAwUP0KNDQ0BPB/PQtUeTX2PViltyvrmdKphuHh4SI5OVkEBgYKCwsLcevWLSGEEAsWLBATJ05U1i+dAjdnzhyRnJwswsPDORVcA9pe5+3btwsjIyOxdu1akZGRoXw9fvy4pk6hVtD2Or+Ms6U0o+11zs3NFY0aNRKjR48WV65cESdOnBAtW7YUfn5+NXUKtYK21zkiIkIYGRmJsLAwcePGDXHq1Cnh6ekpunfvXlOnUCvk5uaKxMREkZiYKACIFStWiMTEROWU+9fle5DJjZbWrl0r3NzchFwuF127dhUnTpxQbps8ebLo06ePSv3jx4+LLl26CLlcLpo0aSLWrVtXzRHXTtpc5z59+ggAZV6TJ0+u/sBrGW1/nl/E5EZz2l7nq1eviv79+wszMzPRqFEjERQUJPLz86s56tpH2+u8evVq0bZtW2FmZiacnJzEhAkTxO3bt6s56trl2LFjFf6+fV2+B2VCsP+NiIiI9AfvuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhUiMyMhI2NjY1HYZkTZo0QWhoaIV1lixZgs6dO1dLPK+bX3/9Fa1bt0ZJSUm1HO91+TykHEMmk2Hfvn2VOu6UKVMwcuTISrWhTrdu3RAdHa3zdqn2Y3JDemvKlCmQyWRlXn/++WdNh4bIyEiVmJycnDBmzBikpKTopP0LFy7ggw8+UL5X9wU1d+5c/PLLLzo5XnlePk8HBwcMGzYMV65c0bodXSab8+fPx6JFi5QLJ9aVz6M2iY2NxbBhw+Ds7FxugvWvf/0LCxYsqLYklWoPJjek1wYPHoyMjAyVV9OmTWs6LADPV9rOyMjA3bt3sX37diQlJWH48OFQKBSVbtvOzg7m5uYV1qlXrx4aNmxY6WO9yovneeDAAeTl5WHo0KEoKiqq8mOrc+bMGVy/fh3vvPNOuXHq8+dRW+Tl5aFTp05Ys2ZNuXWGDh2K7OxsHDlypBojo9qAyQ3pNRMTEzg6Oqq8DA0NsWLFCnTo0AEWFhZwdXXFjBkz8OTJk3Lb+e2339C3b19YWlrCysoKHh4eiIuLU24/c+YM/va3v8HMzAyurq4ICAhAXl5ehbHJZDI4OjrCyckJffv2RXBwMC5fvqzsWVq3bh2aN28OuVyOVq1aYevWrSr7L1myBI0bN4aJiQmcnZ0REBCg3PbiMEiTJk0AAKNGjYJMJlO+f3GI4siRIzA1NcXjx49VjhEQEIA+ffro7Dw9PT0xZ84cpKam4o8//lDWqejzOH78OHx9fZGdna3sWVmyZAkAoKioCPPnz4eLiwssLCzQo0cPHD9+vMJ4du7ciYEDB8LU1LTcOPX583jRhQsXMGDAANja2sLa2hp9+vRBQkJCmXoZGRkYMmQIzMzM0LRpU+zatUtl+507dzB27FjUr18fDRs2xIgRI3Dr1i2N41BnyJAh+Oyzz/DWW2+VW8fQ0BA+Pj7YsWNHpY5F+ofJDdVJBgYGWL16NS5fvowtW7bg119/xfz588utP2HCBDRq1AgXLlxAfHw8FixYAGNjYwDApUuXMGjQILz11lu4ePEioqKicOrUKXz00UdaxWRmZgYAePbsGfbu3YvZs2fjH//4By5fvowPP/wQvr6+OHbsGABg9+7dWLlyJTZs2IDr169j37596NChg9p2L1y4AACIiIhARkaG8v2L+vfvDxsbG+zZs0dZplAo8OOPP2LChAk6O8/Hjx9j+/btAKC8fkDFn4eXlxdCQ0OVPSsZGRmYO3cuAMDX1xenT5/Gzp07cfHiRbzzzjsYPHgwrl+/Xm4MsbGx8PT0fGWsdeHzyM3NxeTJk3Hy5EmcO3cOLVu2hI+PD3Jzc1Xq/etf/8Lbb7+N3377De+99x7effddXL16FQCQn5+Pvn37ol69eoiNjcWpU6dQr149DB48uNzeudJhQF3o3r07Tp48qZO2SI9U+brjRDVk8uTJwtDQUFhYWChfo0ePVlv3xx9/FA0bNlS+j4iIENbW1sr3lpaWIjIyUu2+EydOFB988IFK2cmTJ4WBgYEoKChQu8/L7aenp4uePXuKRo0aicLCQuHl5SWmTZumss8777wjfHx8hBBCfPPNN8Ld3V0UFRWpbd/NzU2sXLlS+R6A2Lt3r0qd4OBg0alTJ+X7gIAA0a9fP+X7I0eOCLlcLh4+fFip8wQgLCwshLm5uQAgAIjhw4errV/qVZ+HEEL8+eefQiaTiTt37qiUv/nmm2LhwoXltm1tbS2+//77MnHWhc/j5WO8rLi4WFhaWor//Oc/KrH6+/ur1OvRo4eYPn26EEKI8PBw0apVK1FSUqLcXlhYKMzMzMSRI0eEEM//L44YMUK5PTo6WrRq1arcOF6m7nqV2r9/vzAwMBAKhULj9kj/seeG9Frfvn2RlJSkfK1evRoAcOzYMQwYMAAuLi6wtLTEpEmT8ODBg3K79IOCguDn54f+/fvj3//+N27cuKHcFh8fj8jISNSrV0/5GjRoEEpKSiq8ITU7Oxv16tVTDsUUFRUhOjoacrkcV69ehbe3t0p9b29v5V/L77zzDgoKCtCsWTNMmzYNe/fuRXFxcaWu1YQJE3D8+HHcvXsXALBt2zb4+Pigfv36lTpPS0tLJCUlIT4+HuvXr0fz5s2xfv16lTrafh4AkJCQACEE3N3dVWI6ceKEyufzsoKCgjJDUkDd+TxedO/ePfj7+8Pd3R3W1tawtrbGkydPkJaWplKvV69eZd6Xnnt8fDz+/PNPWFpaKuNo0KABnj59Wu7nMGrUKPz+++9aXY/ymJmZoaSkBIWFhTppj/SDUU0HQFSVLCws0KJFC5Wy1NRU+Pj4wN/fH59++ikaNGiAU6dOYerUqXj27JnadpYsWYLx48fjwIEDOHToEIKDg7Fz506MGjUKJSUl+PDDD1XusSjVuHHjcmOztLREQkICDAwM4ODgAAsLC5XtL3fbCyGUZa6urvjjjz8QExODn3/+GTNmzMBXX32FEydOqAz3aKN79+5o3rw5du7cienTp2Pv3r2IiIhQbpd6ngYGBsrPoHXr1sjMzMTYsWMRGxsLQNrnURqPoaEh4uPjYWhoqLKtXr165e5na2uLR48elSmvK5/Hi6ZMmYL79+8jNDQUbm5uMDExQa9evTS62bv03EtKSuDh4YFt27aVqWNnZ6dRHJXx8OFDmJubK4cRiQAmN1QHxcXFobi4GN98841yKvCPP/74yv3c3d3h7u6OOXPm4N1330VERARGjRqFrl274sqVK2WSqFd58Uv/ZW3atMGpU6cwadIkZdmZM2fQpk0b5XszMzMMHz4cw4cPx8yZM9G6dWtcunQJXbt2LdOesbGxRrN+xo8fj23btqFRo0YwMDDA0KFDlduknufL5syZgxUrVmDv3r0YNWqURp+HXC4vE3+XLl2gUChw79499O7dW+Pjd+nSBcnJyWXK6+LncfLkSYSFhcHHxwcAkJ6ejqysrDL1zp07p3Lu586dQ5cuXZRxREVFwd7eHlZWVpJjkery5ctqrzHVbRyWojqnefPmKC4uxrfffoubN29i69atZYZJXlRQUICPPvoIx48fR2pqKk6fPo0LFy4ov9g+/vhjnD17FjNnzkRSUhKuX7+On376CbNmzZIc47x58xAZGYn169fj+vXrWLFiBaKjo5U30kZGRiI8PByXL19WnoOZmRnc3NzUttekSRP88ssvyMzMVNtrUWrChAlISEjA559/jtGjR6sM3+jqPK2srODn54fg4GAIITT6PJo0aYInT57gl19+QVZWFvLz8+Hu7o4JEyZg0qRJiI6ORkpKCi5cuIAvvvgCBw8eLPf4gwYNwqlTp7SKWV8/jxYtWmDr1q24evUq/ve//2HChAlqe0B27dqF7777DteuXUNwcDDOnz+vvHF5woQJsLW1xYgRI3Dy5EmkpKTgxIkTmD17Nm7fvq32uHv37kXr1q0rjO3JkyfK4WQASElJQVJSUpkhs5MnT2LgwIEanzPVETV7yw9R1Xn5JsYXrVixQjg5OQkzMzMxaNAg8f333wsA4tGjR0II1RtMCwsLxbhx44Srq6uQy+XC2dlZfPTRRyo3bZ4/f14MGDBA1KtXT1hYWIiOHTuKzz//vNzY1N0g+7KwsDDRrFkzYWxsLNzd3VVugt27d6/o0aOHsLKyEhYWFqJnz57i559/Vm5/+QbWn376SbRo0UIYGRkJNzc3IUT5N5d269ZNABC//vprmW26Os/U1FRhZGQkoqKihBCv/jyEEMLf3180bNhQABDBwcFCCCGKiorE4sWLRZMmTYSxsbFwdHQUo0aNEhcvXiw3pocPHwozMzPx+++/vzLOF+nD5/HyMRISEoSnp6cwMTERLVu2FLt27VJ78/PatWvFgAEDhImJiXBzcxM7duxQaTcjI0NMmjRJ2NraChMTE9GsWTMxbdo0kZ2dLYQo+3+x9Ebzihw7dkx5A/qLr8mTJyvr3L59WxgbG4v09PQK26K6RyaEEDWTVhER1Yz58+cjOzsbGzZsqOlQqBLmzZuH7OxsbNy4saZDodcMh6WIqM5ZtGgR3NzcdPL0Yao59vb2+PTTT2s6DHoNseeGiIiI9Ap7boiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIr/x/+whmMtF2ki0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display = RocCurveDisplay.from_estimator(lor, X_test, y_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "33af49d3-3daf-4b9a-95fd-c1ded3c2c037", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "26c8a6dd-7d3e-4165-b802-013a646bb851", "metadata": {}, "source": [ "## Decision Tree\n" ] }, { "cell_type": "code", "execution_count": 50, "id": "609d8e9c-b92e-4d7d-ac40-f8edca2020ae", "metadata": {}, "outputs": [], "source": [ "mdl = DecisionTreeClassifier(criterion=\"entropy\", max_depth=6)\n", "mdl.fit(X_train,y_train)\n", "y_p = mdl.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 51, "id": "cda9a8e7-83f6-43c7-841e-ce6f85d92d84", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.90 0.90 0.90 29\n", " 1 0.89 0.89 0.89 27\n", "\n", " accuracy 0.89 56\n", " macro avg 0.89 0.89 0.89 56\n", "weighted avg 0.89 0.89 0.89 56\n", "\n" ] } ], "source": [ "print(classification_report(y_test, y_p))" ] }, { "cell_type": "code", "execution_count": 52, "id": "7e85f163-fb7d-4fef-bc5e-cf27645dba8d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsWElEQVR4nO3de3gU9fn38c8GyCZAEoyQk4QQkJOCiAQ5eACsoKlyEbEWxJ+Cgi0FpTx4qqIS20LEtoBKQaVPE/QnFR9b0CqKVAQ8oSSCIKQUJEAQUg4qgUASsjvPH8jqCsJuZja7s/N+Xddcdb87hzuUizv3/f3OjMswDEMAAMCWYsIdAAAAqD8SOQAANkYiBwDAxkjkAADYGIkcAAAbI5EDAGBjJHIAAGyscbgDMMPr9WrPnj1KSEiQy+UKdzgAgCAZhqHDhw8rIyNDMTGhqy2rq6tVW1tr+jyxsbGKi4uzICLr2DqR79mzR5mZmeEOAwBgUnl5uVq3bh2Sc1dXVys7q7kq9nlMnystLU1lZWURlcxtncgTEhIkSTs/bavE5swSIDrd0LFbuEMAQqZOx/W+lvr+PQ+F2tpaVezzaGdJWyUm1D9XVB72KqvnDtXW1pLIrXKynZ7YPMbU/zlAJGvsahLuEIDQ+fYh4Q0xPdo8waXmCfW/jleROYVr60QOAECgPIZXHhNvF/EYXuuCsRCJHADgCF4Z8qr+mdzMsaFEPxoAABujIgcAOIJXXplpjps7OnRI5AAAR/AYhjxG/dvjZo4NJVrrAADYGBU5AMARonWxG4kcAOAIXhnyRGEip7UOAICNUZEDABwhWlvrVOQAAEc4uWrdzBaMgoIC9erVSwkJCUpJSVFeXp62bNnit8/o0aPlcrn8tj59+gR1HRI5AAAhsGrVKk2YMEFr1qzR8uXLVVdXp8GDB6uqqspvv2uvvVZ79+71bUuXLg3qOrTWAQCO4P12M3O8JFVWVvqNu91uud3uU/Z/6623/D4XFhYqJSVFJSUluvLKK/2OT0tLq3dcVOQAAEfwfLtq3cwmSZmZmUpKSvJtBQUFAV3/0KFDkqTk5GS/8ZUrVyolJUUdO3bUnXfeqX379gX1c1GRAwAcwWPI5NvPTvxveXm5EhMTfeOnq8Z/yDAMTZ48WZdffrm6du3qG8/NzdVNN92krKwslZWV6ZFHHtFVV12lkpKSgM4rkcgBAAhKYmKiXyIPxF133aUNGzbo/fff9xsfPny477+7du2qnJwcZWVl6Y033tCwYcMCOjeJHADgCFbNkQfr7rvv1muvvabVq1erdevWZ9w3PT1dWVlZ2rp1a8DnJ5EDABzBK5c8cpk6PhiGYejuu+/W4sWLtXLlSmVnZ5/1mIMHD6q8vFzp6ekBX4fFbgAAhMCECRP0v//7v1q4cKESEhJUUVGhiooKHTt2TJJ05MgR3Xvvvfroo4+0Y8cOrVy5UkOGDFHLli11ww03BHwdKnIAgCN4jRObmeODMW/ePEnSgAED/MYLCws1evRoNWrUSBs3btTzzz+vb775Runp6Ro4cKAWLVqkhISEgK9DIgcAOILHZGs92GONszwJLj4+XsuWLat3PCfRWgcAwMaoyAEAjtDQFXlDIZEDABzBa7jkNUysWjdxbCjRWgcAwMaoyAEAjkBrHQAAG/MoRh4TjWiPhbFYiUQOAHAEw+QcucEcOQAAsBoVOQDAEZgjBwDAxjxGjDyGiTlyE493DSVa6wAA2BgVOQDAEbxyyWuifvUqMktyEjkAwBGidY6c1joAADZGRQ4AcATzi91orQMAEDYn5shNvDSF1joAALAaFTkAwBG8Jp+1zqp1AADCiDlyAABszKuYqLyPnDlyAABsjIocAOAIHsMlj4lXkZo5NpRI5AAAR/CYXOzmobUOAACsRkUOAHAErxEjr4lV615WrQMAED601gEAQMShIgcAOIJX5laee60LxVIkcgCAI5h/IExkNrEjMyoAABAQKnIAgCOYf9Z6ZNa+JHIAgCNE6/vISeQAAEeI1oo8MqMCAAABoSIHADiC+QfCRGbtSyIHADiC13DJa+Y+8gh9+1lk/noBAAACQkUOAHAEr8nWeqQ+EIZEDgBwBPNvP4vMRB6ZUQEAgIBQkQMAHMEjlzwmHupi5thQIpEDAByB1joAAIg4VOQAAEfwyFx73GNdKJYikQMAHCFaW+skcgCAI/DSFAAAEHGoyAEAjmCYfB+5we1nAACED611AAAQcajIAQCOEK2vMSWRAwAcwWPy7Wdmjg2lyIwKAAAEhIocAOAItNYBALAxr2LkNdGINnNsKEVmVAAAICBU5AAAR/AYLnlMtMfNHBtKJHIAgCMwRw4AgI0ZJt9+ZvBkNwAAYDUqcgCAI3jkksfEi0/MHBtKJHIAgCN4DXPz3F7DwmAsRGsdAAAboyLHKV56OkUfLG2h8m1uxcZ5dUHOUY2ZskeZ59f47bdrq1v/9/cZ2rCmuQyvlNWpWlOe2aGU1sfDFDlQP9ffdkDX3XZQqZm1kqSdW+L04qxUFb+bGObIYCWvycVuZo4NJRI5TrHho+YaMvqAOl58VJ46qWhGuh66ub3mr/q34pp6JUl7dsRqcl4HXTvioG69t0LNEj3atTVOsXER2nsCzmD/3ib66/R07dnhliQNuukr5Rfu0ITBHbXzP3Fhjg5W8colr4l5bjPHhlLYf72YO3eusrOzFRcXp549e+q9994Ld0iON33hdg0e/pXadqpW+wurdc+sXdr3Zay2boj37VP0eLouvapSYx/Zq/O7HVN6Vq16X12pFi3rwhg5UD8fL0/S2hWJ+nK7W19ud6toRrqqq2LUuWdVuEMDziqsiXzRokWaNGmSpkyZonXr1umKK65Qbm6udu3aFc6w8ANVlY0kSQktPJIkr1f65J1EndeuRg/d3E4/73ahJl7XQR++mRTOMAFLxMQY6j/0a7mbelVa3Czc4cBCJ5/sZmaLRGFN5DNnztSYMWM0duxYdenSRbNnz1ZmZqbmzZsXzrDwPYYhPZd/ni689Ijadq6WJH1zoLGOVTXSojkpyhl4WAV/267Lrj2k345tqw0f8Q8f7Klt52NasnWjXt+xQRMf363fjmmrXVtpq0eTk3PkZrZIFLY58traWpWUlOg3v/mN3/jgwYP14YcfnvaYmpoa1dR8t+CqsrIypDFC+vND56msNF5/WrLVN2acmCZX32sqNewX+yVJ7bse0+biZnrj+Za6qC/tSNjP7i/cGj+oo5olenT5dYd075O7dN+w80nmiHhh+/XiwIED8ng8Sk1N9RtPTU1VRUXFaY8pKChQUlKSb8vMzGyIUB3rz1PO00dvJ+mJV7apVcZ3K9ETkz1q1NhQVsdqv/0zO1Rr35dNGjpMwBJ1x2O0Z4dbWzc0VWFBuso2xytv7P5whwULeeXyPW+9XluQi90KCgrUq1cvJSQkKCUlRXl5edqyZYvfPoZhKD8/XxkZGYqPj9eAAQO0adOmoK4T9j6By+X/B2MYxiljJz344IM6dOiQbysvL2+IEB3HMKQ5D52nD95M0hP/b5vS2tT6fd8k1lDH7ke1+wu33/iX293ceoao0iSWuzCiifHtqvX6bkaQiXzVqlWaMGGC1qxZo+XLl6uurk6DBw9WVdV3XcsnnnhCM2fO1Jw5c7R27VqlpaVp0KBBOnz4cMDXCVtrvWXLlmrUqNEp1fe+fftOqdJPcrvdcrvdp/0O1pnzUGu9u/gc5RduV3xzr77ad+KvSbMEj9zxJ/5hu2n8Pk0fl6WufY6oe78jKn43UWuWJ+kPr2wLZ+hAvdz+m71auyJB+/fEKr65RwOGfqOL+h3Rw7e0C3dosFBDv/3srbfe8vtcWFiolJQUlZSU6Morr5RhGJo9e7amTJmiYcOGSZIWLFig1NRULVy4UL/85S8Duk7YEnlsbKx69uyp5cuX64YbbvCNL1++XEOHDg1XWJD0+oKWkqT7buzgN37PrF0aPPwrSdJluYc08fHdemlOquY90lqt29Xokfll6tqb+XHYT4tWdbrv6V1KTqnT0cONVFYap4dvaadPVyeEOzREoB+uzwq0yDx06JAkKTk5WZJUVlamiooKDR482O9c/fv314cffhj5iVySJk+erFtvvVU5OTnq27evnnvuOe3atUvjxo0LZ1iOt2zP+oD2u+bmr3TNzV+FNhigAcy6h/U2TmDVk91+uD5r6tSpys/PP+OxhmFo8uTJuvzyy9W1a1dJ8nWkT7dWbOfOnQHHFdZEPnz4cB08eFC//e1vtXfvXnXt2lVLly5VVlZWOMMCAEQhq1rr5eXlSkz87vG9gVTjd911lzZs2KD333//lO+CWSt2OmF/ROv48eM1fvz4cIcBAEBAEhMT/RL52dx999167bXXtHr1arVu3do3npaWJulEZZ6enu4bP9NasdMJ+6p1AAAagpkV6/V5TrthGLrrrrv0j3/8QytWrFB2drbf99nZ2UpLS9Py5ct9Y7W1tVq1apX69esX8HXCXpEDANAQGnrV+oQJE7Rw4UK9+uqrSkhI8M2JJyUlKT4+Xi6XS5MmTdL06dPVoUMHdejQQdOnT1fTpk01cuTIgK9DIgcAIAROPm58wIABfuOFhYUaPXq0JOn+++/XsWPHNH78eH399dfq3bu33n77bSUkBH7HBIkcAOAIDV2RG8bZHyjkcrmUn59/1lXvZ0IiBwA4QkMn8obCYjcAAGyMihwA4AjRWpGTyAEAjmBIQd9C9sPjIxGJHADgCNFakTNHDgCAjVGRAwAcIVorchI5AMARojWR01oHAMDGqMgBAI4QrRU5iRwA4AiG4ZJhIhmbOTaUaK0DAGBjVOQAAEeozzvFf3h8JCKRAwAcIVrnyGmtAwBgY1TkAABHiNbFbiRyAIAjRGtrnUQOAHCEaK3ImSMHAMDGqMgBAI5gmGytR2pFTiIHADiCIckwzB0fiWitAwBgY1TkAABH8MolF092AwDAnli1DgAAIg4VOQDAEbyGSy4eCAMAgD0ZhslV6xG6bJ3WOgAANkZFDgBwhGhd7EYiBwA4AokcAAAbi9bFbsyRAwBgY1TkAABHiNZV6yRyAIAjnEjkZubILQzGQrTWAQCwMSpyAIAjsGodAAAbM2TuneIR2lmntQ4AgJ1RkQMAHIHWOgAAdhalvXUSOQDAGUxW5IrQipw5cgAAbIyKHADgCDzZDQAAG4vWxW601gEAsDEqcgCAMxgucwvWIrQiJ5EDABwhWufIaa0DAGBjVOQAAGfggTAAANhXtK5aDyiRP/XUUwGfcOLEifUOBgAABCegRD5r1qyATuZyuUjkAIDIFaHtcTMCSuRlZWWhjgMAgJCK1tZ6vVet19bWasuWLaqrq7MyHgAAQsOwYItAQSfyo0ePasyYMWratKkuvPBC7dq1S9KJufHHH3/c8gABAMCPCzqRP/jgg/rss8+0cuVKxcXF+cavvvpqLVq0yNLgAACwjsuCLfIEffvZkiVLtGjRIvXp00cu13c/1AUXXKAvvvjC0uAAALBMlN5HHnRFvn//fqWkpJwyXlVV5ZfYAQBA6AWdyHv16qU33njD9/lk8p4/f7769u1rXWQAAFgpShe7Bd1aLygo0LXXXqvNmzerrq5OTz75pDZt2qSPPvpIq1atCkWMAACYF6VvPwu6Iu/Xr58++OADHT16VO3bt9fbb7+t1NRUffTRR+rZs2coYgQAAD+iXs9a79atmxYsWGB1LAAAhEy0vsa0Xonc4/Fo8eLFKi0tlcvlUpcuXTR06FA1bsw7WAAAESpKV60HnXk///xzDR06VBUVFerUqZMk6T//+Y9atWql1157Td26dbM8SAAAcHpBz5GPHTtWF154oXbv3q1PP/1Un376qcrLy3XRRRfpF7/4RShiBADAvJOL3cxsESjoivyzzz5TcXGxzjnnHN/YOeeco2nTpqlXr16WBgcAgFVcxonNzPGRKOiKvFOnTvrvf/97yvi+fft0/vnnWxIUAACWi9L7yANK5JWVlb5t+vTpmjhxol555RXt3r1bu3fv1iuvvKJJkyZpxowZoY4XAAB8T0Ct9RYtWvg9ftUwDP385z/3jRnfrskfMmSIPB5PCMIEAMCkKH0gTECJ/N133w11HAAAhFYD3362evVq/eEPf1BJSYn27t2rxYsXKy8vz/f96NGjT3kmS+/evbVmzZqgrhNQIu/fv39QJwUAwOmqqqrUvXt33X777brxxhtPu8+1116rwsJC3+fY2Nigr1PvJ7gcPXpUu3btUm1trd/4RRddVN9TAgAQOg1ckefm5io3N/eM+7jdbqWlpZkIqh6JfP/+/br99tv15ptvnvZ75sgBABHJokReWVnpN+x2u+V2u+t1ypUrVyolJUUtWrRQ//79NW3atNO+KvxMgr79bNKkSfr666+1Zs0axcfH66233tKCBQvUoUMHvfbaa8GeDgAAW8nMzFRSUpJvKygoqNd5cnNz9eKLL2rFihX605/+pLVr1+qqq65STU1NUOcJuiJfsWKFXn31VfXq1UsxMTHKysrSoEGDlJiYqIKCAl133XXBnhIAgNCzaNV6eXm5EhMTfcP1rcaHDx/u+++uXbsqJydHWVlZeuONNzRs2LCAzxN0Iq+qqvKV/cnJydq/f786duyobt266dNPPw32dAAANAirnuyWmJjol8itkp6erqysLG3dujWo4+r1ZLctW7ZIki6++GI9++yz+vLLL/XMM88oPT092NMBAABJBw8eVHl5edC5NOiKfNKkSdq7d68kaerUqbrmmmv04osvKjY2VkVFRcGeDgCAhtHAq9aPHDmibdu2+T6XlZVp/fr1Sk5OVnJysvLz83XjjTcqPT1dO3bs0EMPPaSWLVvqhhtuCOo6QSfyW265xfffPXr00I4dO/Tvf/9bbdq0UcuWLYM9HQAAUam4uFgDBw70fZ48ebIkadSoUZo3b542btyo559/Xt98843S09M1cOBALVq0SAkJCUFdp973kZ/UtGlTXXLJJWZPAwBASLlkco48yP0HDBjge4T56Sxbtqz+wXxPQIn85G8RgZg5c2a9gwEAAMEJKJGvW7cuoJN9/8UqDemGjt3U2NUkLNcGQu2x7SXhDgEImarDXq1sqAeC8tIUAABsrIEXuzWUoG8/AwAAkcP0YjcAAGwhSityEjkAwBGserJbpKG1DgCAjVGRAwCcIUpb6/WqyF944QVddtllysjI0M6dOyVJs2fP1quvvmppcAAAWMawYItAQSfyefPmafLkyfrpT3+qb775Rh6PR5LUokULzZ492+r4AADAGQSdyJ9++mnNnz9fU6ZMUaNGjXzjOTk52rhxo6XBAQBglZOL3cxskSjoOfKysjL16NHjlHG3262qqipLggIAwHJR+mS3oCvy7OxsrV+//pTxN998UxdccIEVMQEAYL0onSMPuiK/7777NGHCBFVXV8swDH3yySf629/+poKCAv3lL38JRYwAAOBHBJ3Ib7/9dtXV1en+++/X0aNHNXLkSJ133nl68sknNWLEiFDECACAadH6QJh63Ud+55136s4779SBAwfk9XqVkpJidVwAAFgrSu8jN/VAmJYtW1oVBwAAqIegE3l2dvYZ3zu+fft2UwEBABASZm8hi5aKfNKkSX6fjx8/rnXr1umtt97SfffdZ1VcAABYi9b6Cb/+9a9PO/7nP/9ZxcXFpgMCAACBs+ztZ7m5ufr73/9u1ekAALAW95Gf2SuvvKLk5GSrTgcAgKW4/exbPXr08FvsZhiGKioqtH//fs2dO9fS4AAAwJkFncjz8vL8PsfExKhVq1YaMGCAOnfubFVcAAAgAEEl8rq6OrVt21bXXHON0tLSQhUTAADWi9JV60EtdmvcuLF+9atfqaamJlTxAAAQEtH6GtOgV6337t1b69atC0UsAAAgSEHPkY8fP1733HOPdu/erZ49e6pZs2Z+31900UWWBQcAgKUitKo2I+BEfscdd2j27NkaPny4JGnixIm+71wulwzDkMvlksfjsT5KAADMitI58oAT+YIFC/T444+rrKwslPEAAIAgBJzIDePEryJZWVkhCwYAgFDhgTDSGd96BgBARHN6a12SOnbseNZk/tVXX5kKCAAABC6oRP7YY48pKSkpVLEAABAytNYljRgxQikpKaGKBQCA0InS1nrAD4RhfhwAgMgT9Kp1AABsKUor8oATudfrDWUcAACEFHPkAADYWZRW5EG/NAUAAEQOKnIAgDNEaUVOIgcAOEK0zpHTWgcAwMaoyAEAzkBrHQAA+6K1DgAAIg4VOQDAGWitAwBgY1GayGmtAwBgY1TkAABHcH27mTk+EpHIAQDOEKWtdRI5AMARuP0MAABEHCpyAIAz0FoHAMDmIjQZm0FrHQAAG6MiBwA4QrQudiORAwCcIUrnyGmtAwBgY1TkAABHoLUOAICd0VoHAACRhoocAOAItNYBALCzKG2tk8gBAM4QpYmcOXIAAGyMihwA4AjMkQMAYGe01gEAQKShIgcAOILLMOQy6l9Wmzk2lKjIAQDOYFiwBWH16tUaMmSIMjIy5HK5tGTJEv9wDEP5+fnKyMhQfHy8BgwYoE2bNgX9Y5HIAQAIgaqqKnXv3l1z5sw57fdPPPGEZs6cqTlz5mjt2rVKS0vToEGDdPjw4aCuQ2sdAOAIVq1ar6ys9Bt3u91yu92n7J+bm6vc3NzTnsswDM2ePVtTpkzRsGHDJEkLFixQamqqFi5cqF/+8pcBx0VFDgBwBota65mZmUpKSvJtBQUFQYdSVlamiooKDR482DfmdrvVv39/ffjhh0Gdi4ocAIAglJeXKzEx0ff5dNX42VRUVEiSUlNT/cZTU1O1c+fOoM5FIgcAOIJVrfXExES/RG4qJpfL77NhGKeMnQ2tdQCAMzTwqvUzSUtLk/RdZX7Svn37TqnSz4ZEDgBwhJMVuZnNKtnZ2UpLS9Py5ct9Y7W1tVq1apX69esX1LlorQMAEAJHjhzRtm3bfJ/Lysq0fv16JScnq02bNpo0aZKmT5+uDh06qEOHDpo+fbqaNm2qkSNHBnUdEjkAwBka+FnrxcXFGjhwoO/z5MmTJUmjRo1SUVGR7r//fh07dkzjx4/X119/rd69e+vtt99WQkJCUNchkQMAHKMh32A2YMAAGWd4rKvL5VJ+fr7y8/NNXYc5cgAAbIyKHADgDIZxYjNzfAQikQMAHMGq+8gjDa11AABsjIocAOAMDbxqvaGQyAEAjuDyntjMHB+JaK0DAGBjVOQ4q+tvO6Drbjuo1MxaSdLOLXF6cVaqit+15qUBQENaPTdNpcta6MD2ODWJ8yrzkioNemC3WrarOe3+r01po5K/tdK1D5er7x37GjhaWIrWOpxq/94m+uv0dO3ZceJVfYNu+kr5hTs0YXBH7fxPXJijA4Kz85PmuvTW/Trvoip5PS6988cMPX9bB9319mbFNvXvnZa+naQv1zdTQmptmKKFlVi1HgKrV6/WkCFDlJGRIZfLpSVLloQzHPyIj5cnae2KRH253a0vt7tVNCNd1VUx6tyzKtyhAUG7tWibevzsoFI6ViutyzHlPbFTh/a4tefzpn77VVY00dL8NrpxVpkaNY7Qf8ERnJP3kZvZIlBYE3lVVZW6d++uOXPmhDMMBCEmxlD/oV/L3dSr0uJm4Q4HMK36cCNJUnxSnW/M65X+cU9b9bvzv0rpWB2u0ICAhLW1npubq9zc3ID3r6mpUU3Nd/NYlZWVoQgLp9G28zHN/uc2xbq9OlYVo9+OaatdW2mrw94MQ1o2rbXa5BxWaqfvEvb7z6QpppHUZzRz4tGE1noEKCgoUFJSkm/LzMwMd0iOsfsLt8YP6qhfX99Brz/fUvc+uUttOlCpwN7emJqp//47Xj97ssw3tmdjU31clKK8P+yQyxXG4GA9w4ItAtlqsduDDz7oew2cdKIiJ5k3jLrjMb7Fbls3NFWni48qb+x+PfUAf/6wpzfyM7XlnRa646UtSko/7hvfuba5qg421qzLu/nGvB6Xlk1vrTWFKfo/730ejnCBH2WrRO52u+V2u8MdBr7VJDZCfz0FzsAwpKX5mSp9u4VuX/gfnZPpvyK9+w0H1e4y/2m7F0Z3UPe8r9TjpgMNGSosFq2tdVslcoTH7b/Zq7UrErR/T6zim3s0YOg3uqjfET18S7twhwYE7Y1HM7XxtWTd/NwXim3u0eH9J/4ZjEvwqEmcoabneNT0HI/fMY0aG2re6viP3msOm+DtZ3CqFq3qdN/Tu5ScUqejhxuprDROD9/STp+uTgh3aEDQ1r6YIkkqvLmT33jeEzvU42cHwxESYEpYE/mRI0e0bds23+eysjKtX79eycnJatOmTRgjw/fNuod5cESPx7aXBH0M8+LRgdZ6CBQXF2vgwIG+zycXso0aNUpFRUVhigoAEJV4RKv1BgwYICNC5xwAALAD5sgBAI5Aax0AADvzGic2M8dHIBI5AMAZonSO3FaPaAUAAP6oyAEAjuCSyTlyyyKxFokcAOAMUfpkN1rrAADYGBU5AMARuP0MAAA7Y9U6AACINFTkAABHcBmGXCYWrJk5NpRI5AAAZ/B+u5k5PgLRWgcAwMaoyAEAjkBrHQAAO4vSVeskcgCAM/BkNwAAEGmoyAEAjsCT3QAAsDNa6wAAINJQkQMAHMHlPbGZOT4SkcgBAM5Aax0AAEQaKnIAgDPwQBgAAOwrWh/RSmsdAAAboyIHADhDlC52I5EDAJzBkLl3ikdmHieRAwCcgTlyAAAQcajIAQDOYMjkHLllkViKRA4AcIYoXexGax0AABujIgcAOINXksvk8RGIRA4AcARWrQMAgIhDRQ4AcIYoXexGIgcAOEOUJnJa6wAA2BgVOQDAGaK0IieRAwCcgdvPAACwL24/AwAAEYeKHADgDMyRAwBgY15DcplIxt7ITOS01gEAsDEqcgCAM9BaBwDAzkwmckVmIqe1DgCAjZHIAQDOcLK1bmYLQn5+vlwul9+WlpZm+Y9Fax0A4AxeQ6ba4/VYtX7hhRfqX//6l+9zo0aN6n/9H0EiBwAgRBo3bhySKvz7aK0DAJzB8JrfJFVWVvptNTU1P3rJrVu3KiMjQ9nZ2RoxYoS2b99u+Y9FIgcAOINFc+SZmZlKSkrybQUFBae9XO/evfX8889r2bJlmj9/vioqKtSvXz8dPHjQ0h+L1joAwBksmiMvLy9XYmKib9jtdp9299zcXN9/d+vWTX379lX79u21YMECTZ48uf5x/ACJHACAICQmJvol8kA1a9ZM3bp109atWy2Nh9Y6AMAZGvj2sx+qqalRaWmp0tPTLfqBTiCRAwCcwZDJRB7c5e69916tWrVKZWVl+vjjj/Wzn/1MlZWVGjVqlKU/Fq11AABCYPfu3br55pt14MABtWrVSn369NGaNWuUlZVl6XVI5AAAZ2jgl6a89NJL9b9WEEjkAABn8HoleU0eH3mYIwcAwMaoyAEAzsD7yAEAsLEoTeS01gEAsDEqcgCAM4ThNaYNgUQOAHAEw/DKMOq/8tzMsaFEIgcAOINhmKuqmSMHAABWoyIHADiDYXKOPEIrchI5AMAZvF7JZWKeO0LnyGmtAwBgY1TkAABnoLUOAIB9GV6vDBOt9Ui9/YzWOgAANkZFDgBwBlrrAADYmNeQXNGXyGmtAwBgY1TkAABnMAxJZu4jj8yKnEQOAHAEw2vIMNFaN0jkAACEkeGVuYqc288AAIDFqMgBAI5Aax0AADuL0ta6rRP5yd+O6nTc1D3+QCSrOhyZ/3gAVqg6cuLvd0NUu2ZzRZ2OWxeMhWydyA8fPixJel9LwxwJEDorLwp3BEDoHT58WElJSSE5d2xsrNLS0vR+hflckZaWptjYWAuiso7LiNSmfwC8Xq/27NmjhIQEuVyucIfjCJWVlcrMzFR5ebkSExPDHQ5gKf5+NzzDMHT48GFlZGQoJiZ066+rq6tVW1tr+jyxsbGKi4uzICLr2Loij4mJUevWrcMdhiMlJibyDx2iFn+/G1aoKvHvi4uLi7gEbBVuPwMAwMZI5AAA2BiJHEFxu92aOnWq3G53uEMBLMffb9iRrRe7AQDgdFTkAADYGIkcAAAbI5EDAGBjJHIAAGyMRI6AzZ07V9nZ2YqLi1PPnj313nvvhTskwBKrV6/WkCFDlJGRIZfLpSVLloQ7JCBgJHIEZNGiRZo0aZKmTJmidevW6YorrlBubq527doV7tAA06qqqtS9e3fNmTMn3KEAQeP2MwSkd+/euuSSSzRv3jzfWJcuXZSXl6eCgoIwRgZYy+VyafHixcrLywt3KEBAqMhxVrW1tSopKdHgwYP9xgcPHqwPP/wwTFEBACQSOQJw4MABeTwepaam+o2npqaqoqIiTFEBACQSOYLww1fFGobB62MBIMxI5Dirli1bqlGjRqdU3/v27TulSgcANCwSOc4qNjZWPXv21PLly/3Gly9frn79+oUpKgCAJDUOdwCwh8mTJ+vWW29VTk6O+vbtq+eee067du3SuHHjwh0aYNqRI0e0bds23+eysjKtX79eycnJatOmTRgjA86O288QsLlz5+qJJ57Q3r171bVrV82aNUtXXnlluMMCTFu5cqUGDhx4yvioUaNUVFTU8AEBQSCRAwBgY8yRAwBgYyRyAABsjEQOAICNkcgBALAxEjkAADZGIgcAwMZI5AAA2BiJHAAAGyORAybl5+fr4osv9n0ePXq08vLyGjyOHTt2yOVyaf369T+6T9u2bTV79uyAz1lUVKQWLVqYjs3lcmnJkiWmzwPgVCRyRKXRo0fL5XLJ5XKpSZMmateune69915VVVWF/NpPPvlkwI/1DCT5AsCZ8NIURK1rr71WhYWFOn78uN577z2NHTtWVVVVmjdv3in7Hj9+XE2aNLHkuklJSZacBwACQUWOqOV2u5WWlqbMzEyNHDlSt9xyi6+9e7Id/te//lXt2rWT2+2WYRg6dOiQfvGLXyglJUWJiYm66qqr9Nlnn/md9/HHH1dqaqoSEhI0ZswYVVdX+33/w9a61+vVjBkzdP7558vtdqtNmzaaNm2aJCk7O1uS1KNHD7lcLg0YMMB3XGFhobp06aK4uDh17txZc+fO9bvOJ598oh49eiguLk45OTlat25d0H9GM2fOVLdu3dSsWTNlZmZq/PjxOnLkyCn7LVmyRB07dlRcXJwGDRqk8vJyv+//+c9/qmfPnoqLi1O7du302GOPqa6uLuh4AASPRA7HiI+P1/Hjx32ft23bppdffll///vffa3t6667ThUVFVq6dKlKSkp0ySWX6Cc/+Ym++uorSdLLL7+sqVOnatq0aSouLlZ6evopCfaHHnzwQc2YMUOPPPKINm/erIULFyo1NVXSiWQsSf/617+0d+9e/eMf/5AkzZ8/X1OmTNG0adNUWlqq6dOn65FHHtGCBQskSVVVVbr++uvVqVMnlZSUKD8/X/fee2/QfyYxMTF66qmn9Pnnn2vBggVasWKF7r//fr99jh49qmnTpmnBggX64IMPVFlZqREjRvi+X7Zsmf7nf/5HEydO1ObNm/Xss8+qqKjI98sKgBAzgCg0atQoY+jQob7PH3/8sXHuuecaP//5zw3DMIypU6caTZo0Mfbt2+fb55133jESExON6upqv3O1b9/eePbZZw3DMIy+ffsa48aN8/u+d+/eRvfu3U977crKSsPtdhvz588/bZxlZWWGJGPdunV+45mZmcbChQv9xn73u98Zffv2NQzDMJ599lkjOTnZqKqq8n0/b968057r+7KysoxZs2b96Pcvv/yyce655/o+FxYWGpKMNWvW+MZKS0sNScbHH39sGIZhXHHFFcb06dP9zvPCCy8Y6enpvs+SjMWLF//odQHUH3PkiFqvv/66mjdvrrq6Oh0/flxDhw7V008/7fs+KytLrVq18n0uKSnRkSNHdO655/qd59ixY/riiy8kSaWlpRo3bpzf93379tW777572hhKS0tVU1Ojn/zkJwHHvX//fpWXl2vMmDG68847feN1dXW++ffS0lJ1795dTZs29YsjWO+++66mT5+uzZs3q7KyUnV1daqurlZVVZWaNWsmSWrcuLFycnJ8x3Tu3FktWrRQaWmpLr30UpWUlGjt2rV+FbjH41F1dbWOHj3qFyMA65HIEbUGDhyoefPmqUmTJsrIyDhlMdvJRHWS1+tVenq6Vq5cecq56nsLVnx8fNDHeL1eSSfa67179/b7rlGjRpIkwzDqFc/37dy5Uz/96U81btw4/e53v1NycrLef/99jRkzxm8KQjpx+9gPnRzzer167LHHNGzYsFP2iYuLMx0ngDMjkSNqNWvWTOeff37A+19yySWqqKhQ48aN1bZt29Pu06VLF61Zs0a33Xabb2zNmjU/es4OHTooPj5e77zzjsaOHXvK97GxsZJOVLAnpaam6rzzztP27dt1yy23nPa8F1xwgV544QUdO3bM98vCmeI4neLiYtXV1elPf/qTYmJOLJd5+eWXT9mvrq5OxcXFuvTSSyVJW7Zs0TfffKPOnTtLOvHntmXLlqD+rAFYh0QOfOvqq69W3759lZeXpxkzZqhTp07as2ePli5dqry8POXk5OjXv/61Ro0apZycHF1++eV68cUXtWnTJrVr1+6054yLi9MDDzyg+++/X7Gxsbrsssu0f/9+bdq0SWPGjFFKSori4+P11ltvqXXr1oqLi1NSUpLy8/M1ceJEJSYmKjc3VzU1NSouLtbXX3+tyZMna+TIkZoyZYrGjBmjhx9+WDt27NAf//jHoH7e9u3bq66uTk8//bSGDBmiDz74QM8888wp+zVp0kR33323nnrqKTVp0kR33XWX+vTp40vsjz76qK6//nplZmbqpptuUkxMjDZs2KCNGzfq97//ffD/RwAICqvWgW+5XC4tXbpUV155pe644w517NhRI0aM0I4dO3yrzIcPH65HH31UDzzwgHr27KmdO3fqV7/61RnP+8gjj+iee+7Ro48+qi5dumj48OHat2+fpBPzz0899ZSeffZZZWRkaOjQoZKksWPH6i9/+YuKiorUrVs39e/fX0VFRb7b1Zo3b65//vOf2rx5s3r06KEpU6ZoxowZQf28F198sWbOnKkZM2aoa9euevHFF1VQUHDKfk2bNtUDDzygkSNHqm/fvoqPj9dLL73k+/6aa67R66+/ruXLl6tXr17q06ePZs6cqaysrKDiAVA/LsOKyTYAABAWVOQAANgYiRwAABsjkQMAYGMkcgAAbIxEDgCAjZHIAQCwMRI5AAA2RiIHAMDGSOQAANgYiRwAABsjkQMAYGP/H87YvzX7bUSkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm = confusion_matrix(y_test, y_p, labels=mdl.classes_)\n", "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=mdl.classes_)\n", "disp.plot()" ] }, { "cell_type": "code", "execution_count": 53, "id": "30867fc9-15c0-4513-9f31-5c11c2aa0518", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy of Decision Tree model is 89.28571428571429\n" ] } ], "source": [ "#printing the accuracy for test set\n", "print('Accuracy of Decision Tree model is {}'.format(accuracy_score(y_test,y_p)*100))" ] }, { "cell_type": "code", "execution_count": 54, "id": "8ca87bb0-5907-4b65-8bf1-10449cb933ac", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeWElEQVR4nO3deVxU9f4/8NcMA8MOKYugiCsuuUNufM2rqaRet26JabmkFmqictP0+is0S6p7UzK3MsTsmlpu1dVSU3P3mgi53jJEFoUUUUB2Zj6/P5SRYQacGc7MyPB6Ph7zuM7nfM6Z9znjdd59VpkQQoCIiIjIRsitHQARERGRlJjcEBERkU1hckNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDZFYe0ALE2tVuPGjRtwc3ODTCazdjhERERkACEE8vPz4e/vD7m85raZepfc3LhxAwEBAdYOg4iIiEyQnp6OJk2a1Fin3iU3bm5uAO4/HHd3dytHQ0RERIbIy8tDQECA5ne8JvUuuanoinJ3d2dyQ0REVMcYMqSEA4qJiIjIpjC5ISIiIpvC5IaIiIhsCpMbIiIisilMboiIiMimMLkhIiIim8LkhoiIiGwKkxsiIiKyKUxuiIiIyKYwuSEiIiKbYtXk5siRIxg2bBj8/f0hk8mwa9euR55z+PBhBAcHw9HRES1atMDatWvNHygRERHVGVZNbgoKCtC5c2esXLnSoPopKSkYMmQI+vTpg8TERPzjH/9AZGQktm/fbuZIiYiIqK6w6saZgwcPxuDBgw2uv3btWjRt2hSxsbEAgHbt2uHMmTP417/+hb/97W9mipKIiIgeRQiB4jI18orLUFKmRtOGzlaLpU7tCn7y5EkMGjRIqywsLAxxcXEoKyuDvb29zjklJSUoKSnRvM/LyzN7nERERHVRuUqNvOJy5BWVIa+4DLlFZcgrKr//v8VlyCt6UFb8oKxSeV5ROUpVagBAY08nHJ/f32r3UaeSm6ysLPj6+mqV+fr6ory8HNnZ2fDz89M5JyYmBosXL7ZUiERERFYjhEBBqeph4lFNMlKRtORVSVoKSlW1jsFOLoPcytOV6lRyAwAymUzrvRBCb3mFBQsWICoqSvM+Ly8PAQEB5guQiIioFkrKVVqtJQ+TkvIqCUuZTr384nKo1KLWMbg42MHDyR7uFS9He7g7Ke6XOdo/POao0Py54n9dHOyq/U22lDqV3DRq1AhZWVlaZTdv3oRCoUDDhg31nqNUKqFUKi0RHhEREVRqgXvF+rpyKrWYVElacislLSXl6lrH4GAnf5CYKLSSEY8H7zXJiObYw3pujgoo7Or2SjF1Krnp1asXvv/+e62yffv2ISQkRO94GyIiImMJIVBUptI/1qSoDLkPkhPtpOVhF09+cXmtY5DJADelAh7OlRKQKq0nD1tLdMuUCrnVW0+syarJzb179/DHH39o3qekpCApKQkNGjRA06ZNsWDBAly/fh0bN24EAERERGDlypWIiorC1KlTcfLkScTFxWHz5s3WugUiInoMlanUeltF9HXlVO3yySsuQ5mq9l07TvZ2Oq0iVbty9Hb5ONvD1UEBubz+Jie1ZdXk5syZM+jXr5/mfcXYmAkTJmDDhg3IzMxEWlqa5njz5s2xZ88ezJkzB6tWrYK/vz9WrFjBaeBERDZGrRa4V1peqcVEtyunpvEnhRIMjFXIZZW6bxRayYi+pEWrnqM9HBR1u2unLpOJihG59UReXh48PDyQm5sLd3d3a4dDRGSzistUurNzisu0W1Iql1Wql19cBgnGxcJNWTkpqdRiUlOC8qDM+TEYGEsPGfP7XafG3BARkeWo1KLSVGF9XTnVJS3335dKMDBWqZDrtIroG3+iL2lxc7SHHbt26iUmN0RENkoIgcKKNU8qJyiPGH+S/2Ccyr2S2g+MlctgeFeOnnqO9nYSPAmqb5jcEBE9xkrL1bpdOcXlVRKUarp8JFzzRCfxqDpjp2qXj/P9MhcOjCUrYHJDRGRGarVAfonhyUjVNVGKy2rftWNvJ9OaKqx38bVqphm7OSpgX8fXPKH6h8kNEVENKm8GqG+sSbVlD5KY/JJy1HbaRsWaJ4YOhK2atDja1+81T6j+YXJDRDavTKVGvp5WkZpWiq08kLZiM8DacLSX6y6+Vt3snSqDZF2VCg6MJTICkxsieuwJIXCvpFy728aI8SdSbQZYXVdO1WSkaj03RwWUCg6MJbIUJjdEZBEl5Sq93TY6LSbVdO9IseaJq1KhSTZq2ltHk6BUWvqea54Q1R1MbojIICq1QH6xvq4c/clIbpWkRcrNAD10Wkv07LdTJWmxhc0AicgwTG6I6omKzQC1xpoUPmL12EpL3OdLsOaJTAb9i69VLqth9g7XPCEiQzC5IapDKjYDrNoqUl3rSeU9eHKLylAuQd+Os4Nd9V05Na0i68TNAInIMpjcEFmQvs0AjRl/UlQmzWaAVZMRg/bbcby/nD03AySixx2TGyIjVWwGqHf5+sJqlrQvlngzQEdFpfElVQfCPhyToi9pcbLnwFgism1MbqjeKa9Y86TGgbD69tyRdjNAfXvr1DR7p+KYqyPXPCEiqgmTG6pzhBAoKFU97LYpNG78iRSbAVaseVLTjB19408qpiFzYCwRkfkwuSGrKC1X6+xEXN3qsPqmF0u1GaD22JPqphQrtOp5ONnDhWueEBE9tpjcUK3lF5fhfEZuNV052klLxTFJNwN8xOqw+qYec80TIiLbxeSGauV0Sg6mb0pA9r1So8+t2AywYhXYGhdk01OmVHAzQCIi0sXkhkwihMC/T6Vi8feXUK4W8HVXIuAJZ72tJw/HoGgnKG5KrnlCRETSY3JDRisuU+Htby/g6zMZAIC/dvLDh893grMD/zoREZH18deIjJKVW4zX/p2AX9PvQi4D3ny2LV59ugW7h4iI6LHB5IYM9su1HEz791lk3yuBh5M9Vo7tij6tva0dFhERkRYmN/RIVcfXtG3khs9eDkHThs7WDo2IiEgHkxuqUdXxNUM7+eGfHF9DRESPMf5CUbWqjq+Z92xbvMbxNURE9JhjckN6VR1f88mLXfF0EMfXEBHR44/JDWkRQuDf/03D4u8uasbXfPpyMAIbulg7NCIiIoMwuSGNknIV3t51EVvPpAPg+BoiIqqb+KtFAO6Pr4n4dwKSOL6GiIjqOCY3NiL2p99x6LdbJp+fersAdwvL4O6owCdju6Evx9cQEVEdxeTGBuQXlyH2pyu1vk4bXzd8Np7ja4iIqG5jcmMDrt4qAAA0cHHAP5/vZNI1HBRyPNWsARzt7aQMjYiIyOKY3NiA5Fv3AABBvq54pp2vlaMhIiKyLrm1A6Daq0huWnq7WjkSIiIi62NyYwOSb97vlmJyQ0RExOTGJmhabnyY3BARETG5qePKVWpcu13RcsNZTkRERExu6rj0O0UoUwk42svh7+Fk7XCIiIisjslNHZd8836XVAsvV8jlXE2YiIjI6Kngubm52LlzJ44ePYpr166hsLAQ3t7e6Nq1K8LCwtC7d29zxEnVqBhv04JdUkRERACMaLnJzMzE1KlT4efnh3feeQcFBQXo0qULnnnmGTRp0gSHDh3CwIED0b59e2zdutWcMVMlnAZORESkzeCWm86dO2P8+PE4ffo0OnTooLdOUVERdu3ahWXLliE9PR1vvPGGZIGSfskPVifmTCkiIqL7DE5uLl68CG/vmjdTdHJywosvvogXX3wRt26ZvokjGUYIgT9uVrTcsFuKiIgIMKJb6lGJTW3rk/FyCkqRW1QG4P6AYiIiIpJ4ttSdO3ewceNGKS9JNbiafb9LqrGnE5wcuOElERERIHFyk5aWhkmTJkl5SapBxTRwjrchIiJ6yKip4Hl5eTUez8/Pr1UwZJyHM6U43oaIiKiCUcmNp6cnZLLqF4oTQtR4nKSlmSnFaeBEREQaRiU3bm5uWLhwIXr06KH3+JUrV/Daa69JEhg9Gte4ISIi0mVUctOtWzcAQN++ffUe9/T0hBCi9lHRIxWXqZCeUwgAaOnDbikiIqIKRg0oHjt2LBwdHas93qhRI0RHR9c6KHq01NuFUAvAzVEBb1eltcMhIiJ6bBjVcjN16tQaj/v6+jK5sZDKXVIc50RERPQQdwWvozTTwDnehoiISAuTmzpK03LD8TZERERamNzUUZwGTkREpB+TmzpICMFp4ERERNVgclMHZeUVo7BUBYVchsCGztYOh4iI6LFi9eRm9erVaN68ORwdHREcHIyjR4/WWH/Tpk3o3LkznJ2d4efnh0mTJuH27dsWivbxkHzzfpdU04bOsLez+ldIRET0WDH5l7Ffv36YOHGiVtmECRPQv39/g6+xdetWzJ49GwsXLkRiYiL69OmDwYMHIy0tTW/9Y8eOYfz48Zg8eTIuXryIb775Br/88gumTJli6m3USeySIiIiqp7JyU2zZs3g7++vVda4cWMEBgYafI1ly5Zh8uTJmDJlCtq1a4fY2FgEBARgzZo1euufOnUKzZo1Q2RkJJo3b47/+7//w2uvvYYzZ85U+xklJSXIy8vTetV1TG6IiIiqZ3JyEx8fj6VLl2qVLV26FPHx8QadX1paioSEBAwaNEirfNCgQThx4oTec3r37o2MjAzs2bMHQgj8+eef2LZtG4YOHVrt58TExMDDw0PzCggIMCi+xxl3AyciIqqe1QZsZGdnQ6VSwdfXV6vc19cXWVlZes/p3bs3Nm3ahPDwcDg4OKBRo0bw9PTEJ598Uu3nLFiwALm5uZpXenq6pPdhDRVjblr6sOWGiIioKoO3X1ixYoXBF42MjDS4btWtA4QQ1W4ncOnSJURGRuLtt99GWFgYMjMzMXfuXERERCAuLk7vOUqlEkql7ey9dK+kHFl5xQCAll5MboiIiKoyOLlZvny5QfVkMplByY2Xlxfs7Ox0Wmlu3ryp05pTISYmBqGhoZg7dy4AoFOnTnBxcUGfPn3w7rvvws/Pz6AY67KrD7qkvFyV8HC2t3I0REREjx+Dk5uUlBRJP9jBwQHBwcHYv38/Ro0apSnfv38/RowYofecwsJCKBTaIdvZ2QG43+JTH3C8DRERUc1qNeamtLQUv/32G8rLy006PyoqCp9//jnWr1+Py5cvY86cOUhLS0NERASA++Nlxo8fr6k/bNgw7NixA2vWrMHVq1dx/PhxREZGonv37jozt2wVx9sQERHVzOCWm8oKCwsxc+ZMfPHFFwCA33//HS1atEBkZCT8/f0xf/58g64THh6O27dv45133kFmZiY6dOiAPXv2aKaTZ2Zmaq15M3HiROTn52PlypX4+9//Dk9PT/Tv3x8ffPCBKbdRJ3EaOBERUc1kwoT+nFmzZuH48eOIjY3Fs88+i3PnzqFFixb47rvvEB0djcTERHPEKom8vDx4eHggNzcX7u7u1g7HaIOWH8bvf97DhklP4S9tfKwdDhERkUUY8/ttUsvNrl27sHXrVvTs2VNrZlP79u2RnJxsyiXJAOUqNa5lFwJgyw0REVF1TBpzc+vWLfj46LYaFBQUVDuNm2ov404RSlVqKBVyNPZ0snY4REREjyWTkpunnnoKu3fv1ryvSGjWrVuHXr16SRMZ6agYb9PC2xVyOZNIIiIifUzqloqJicGzzz6LS5cuoby8HB9//DEuXryIkydP4vDhw1LHSA9wGjgREdGjmdRy07t3bxw/fhyFhYVo2bIl9u3bB19fX5w8eRLBwcFSx0gPaKaBc7wNERFRtUxquQGAjh07aqaCk2VoWm64xg0REVG1TE5uVCoVdu7cicuXL0Mmk6Fdu3YYMWKEzgrCJB12SxERET2aSZnIhQsXMGLECGRlZaFNmzYA7i/k5+3tje+++w4dO3aUNEgCcgpKcaewDADQghtmEhERVcukMTdTpkzBk08+iYyMDJw9exZnz55Feno6OnXqhFdffVXqGAkPW20aezrBycHOytEQERE9vkxqufn1119x5swZPPHEE5qyJ554Au+99x6eeuopyYKjh5JvcrwNERGRIUxquWnTpg3+/PNPnfKbN2+iVatWtQ6KdHG8DRERkWEMTm7y8vI0r6VLlyIyMhLbtm1DRkYGMjIysG3bNsyePbtebWJpScm3OA2ciIjIEAZ3S3l6emptrSCEwOjRozVlFftvDhs2DCqVSuIwibuBExERGcbg5ObQoUPmjINqUFymQnrOgw0zfdgtRUREVBODk5u+ffuaMw6qQertQqgF4OaogLer0trhEBERPdZqteJeYWEh0tLSUFpaqlXeqVOnWgVF2ip3SXHXdSIiopqZlNzcunULkyZNwg8//KD3OMfcSEszDZzjbYiIiB7JpKngs2fPxp07d3Dq1Ck4OTnhxx9/xBdffIHWrVvju+++kzrGeu/hnlIcb0NERPQoJrXcHDx4EN9++y2eeuopyOVyBAYGYuDAgXB3d0dMTAyGDh0qdZz1GqeBExERGc6klpuCggL4+PgAABo0aIBbt24BuL9T+NmzZ6WLjiCE4DRwIiIiI5i8QvFvv/0GAOjSpQs+/fRTXL9+HWvXroWfn5+kAdZ3WXnFKCxVQSGXIbChs7XDISIieuyZ1C01e/ZsZGZmAgCio6MRFhaGTZs2wcHBARs2bJAyvnov+eb9LqmmDZ1hb2dSLkpERFSvmJTcjBs3TvPnrl274tq1a/jf//6Hpk2bwsvLS7LgiCsTExERGatW69xUcHZ2Rrdu3aS4FFXB5IaIiMg4Bic3UVFRBl902bJlJgVDurgbOBERkXEMTm4SExMNqscVdKVVMeampQ9bboiIiAzBjTMfY/dKypGVVwwAaOnF5IaIiMgQnH7zGLv6oEvKy1UJD2d7K0dDRERUNzC5eYxd1axMzPE2REREhmJy8xh7uKcUu6SIiIgMxeTmMcZp4ERERMZjcvMY08yUYrcUERGRwUxObr788kuEhobC398fqampAIDY2Fh8++23kgVXn6nUAinZ3A2ciIjIWCYlN2vWrEFUVBSGDBmCu3fvQqVSAQA8PT0RGxsrZXz1VsadQpSq1FAq5Gjs6WTtcIiIiOoMk5KbTz75BOvWrcPChQthZ2enKQ8JCcH58+clC64+qxhv08LbFXI5F0YkIiIylEnJTUpKCrp27apTrlQqUVBQUOugiONtiIiITGVSctO8eXMkJSXplP/www9o3759bWMicKYUERGRqUzaFXzu3LmYMWMGiouLIYTA6dOnsXnzZsTExODzzz+XOsZ6iWvcEBERmcak5GbSpEkoLy/HvHnzUFhYiLFjx6Jx48b4+OOPMWbMGKljrJeSH6xO3MKL3VJERETGMCm5AYCpU6di6tSpyM7Ohlqtho+Pj5Rx1Ws5BaXIKSgFALTgmBsiIiKjmDTmZvHixUhOTgYAeHl5MbGRWMWGmY09neDsYHL+SUREVC+ZlNxs374dQUFB6NmzJ1auXIlbt25JHVe99nAaOFttiIiIjGVScnPu3DmcO3cO/fv3x7Jly9C4cWMMGTIEX331FQoLC6WOsd5JvsWViYmIiExl8vYLTz75JJYuXYqrV6/i0KFDaN68OWbPno1GjRpJGV+9lHyTM6WIiIhMJcnGmS4uLnBycoKDgwPKysqkuGS99nCNG3ZLERERGcvk5CYlJQXvvfce2rdvj5CQEJw9exaLFi1CVlaWlPHVOyXlKqTl3O/aa8VuKSIiIqOZNBWnV69eOH36NDp27IhJkyZp1rmh2ku9XQi1ANyUCni7Ka0dDhERUZ1jUnLTr18/fP7553jyySeljqfeqxhv08LHFTIZN8wkIiIylknJzdKlS6WOgx7geBsiIqLaMTi5iYqKwpIlS+Di4oKoqKga6y5btqzWgdVXnAZORERUOwYnN4mJiZqZUImJiWYLqL7jbuBERES1Y3Byc+jQIb1/JukIITRjblr5sFuKiIjIFCZNBX/llVeQn5+vU15QUIBXXnml1kHVV3/mlaCgVAU7uQxNGzC5ISIiMoVJyc0XX3yBoqIinfKioiJs3Lix1kHVVxVdUoENnOGgkGR9RSIionrHqNlSeXl5EEJACIH8/Hw4OjpqjqlUKuzZs4c7hNfCww0zOd6GiIjIVEYlN56enpDJZJDJZAgKCtI5LpPJsHjxYsmCq28e7inFLikiIiJTGdX3cejQIRw4cABCCGzbtg0HDx7UvI4dO4a0tDQsXLjQqABWr16N5s2bw9HREcHBwTh69GiN9UtKSrBw4UIEBgZCqVSiZcuWWL9+vVGf+bjiNHAiIqLaM6rlpm/fvgDu7yvVtGnTWq+gu3XrVsyePRurV69GaGgoPv30UwwePBiXLl1C06ZN9Z4zevRo/Pnnn4iLi0OrVq1w8+ZNlJeX1yqOxwWngRMREdWeTAghDKl47tw5dOjQAXK5HOfOnauxbqdOnQz68B49eqBbt25Ys2aNpqxdu3YYOXIkYmJidOr/+OOPGDNmDK5evYoGDRoY9BklJSUoKSnRvM/Ly0NAQAByc3Ph7u5u0DUs4V5JOTpE7wUAJL09EJ7ODlaOiIiI6PGRl5cHDw8Pg36/DW656dKlC7KysuDj44MuXbpAJpNBX14kk8mgUqkeeb3S0lIkJCRg/vz5WuWDBg3CiRMn9J7z3XffISQkBB9++CG+/PJLuLi4YPjw4ViyZAmcnJz0nhMTE1MnxgGlPOiS8nJ1YGJDRERUCwYnNykpKfD29tb8ubays7OhUqng6+urVe7r64usrCy951y9ehXHjh2Do6Mjdu7ciezsbEyfPh05OTnVjrtZsGCB1nYRFS03jxvOlCIiIpKGwclNYGCg3j/XVtVxO0KIasfyqNVqyGQybNq0CR4eHgDu72P1/PPPY9WqVXpbb5RKJZRKpWTxmstVbphJREQkCZMX8du9e7fm/bx58+Dp6YnevXsjNTXVoGt4eXnBzs5Op5Xm5s2bOq05Ffz8/NC4cWNNYgPcH6MjhEBGRoYJd/L4uJl/f1yQv4f+7jUiIiIyjEnJzdKlSzWtJCdPnsTKlSvx4YcfwsvLC3PmzDHoGg4ODggODsb+/fu1yvfv34/evXvrPSc0NBQ3btzAvXv3NGW///475HI5mjRpYsqtPDZyCkoBAE+4cLwNERFRbZiU3KSnp6NVq1YAgF27duH555/Hq6++ipiYmEeuU1NZVFQUPv/8c6xfvx6XL1/GnDlzkJaWhoiICAD3x8uMHz9eU3/s2LFo2LAhJk2ahEuXLuHIkSOYO3cuXnnllWoHFNcVdwrvJzcNmNwQERHVilHr3FRwdXXF7du30bRpU+zbt0/TWuPo6Kh3z6nqhIeH4/bt23jnnXeQmZmJDh06YM+ePZoxPZmZmUhLS9P63P3792PmzJkICQlBw4YNMXr0aLz77rum3MZjRdNyw5lSREREtWJScjNw4EBMmTIFXbt2xe+//46hQ4cCAC5evIhmzZoZda3p06dj+vTpeo9t2LBBp6xt27Y6XVm24E5hGQC23BAREdWWSd1Sq1atQq9evXDr1i1s374dDRs2BAAkJCTgxRdflDTA+kClFrhbWDHmxt7K0RAREdVtJrXceHp6YuXKlTrldWGxvMdRXlEZ1A/WQ2S3FBERUe2YlNwAwN27dxEXF4fLly9DJpOhXbt2mDx5stY0bTJMzoNWGzdHBeztTGpMIyIiogdM+iU9c+YMWrZsieXLlyMnJwfZ2dlYvnw5WrZsibNnz0odo827U8CZUkRERFIxqeVmzpw5GD58ONatWweF4v4lysvLMWXKFMyePRtHjhyRNEhbx5lSRERE0jEpuTlz5oxWYgMACoUC8+bNQ0hIiGTB1Rdc44aIiEg6JnVLubu7a60/UyE9PR1ubm61Dqq+ySm4Pw2cLTdERES1Z1JyEx4ejsmTJ2Pr1q1IT09HRkYGtmzZgilTpnAquAkettxwGjgREVFtmdQt9a9//QsymQzjx49HeXk5AMDe3h7Tpk3D+++/L2mA9QH3lSIiIpKOScmNg4MDPv74Y8TExCA5ORlCCLRq1QrOzs5Sx1cvaGZLsVuKiIio1ozqliosLMSMGTPQuHFj+Pj4YMqUKfDz80OnTp2Y2NRCTiFbboiIiKRiVHITHR2NDRs2YOjQoRgzZgz279+PadOmmSu2eoPr3BAREUnHqG6pHTt2IC4uDmPGjAEAvPTSSwgNDYVKpYKdnZ1ZAqwPuM4NERGRdIxquUlPT0efPn0077t37w6FQoEbN25IHlh9UaZSI6/4/qBsttwQERHVnlHJjUqlgoOD9g+wQqHQzJgi490tvL/GjUwGeDhxKjgREVFtGdUtJYTAxIkToVQqNWXFxcWIiIiAi4uLpmzHjh3SRWjj7j4YTOzpZA87uczK0RAREdV9RiU3EyZM0Cl76aWXJAumPuIaN0RERNIyKrmJj483Vxz1lmZ1Yg4mJiIikoRJ2y+QdDT7SrHlhoiISBIGJzcRERFIT083qO7WrVuxadMmk4OqT9hyQ0REJC2Du6W8vb3RoUMH9O7dG8OHD0dISAj8/f3h6OiIO3fu4NKlSzh27Bi2bNmCxo0b47PPPjNn3DaDY26IiIikZXBys2TJEsycORNxcXFYu3YtLly4oHXczc0NAwYMwOeff45BgwZJHqiterg6MaeBExERScGoAcU+Pj5YsGABFixYgLt37yI1NRVFRUXw8vJCy5YtIZNxKrOxNPtKsVuKiIhIEibtCg4Anp6e8PT0lDCU+on7ShEREUmLs6WsrKLlxpMtN0RERJJgcmNldx5MBWfLDRERkTSY3FhRSbkK90oebJrJlhsiIiJJMLmxoopNM+3kMrg5mjz8iYiIiCoxObkpLy/HTz/9hE8//RT5+fkAgBs3buDevXuSBWfrNGvcONtDzk0ziYiIJGFSc0FqaiqeffZZpKWloaSkBAMHDoSbmxs+/PBDFBcXY+3atVLHaZPuFHAaOBERkdRMarmZNWsWQkJCcOfOHTg5OWnKR40ahQMHDkgWnK3TrHHDwcRERESSManl5tixYzh+/DgcHLR/lAMDA3H9+nVJAqsPNGvcsOWGiIhIMia13KjVaqhUKp3yjIwMuLm51Tqo+oI7ghMREUnPpORm4MCBiI2N1byXyWS4d+8eoqOjMWTIEKlis3maHcG5rxQREZFkTOqWWr58Ofr164f27dujuLgYY8eOxZUrV+Dl5YXNmzdLHaPNyuGAYiIiIsmZlNz4+/sjKSkJW7ZsQUJCAtRqNSZPnoxx48ZpDTCmmj1suWFyQ0REJBWTkpsjR46gd+/emDRpEiZNmqQpLy8vx5EjR/D0009LFqAt07TcMLkhIiKSjEljbvr164ecnByd8tzcXPTr16/WQdUXnC1FREQkPZOSGyEEZDLdFXVv374NFxeXWgdVX+SwW4qIiEhyRnVLPffccwDuz46aOHEilEql5phKpcK5c+fQu3dvaSO0UUWlKhSXqQGwW4qIiEhKRiU3Hh4eAO633Li5uWkNHnZwcEDPnj0xdepUaSO0URWtNg52crg42Fk5GiIiItthVHITHx8PAGjWrBneeOMNdkHVgmZfKRd7vV18REREZBqTZktFR0dLHUe9wzVuiIiIzMOk5AYAtm3bhq+//hppaWkoLS3VOnb27NlaB2bruMYNERGReZg0W2rFihWYNGkSfHx8kJiYiO7du6Nhw4a4evUqBg8eLHWMNolr3BAREZmHScnN6tWr8dlnn2HlypVwcHDAvHnzsH//fkRGRiI3N1fqGG0S17ghIiIyD5OSm7S0NM2UbycnJ+Tn5wMAXn75Ze4tZaCK2VJsuSEiIpKWSclNo0aNcPv2bQBAYGAgTp06BQBISUmBEEK66GzYnYIyAEADZ+4ITkREJCWTkpv+/fvj+++/BwBMnjwZc+bMwcCBAxEeHo5Ro0ZJGqCt4pgbIiIi8zBpttRnn30Gtfr+6roRERFo0KABjh07hmHDhiEiIkLSAG0VZ0sRERGZh0nJjVwuh1z+sNFn9OjRGD16NADg+vXraNy4sTTR2TCuc0NERGQeJnVL6ZOVlYWZM2eiVatWUl3SZgkh2HJDRERkJkYlN3fv3sW4cePg7e0Nf39/rFixAmq1Gm+//TZatGiBU6dOYf369eaK1WbcKylHmer+wGu23BAREUnLqG6pf/zjHzhy5AgmTJiAH3/8EXPmzMGPP/6I4uJi/PDDD+jbt6+54rQpFTOlnOzt4MRNM4mIiCRlVHKze/duxMfHY8CAAZg+fTpatWqFoKAgxMbGmik825TDLikiIiKzMapb6saNG2jfvj0AoEWLFnB0dMSUKVPMEpgtq7wjOBEREUnLqORGrVbD3v7hD7KdnR1cXFxqFcDq1avRvHlzODo6Ijg4GEePHjXovOPHj0OhUKBLly61+nxr4EwpIiIi8zGqW0oIgYkTJ0KpVAIAiouLERERoZPg7Nixw6Drbd26FbNnz8bq1asRGhqKTz/9FIMHD8alS5fQtGnTas/Lzc3F+PHj8cwzz+DPP/805hYeC5wpRUREZD5GtdxMmDABPj4+8PDwgIeHB1566SX4+/tr3le8DLVs2TJMnjwZU6ZMQbt27RAbG4uAgACsWbOmxvNee+01jB07Fr169TIm/McGW26IiIjMx6iWm/j4eMk+uLS0FAkJCZg/f75W+aBBg3DixIkaY0hOTsa///1vvPvuu4/8nJKSEpSUlGje5+XlmR60RNhyQ0REZD6SLeJnrOzsbKhUKvj6+mqV+/r6IisrS+85V65cwfz587Fp0yYoFIblZTExMVqtSgEBAbWOvba4rxQREZH5WC25qSCTybTeCyF0ygBApVJh7NixWLx4MYKCggy+/oIFC5Cbm6t5paen1zrm2nq4IziTGyIiIqmZtLeUFLy8vGBnZ6fTSnPz5k2d1hwAyM/Px5kzZ5CYmIjXX38dwP3ZW0IIKBQK7Nu3D/3799c5T6lUagZAPy4q1rnhVHAiIiLpWa3lxsHBAcHBwdi/f79W+f79+9G7d2+d+u7u7jh//jySkpI0r4iICLRp0wZJSUno0aOHpUKvtYp1bjjmhoiISHpWa7kBgKioKLz88ssICQlBr1698NlnnyEtLQ0REREA7ncpXb9+HRs3boRcLkeHDh20zvfx8YGjo6NO+eNMra60aSa7pYiIiCRncsvNl19+idDQUPj7+yM1NRUAEBsbi2+//dbga4SHhyM2NhbvvPMOunTpgiNHjmDPnj0IDAwEAGRmZiItLc3UEB9LecVlUN/fMxOeTG6IiIgkZ1Jys2bNGkRFRWHIkCG4e/cuVCoVAMDT09PofaamT5+Oa9euoaSkBAkJCXj66ac1xzZs2ICff/652nMXLVqEpKQkE+7AeipmSrkpFXBQWH08NxERkc0x6df1k08+wbp167Bw4ULY2T3c1TokJATnz5+XLDhbdKeQ08CJiIjMyaTkJiUlBV27dtUpVyqVKCgoqHVQtiznwTRwJjdERETmYVJy07x5c73dQT/88INm13DSTzNTypnTwImIiMzBpNlSc+fOxYwZM1BcXAwhBE6fPo3NmzcjJiYGn3/+udQx2pQcdksRERGZlUnJzaRJk1BeXo558+ahsLAQY8eORePGjfHxxx9jzJgxUsdoUx623DC5ISIiMgeT17mZOnUqpk6diuzsbKjVavj4+EgZl83ivlJERETmZdKYm8WLFyM5ORnA/W0UmNgYjjuCExERmZdJyc327dsRFBSEnj17YuXKlbh165bUcdksTcsNu6WIiIjMwqTk5ty5czh37hz69++PZcuWoXHjxhgyZAi++uorFBYWSh2jTblT+GBHcLbcEBERmYXJS+Q++eSTWLp0Ka5evYpDhw6hefPmmD17Nho1aiRlfDYnR7NpJqeCExERmYMk6/+7uLjAyckJDg4OKCsrk+KSNqlcpUZu0YNF/NgtRUREZBYmJzcpKSl477330L59e4SEhODs2bNYtGgRsrKypIzPptx9kNjIZICHE1tuiIiIzMGkqeC9evXC6dOn0bFjR0yaNEmzzg3VrGKNGw8neyjsuGkmERGROZiU3PTr1w+ff/45nnzySanjsWk5XMCPiIjI7ExKbpYuXSp1HPUCdwQnIiIyP4OTm6ioKCxZsgQuLi6Iioqqse6yZctqHZgt0uwIzpYbIiIiszE4uUlMTNTMhEpMTDRbQLbs4erEHExMRERkLgYnN4cOHdL7ZzIc95UiIiIyP5Om7LzyyivIz8/XKS8oKMArr7xS66BsFXcEJyIiMj+TkpsvvvgCRUVFOuVFRUXYuHFjrYOyVTkcUExERGR2Rs2WysvLgxACQgjk5+fD0dFRc0ylUmHPnj3cIbwGbLkhIiIyP6OSG09PT8hkMshkMgQFBekcl8lkWLx4sWTB2Rq23BAREZmfUcnNoUOHIIRA//79sX37djRo0EBzzMHBAYGBgfD395c8SFtxp4A7ghMREZmbUclN3759AdzfV6pp06aQyWRmCcoWlZSrcK+kHAC7pYiIiMzJ4OTm3Llz6NChA+RyOXJzc3H+/Plq63bq1EmS4GzJ3cL7rTZ2chncHE1aGJqIiIgMYPCvbJcuXZCVlQUfHx906dIFMpkMQgidejKZDCqVStIgbYFmjRtne8jlbPEiIiIyF4OTm5SUFHh7e2v+TMa5o0lu2CVFRERkTgYnN4GBgXr/TIbhTCkiIiLLMHkRv927d2vez5s3D56enujduzdSU1MlC86WcI0bIiIiyzApuVm6dCmcnJwAACdPnsTKlSvx4YcfwsvLC3PmzJE0QFuh2RGcLTdERERmZdK0nfT0dLRq1QoAsGvXLjz//PN49dVXERoair/85S9SxmczuCM4ERGRZZjUcuPq6orbt28DAPbt24cBAwYAABwdHfXuOUWVZ0ux5YaIiMicTGq5GThwIKZMmYKuXbvi999/x9ChQwEAFy9eRLNmzaSMz2Y8bLlhckNERGROJrXcrFq1Cr169cKtW7ewfft2NGzYEACQkJCAF198UdIAbYWm5YbJDRERkVmZ1HLj6emJlStX6pRz08zqcbYUERGRZZi8D8Ddu3cRFxeHy5cvQyaToV27dpg8eTI8PDykjM9m5LBbioiIyCJM6pY6c+YMWrZsieXLlyMnJwfZ2dlYvnw5WrZsibNnz0odY51XVKpCcZkaALuliIiIzM2klps5c+Zg+PDhWLduHRSK+5coLy/HlClTMHv2bBw5ckTSIOu6ilYbBzs5XBzsrBwNERGRbTMpuTlz5oxWYgMACoUC8+bNQ0hIiGTB2QrNvlIu9pDJuGkmERGROZnULeXu7o60tDSd8vT0dLi5udU6KFvDNW6IiIgsx6TkJjw8HJMnT8bWrVuRnp6OjIwMbNmyBVOmTOFUcD24xg0REZHlmNQt9a9//QsymQzjx49HeXk5AMDe3h7Tpk3D+++/L2mAtoBr3BAREVmOScmNg4MDPv74Y8TExCA5ORlCCLRq1QrOzs5Sx2cTuMYNERGR5RjVLVVYWIgZM2agcePG8PHxwZQpU+Dn54dOnToxsalBxWwpttwQERGZn1HJTXR0NDZs2IChQ4dizJgx2L9/P6ZNm2au2GzGnYIyAEADZ+4ITkREZG5GdUvt2LEDcXFxGDNmDADgpZdeQmhoKFQqFezsuH5LdTjmhoiIyHKMarlJT09Hnz59NO+7d+8OhUKBGzduSB6YLeFsKSIiIssxKrlRqVRwcND+gVYoFJoZU6Qf17khIiKyHKO6pYQQmDhxIpRKpaasuLgYERERcHFx0ZTt2LFDugjrOCEEW26IiIgsyKjkZsKECTplL730kmTB2KJ7JeUoUwkAbLkhIiKyBKOSm/j4eHPFYbMqZko52svhxE0ziYiIzM6k7RfIcBVr3HABPyIiIstgcmNmdzgNnIiIyKKY3JhZxUwpDiYmIiKyDCY3ZlYxU4qDiYmIiCyDyY2ZseWGiIjIskxObr788kuEhobC398fqampAIDY2Fh8++23Rl1n9erVaN68ORwdHREcHIyjR49WW3fHjh0YOHAgvL294e7ujl69emHv3r2m3oJFsOWGiIjIskxKbtasWYOoqCgMGTIEd+/ehUqlAgB4enoiNjbW4Ots3boVs2fPxsKFC5GYmIg+ffpg8ODBSEtL01v/yJEjGDhwIPbs2YOEhAT069cPw4YNQ2Jioim3YREPW264aSYREZElyIQQwtiT2rdvj6VLl2LkyJFwc3PDr7/+ihYtWuDChQv4y1/+guzsbIOu06NHD3Tr1g1r1qzRlLVr1w4jR45ETEyMQdd48sknER4ejrffftug+nl5efDw8EBubi7c3d0NOqc2Rq89idPXcrBybFf8tZO/2T+PiIjIFhnz+21Sy01KSgq6du2qU65UKlFQUGDQNUpLS5GQkIBBgwZplQ8aNAgnTpww6BpqtRr5+flo0KBBtXVKSkqQl5en9bIkrnNDRERkWSYlN82bN0dSUpJO+Q8//ID27dsbdI3s7GyoVCr4+vpqlfv6+iIrK8uga3z00UcoKCjA6NGjq60TExMDDw8PzSsgIMCga0uF69wQERFZllHbL1SYO3cuZsyYgeLiYgghcPr0aWzevBkxMTH4/PPPjbqWTCbTei+E0CnTZ/PmzVi0aBG+/fZb+Pj4VFtvwYIFiIqK0rzPy8uzWIKjVnPTTCIiIkszKbmZNGkSysvLMW/ePBQWFmLs2LFo3LgxPv74Y4wZM8aga3h5ecHOzk6nlebmzZs6rTlVbd26FZMnT8Y333yDAQMG1FhXqVRq7WJuSfnF5VA/GNHk6cwBxURERJZg8lTwqVOnIjU1FTdv3kRWVhbS09MxefJkg893cHBAcHAw9u/fr1W+f/9+9O7du9rzNm/ejIkTJ+Krr77C0KFDTQ3fIirG27gqFVAquGkmERGRJZjUclOZl5eXyedGRUXh5ZdfRkhICHr16oXPPvsMaWlpiIiIAHC/S+n69evYuHEjgPuJzfjx4/Hxxx+jZ8+emlYfJycneHh41PZWJJejGW/DVhsiIiJLMSm5ad68eY3jYq5evWrQdcLDw3H79m288847yMzMRIcOHbBnzx4EBgYCADIzM7XWvPn0009RXl6OGTNmYMaMGZryCRMmYMOGDabcillVDCbmTCkiIiLLMSm5mT17ttb7srIyJCYm4scff8TcuXONutb06dMxffp0vceqJiw///yzUde2topuKc6UIiIishyTkptZs2bpLV+1ahXOnDlTq4BsCVtuiIiILE/SjTMHDx6M7du3S3nJOo0tN0RERJYnaXKzbdu2GlcLrm/ucEdwIiIiizOpW6pr165aA4qFEMjKysKtW7ewevVqyYKr63IKygBwR3AiIiJLMim5GTlypNZ7uVwOb29v/OUvf0Hbtm2liMsmPFydmFPBiYiILMXo5Ka8vBzNmjVDWFgYGjVqZI6YbIZmXym23BAREVmM0WNuFAoFpk2bhpKSEnPEY1NyuK8UERGRxZk0oLhHjx5ITEyUOhabUq5SI7fowZgbJjdEREQWY9KYm+nTp+Pvf/87MjIyEBwcDBcXF63jnTp1kiS4uiy3qAyiYtNMJ465ISIishSjkptXXnkFsbGxCA8PBwBERkZqjslkMgghIJPJoFKppI2yDqoYTOzhZA+FnaQz7omIiKgGRiU3X3zxBd5//32kpKSYKx6bUTENnONtiIiILMuo5EY86Gep2NiSqqfZEdyZXVJERESWZHR/SU27gdNDdzhTioiIyCqMHlAcFBT0yAQnJyfH5IBsRQ7XuCEiIrIKo5ObxYsXw8PDwxyx2BTuK0VERGQdRic3Y8aMgY+PjzlisSncEZyIiMg6jBpzw/E2htO03LBbioiIyKKMSm4qZkvRo+UUcnViIiIiazCqW0qtVpsrDpvzcMwNp4ITERFZEpfONRPuCE5ERGQdTG7MoLRcjfyScgCcLUVERGRpTG7M4O6DmVJyGeDuyG4pIiIiS2JyYwaaaeDODpDLOcOMiIjIkpjcmIFmdWJ2SREREVkckxszuFOxIzgHExMREVkckxszeLg6McfbEBERWRqTGzPgvlJERETWw+TGDLgjOBERkfUwuTGDO4VsuSEiIrIWJjdmwJYbIiIi62FyYwZsuSEiIrIeJjdmUDEVnOvcEBERWR6TGzOo6JbiOjdERESWx+RGYkWlKhSVqQBwnRsiIiJrYHIjsYrxNvZ2MrgqFVaOhoiIqP5hciOxyjOlZDJumklERGRpTG4kxplSRERE1sXkRmJc44aIiMi6mNxIjPtKERERWReTG4nlFFasccOZUkRERNbA5EZid7jGDRERkVUxuZFYzoMBxVydmIiIyDqY3EiMY26IiIisi8mNxDhbioiIyLq4hK7EuM4N1QUqlQplZWXWDoOISIu9vT3s7OxqfR0mNxISQnBHcHrs3bt3DxkZGRBCWDsUIiItMpkMTZo0gaura62uw+RGQgWlKpSq1AA4W4oeTyqVChkZGXB2doa3tze3CCGix4YQArdu3UJGRgZat25dqxYcJjcSqhhM7Ggvh5ND7ZvViKRWVlYGIQS8vb3h5ORk7XCIiLR4e3vj2rVrKCsrq1VywwHFEsrhGjdUR7DFhogeR1L928TkRkJc44aIiMj6mNxIiGvcEBERWR+TGwlxjRsiIiLrY3IjIa5xQ1T3NWvWDLGxsZLXtQWWut9r165BJpMhKSlJU3b8+HF07NgR9vb2GDlyJH7++WfIZDLcvXvXLDHcvn0bPj4+uHbtmlmuXx+dP38eTZo0QUFBgdk/i8mNhHIq1rhhyw2RpCZOnAiZTAaZTAZ7e3v4+vpi4MCBWL9+PdRqtaSf9csvv+DVV1+VvK4hKu6xutfEiRMl+6yq8vLysHDhQrRt2xaOjo5o1KgRBgwYgB07dlh8TaSAgABkZmaiQ4cOmrKoqCh06dIFKSkp2LBhA3r37o3MzEx4eHiYJYaYmBgMGzYMzZo10zk2aNAg2NnZ4dSpUzrH/vKXv2D27Nk65bt27dIZLFtaWooPP/wQnTt3hrOzM7y8vBAaGor4+HizLrKZlpaGYcOGwcXFBV5eXoiMjERpaWmN5yQnJ2PUqFHw9vaGu7s7Ro8ejT///FOrzvDhw9G0aVM4OjrCz88PL7/8Mm7cuKE53rFjR3Tv3h3Lly83y31VxqngEno45sbeypEQGUYIgaIylVU+28nezqiZEc8++yzi4+OhUqnw559/4scff8SsWbOwbds2fPfdd1AopPnnzNvb2yx1DZGZman589atW/H222/jt99+05RVnb5fVlYGe/va/3tz9+5d/N///R9yc3Px7rvv4qmnnoJCocDhw4cxb9489O/fH56enrX+HEPZ2dmhUaNGWmXJycmIiIhAkyZNNGVV6xirtLQUDg66/zFaVFSEuLg47NmzR+dYWloaTp48iddffx1xcXHo2bOnyZ8dFhaGX3/9FUuWLEFoaCjc3d1x6tQp/Otf/0LXrl3RpUsXk65dE5VKhaFDh8Lb2xvHjh3D7du3MWHCBAgh8Mknn+g9p6CgAIMGDULnzp1x8OBBAMBbb72FYcOG4dSpU5DL77eT9OvXD//4xz/g5+eH69ev44033sDzzz+PEydOaK41adIkREREYMGCBZKsRFwtUc/k5uYKACI3N1fya7+w9oQIfPM/4vtfr0t+bSIpFBUViUuXLomioiIhhBAFJWUi8M3/WOVVUFJmcNwTJkwQI0aM0Ck/cOCAACDWrVunKbt7966YOnWq8Pb2Fm5ubqJfv34iKSlJ67xvv/1WBAcHC6VSKRo2bChGjRqlORYYGCiWL1+ueR8dHS0CAgKEg4OD8PPzEzNnzqy2bmpqqhg+fLhwcXERbm5u4oUXXhBZWVla1+rcubPYuHGjCAwMFO7u7iI8PFzk5eXp3Ft8fLzw8PDQvE9JSREAxNatW0Xfvn2FUqkU69evF0IIsX79etG2bVuhVCpFmzZtxKpVq7SulZGRIUaPHi08PT1FgwYNxPDhw0VKSorm+LRp04SLi4u4fl333678/HxRVlam934/+ugj0aFDB+Hs7CyaNGkipk2bJvLz8zXHr127Jv76178KT09P4ezsLNq3by92794thBAiJydHjB07Vnh5eQlHR0fRqlUrzf1U3GtiYqLmz5Vf8fHx4tChQwKAuHPnjubzjh8/Lvr06SMcHR1FkyZNxMyZM8W9e/e0vq8lS5aICRMmCHd3dzF+/Hid+xVCiO3btwsvLy+9xxYtWiTGjBkjLl++LNzc3LSuL4QQffv2FbNmzdI5b+fOnaLyT+4HH3wg5HK5OHv2rE7d0tJSnetKZc+ePUIul2t915s3bxZKpbLa38W9e/cKuVyudTwnJ0cAEPv376/2s7799lshk8lEaWmppqykpEQolUpx4MABvedU/TeqMmN+v63eLbV69Wo0b94cjo6OCA4OxtGjR2usf/jwYQQHB8PR0REtWrTA2rVrLRTpo93hOjdEFtW/f3907twZO3bsAHC/JWro0KHIysrCnj17kJCQgG7duuGZZ55BTk4OAGD37t147rnnMHToUCQmJuLAgQMICQnRe/1t27Zh+fLl+PTTT3HlyhXs2rULHTt21FtXCIGRI0ciJycHhw8fxv79+5GcnIzw8HCtesnJydi1axf+85//4D//+Q8OHz6M999/3+B7fvPNNxEZGYnLly8jLCwM69atw8KFC/Hee+/h8uXLWLp0Kd566y188cUXAIDCwkL069cPrq6uOHLkCI4dOwZXV1c8++yzKC0thVqtxpYtWzBu3Dj4+/vrfJ6rq2u1rWJyuRwrVqzAhQsX8MUXX+DgwYOYN2+e5viMGTNQUlKCI0eO4Pz58/jggw80y+q/9dZbuHTpEn744QdcvnwZa9asgZeXl85nVHRRubu7IzY2FpmZmTrPFLg/niMsLAzPPfcczp07h61bt+LYsWN4/fXXter985//RIcOHZCQkIC33npL730dOXJE798JIQTi4+Px0ksvoW3btggKCsLXX3+t9xqPsmnTJgwYMABdu3bVOWZvbw8XFxe956WlpcHV1bXGV0RERLWfe/LkSXTo0EHruw4LC0NJSQkSEhL0nlNSUgKZTAalUqkpc3R0hFwux7Fjx/Sek5OTg02bNqF3795arYsODg7o3LnzI3/ra+2R6Y8ZbdmyRdjb24t169aJS5cuiVmzZgkXFxeRmpqqt/7Vq1eFs7OzmDVrlrh06ZJYt26dsLe3F9u2bTP4M83ZchO8ZJ8IfPM/4tIN6a9NJIWq/1WkVqtFQUmZVV5qtdrguKtruRFCiPDwcNGuXTshxP2WHHd3d1FcXKxVp2XLluLTTz8VQgjRq1cvMW7cuGo/q3LrxEcffSSCgoK0/suzurr79u0TdnZ2Ii0tTXP84sWLAoA4ffq0EOJ+y42zs7NWS83cuXNFjx49dK5dXctNbGysVr2AgADx1VdfaZUtWbJE9OrVSwghRFxcnGjTpo3W8y4pKRFOTk5i79694s8//xQAxLJly6p9JvruV5+vv/5aNGzYUPO+Y8eOYtGiRXrrDhs2TEyaNEnvscotNxU8PDxEfHy85n3VlpuXX35ZvPrqq1rXOXr0qJDL5Zq/74GBgWLkyJE13OF9I0aMEK+88opO+b59+4S3t7emJWv58uUiNDRUq46hLTdOTk4iMjLykbFUVVZWJq5cuVLj688//6z2/KlTp4qBAwfqlDs4OOj8Papw8+ZN4e7uLmbNmiUKCgrEvXv3xIwZMwQAnWc+b9484ezsLACInj17iuzsbJ3rjRo1SkycOFHvZ9lEy82yZcswefJkTJkyBe3atUNsbCwCAgKwZs0avfXXrl2Lpk2bIjY2Fu3atcOUKVPwyiuv4F//+peFI9elVgvcKbw/AIyzpaiukMlkcHZQWOUl1UqkQgjNtRISEnDv3j00bNhQ679kU1JSkJycDABISkrCM888Y9C1X3jhBRQVFaFFixaYOnUqdu7cifLycr11L1++jICAAAQEBGjK2rdvD09PT1y+fFlT1qxZM7i5uWne+/n54ebNmwbfb+UWhVu3biE9PR2TJ0/Wut93331Xc78JCQn4448/4ObmpjneoEEDFBcXIzk5WTNY2JTv49ChQxg4cCAaN24MNzc3jB8/Hrdv39bMhomMjMS7776L0NBQREdH49y5c5pzp02bhi1btqBLly6YN2+e1rgMUyQkJGDDhg1azyEsLAxqtRopKSmaetW10lVWVFQER0dHnfK4uDiEh4drWrJefPFF/Pe//9UaF2Woyn9vjaFQKNCqVasaXz4+PjVeQ9/n1hSPt7c3vvnmG3z//fdwdXWFh4cHcnNz0a1bN51xM3PnzkViYiL27dsHOzs7jB8/XmdAupOTEwoLC428c+NYbUBxaWkpEhISMH/+fK3yQYMGVfuX/OTJkxg0aJBWWVhYGOLi4qodWFdSUoKSkhLN+7y8PAmi15VfXA6V+v4X6OnMAcVElnL58mU0b94cAKBWq+Hn54eff/5Zp17FgFhj9tQKCAjAb7/9hv379+Onn37C9OnT8c9//hOHDx/W+femuh+HquVVz5PJZEbN+KrcXVFx3rp169CjRw+tehU/Omq1GsHBwdi0aZPOtby9veHm5oYnnnhCKwEzRGpqKoYMGYKIiAgsWbIEDRo0wLFjxzB58mTNTJ8pU6YgLCwMu3fvxr59+xATE4OPPvoIM2fOxODBg5Gamordu3fjp59+wjPPPIMZM2aY/B+rarUar732GiIjI3WONW3aVPPn6rp7KvPy8sKdO3e0ynJycrBr1y6UlZVp/Qe4SqXC+vXr8cEHHwAA3N3dkZubq3PNu3fvwt3dXfM+KCjI6GcO3O+Wat++fY11XnrppWqHbDRq1Aj//e9/tcru3LmDsrIy+Pr6VnvNQYMGITk5GdnZ2VAoFPD09ESjRo00/9+r4OXlBS8vLwQFBaFdu3YICAjAqVOn0KtXL02dnJwctGzZ8lG3WitWS26ys7OhUql0Hqavry+ysrL0npOVlaW3fnl5ObKzs+Hn56dzTkxMDBYvXixd4NXIKy6Dh5M91GoBpYKbZhJZwsGDB3H+/HnMmTMHANCtWzdkZWVBoVDoncILAJ06dcKBAwcwadIkgz7DyckJw4cPx/DhwzFjxgy0bdsW58+fR7du3bTqtW/fHmlpaUhPT9e03ly6dAm5ublo166d6TdZA19fXzRu3BhXr17FuHHj9Nbp1q0btm7dCh8fH60f18rCw8Px5ZdfIjo6WmfcTUFBAZRKpc64mzNnzqC8vBwfffSRZraMvvEnAQEBiIiI0MyQWbduHWbOnAngfnI1ceJETJw4EX369MHcuXNNTm66deuGixcvolWrViadX1nXrl3x73//W6ts06ZNaNKkCXbt2qVVfuDAAcTExOC9996DQqFA27Zt8cMPP+hc85dffkGbNm0078eOHYt//OMfSExM1Bl3U15ejpKSEr2JmL+/v9b6P/pU9z0DQK9evfDee+8hMzNT85u5b98+KJVKBAcH13hdAJpxUQcPHsTNmzcxfPjwautWtNhUbmAAgAsXLuD5559/5GfVhtUHFFf9L51HNdXpq6+vvMKCBQuQm5ureaWnp9cyYv0CGjjj1+hBSHx7oFmuT1TflZSUICsrC9evX8fZs2exdOlSjBgxAn/9618xfvx4AMCAAQPQq1cvjBw5Env37sW1a9dw4sQJ/L//9/9w5swZAEB0dDQ2b96M6OhoXL58GefPn8eHH36o9zM3bNiAuLg4XLhwAVevXsWXX34JJycnBAYG6tQdMGAAOnXqhHHjxuHs2bM4ffo0xo8fj759+xrUFWKqRYsWISYmBh9//DF+//13nD9/HvHx8Vi2bBkAYNy4cfDy8sKIESNw9OhRpKSk4PDhw5g1axYyMjIAAEuXLkVAQAB69OiBjRs34tKlS7hy5QrWr1+PLl264N69ezqf27JlS5SXl+OTTz7RPJuqrQWzZ8/G3r17kZKSgrNnz+LgwYOaRO/tt9/Gt99+iz/++AMXL17Ef/7zn1olgW+++SZOnjyJGTNmICkpCVeuXMF3332nSaSMERYWhosXL2q13sTFxeH5559Hhw4dtF6vvPIK7t69i927dwMApk+fjuTkZMyYMQO//vorfv/9d6xatQpxcXGYO3eu1rMJDQ3FM888g1WrVuHXX3/F1atX8fXXX6NHjx64cuWK3thq2y01aNAgtG/fHi+//LJmQP0bb7yBqVOnapKi69evo23btjh9+rTmvPj4eJw6dQrJycn497//jRdeeAFz5szRJGynT5/GypUrkZSUhNTUVBw6dAhjx45Fy5YttVptrl27huvXr2PAgAFGfy9GeeSoHDMpKSkRdnZ2YseOHVrlkZGR4umnn9Z7Tp8+fXQGYO3YsUMoFIpqB/xVZc4BxUSPu5oG6z3OJkyYoJkGrFAohLe3txgwYIBYv369UKlUWnXz8vLEzJkzhb+/v7C3txcBAQFi3LhxWgN9t2/fLrp06SIcHByEl5eXeO655zTHKg+a3blzp+jRo4dwd3cXLi4uomfPnuKnn37SW1cIw6eCV7Z8+XIRGBioc8/VDSiuPMi2wqZNmzT388QTT4inn35a69/WzMxMMX78eOHl5SWUSqVo0aKFmDp1qta/g3fv3hXz588XrVu3Fg4ODsLX11cMGDBA7Ny5UzMYuer9Llu2TPj5+QknJycRFhYmNm7cqDXI9/XXXxctW7YUSqVSeHt7i5dfflkzwHTJkiWiXbt2wsnJSTRo0ECMGDFCXL16tdp7fdSAYiGEOH36tBg4cKBwdXUVLi4uolOnTuK9997THH/UgOjKevbsKdauXSuEEOLMmTNaA8OrGjZsmBg2bJjm/ZkzZ0RYWJjw8fER7u7uIiQkRGzevFnnvOLiYhETEyM6duwoHB0dRYMGDURoaKjYsGGDZtCyOaSmpoqhQ4dqnv3rr7+uNQi/4vkfOnRIU/bmm28KX19fYW9vL1q3bi0++ugjrUHq586dE/369RMNGjQQSqVSNGvWTERERIiMjAytz166dKkICwurNjapBhTLhLDw0pOV9OjRA8HBwVi9erWmrH379hgxYgRiYmJ06r/55pv4/vvvcenSJU3ZtGnTkJSUhJMnTxr0mXl5eZrBUDU13RHZouLiYqSkpGiWXyAi/fbs2YM33ngDFy5c0HS7Ue2UlJSgdevW2Lx5M0JDQ/XWqenfKGN+v636jUVFReHzzz/H+vXrcfnyZcyZMwdpaWmaOfoLFizQNDcDQEREBFJTUxEVFYXLly9j/fr1iIuLwxtvvGGtWyAiIhs0ZMgQvPbaa7h+/bq1Q7EZqampWLhwYbWJjZSsuv1CeHg4bt++jXfeeUezj8iePXs0/dmZmZlIS0vT1G/evDn27NmDOXPmYNWqVfD398eKFSvwt7/9zVq3QERENmrWrFnWDsGmBAUFISgoyCKfZdVuKWtgtxTVZ+yWIqLHmU10SxGRddSz/6YhojpCqn+bmNwQ1SMVC7uVlpZaORIiIl0V/zbVdsdwq465ISLLUigUcHZ2xq1bt2Bvb89ZIET02FCr1bh16xacnZ2r3azVUExuiOoRmUwGPz8/pKSkIDU11drhEBFpkcvlaNq0aa33nmNyQ1TPODg4oHXr1uyaIqLHjoODgyQtykxuiOohuVzO2VJEZLPY4U5EREQ2hckNERER2RQmN0RERGRT6t2Ym4oFgvLy8qwcCRERERmq4nfbkIX+6l1yk5+fDwAICAiwciRERERkrPz8fHh4eNRYp97tLaVWq3Hjxg24ubnVeh59VXl5eQgICEB6ejr3rTIjPmfL4HO2DD5ny+GztgxzPWchBPLz8+Hv7//I6eL1ruVGLpejSZMmZv0Md3d3/h/HAvicLYPP2TL4nC2Hz9oyzPGcH9ViU4EDiomIiMimMLkhIiIim8LkRkJKpRLR0dFQKpXWDsWm8TlbBp+zZfA5Ww6ftWU8Ds+53g0oJiIiItvGlhsiIiKyKUxuiIiIyKYwuSEiIiKbwuSGiIiIbAqTGyOtXr0azZs3h6OjI4KDg3H06NEa6x8+fBjBwcFwdHREixYtsHbtWgtFWrcZ85x37NiBgQMHwtvbG+7u7ujVqxf27t1rwWjrLmP/Plc4fvw4FAoFunTpYt4AbYSxz7mkpAQLFy5EYGAglEolWrZsifXr11so2rrL2Oe8adMmdO7cGc7OzvDz88OkSZNw+/ZtC0VbNx05cgTDhg2Dv78/ZDIZdu3a9chzrPI7KMhgW7ZsEfb29mLdunXi0qVLYtasWcLFxUWkpqbqrX/16lXh7OwsZs2aJS5duiTWrVsn7O3txbZt2ywced1i7HOeNWuW+OCDD8Tp06fF77//LhYsWCDs7e3F2bNnLRx53WLsc65w9+5d0aJFCzFo0CDRuXNnywRbh5nynIcPHy569Ogh9u/fL1JSUsR///tfcfz4cQtGXfcY+5yPHj0q5HK5+Pjjj8XVq1fF0aNHxZNPPilGjhxp4cjrlj179oiFCxeK7du3CwBi586dNda31u8gkxsjdO/eXURERGiVtW3bVsyfP19v/Xnz5om2bdtqlb322muiZ8+eZovRFhj7nPVp3769WLx4sdSh2RRTn3N4eLj4f//v/4no6GgmNwYw9jn/8MMPwsPDQ9y+fdsS4dkMY5/zP//5T9GiRQutshUrVogmTZqYLUZbY0hyY63fQXZLGai0tBQJCQkYNGiQVvmgQYNw4sQJveecPHlSp35YWBjOnDmDsrIys8Val5nynKtSq9XIz89HgwYNzBGiTTD1OcfHxyM5ORnR0dHmDtEmmPKcv/vuO4SEhODDDz9E48aNERQUhDfeeANFRUWWCLlOMuU59+7dGxkZGdizZw+EEPjzzz+xbds2DB061BIh1xvW+h2sdxtnmio7OxsqlQq+vr5a5b6+vsjKytJ7TlZWlt765eXlyM7Ohp+fn9niratMec5VffTRRygoKMDo0aPNEaJNMOU5X7lyBfPnz8fRo0ehUPCfDkOY8pyvXr2KY8eOwdHRETt37kR2djamT5+OnJwcjruphinPuXfv3ti0aRPCw8NRXFyM8vJyDB8+HJ988oklQq43rPU7yJYbI8lkMq33QgidskfV11dO2ox9zhU2b96MRYsWYevWrfDx8TFXeDbD0OesUqkwduxYLF68GEFBQZYKz2YY8/dZrVZDJpNh06ZN6N69O4YMGYJly5Zhw4YNbL15BGOe86VLlxAZGYm3334bCQkJ+PHHH5GSkoKIiAhLhFqvWON3kP/5ZSAvLy/Y2dnp/FfAzZs3dbLSCo0aNdJbX6FQoGHDhmaLtS4z5TlX2Lp1KyZPnoxvvvkGAwYMMGeYdZ6xzzk/Px9nzpxBYmIiXn/9dQD3f4SFEFAoFNi3bx/69+9vkdjrElP+Pvv5+aFx48bw8PDQlLVr1w5CCGRkZKB169ZmjbkuMuU5x8TEIDQ0FHPnzgUAdOrUCS4uLujTpw/effddtqxLxFq/g2y5MZCDgwOCg4Oxf/9+rfL9+/ejd+/ees/p1auXTv19+/YhJCQE9vb2Zou1LjPlOQP3W2wmTpyIr776in3mBjD2Obu7u+P8+fNISkrSvCIiItCmTRskJSWhR48elgq9TjHl73NoaChu3LiBe/fuacp+//13yOVyNGnSxKzx1lWmPOfCwkLI5do/gXZ2dgAetixQ7Vntd9Csw5VtTMVUw7i4OHHp0iUxe/Zs4eLiIq5duyaEEGL+/Pni5Zdf1tSvmAI3Z84ccenSJREXF8ep4AYw9jl/9dVXQqFQiFWrVonMzEzN6+7du9a6hTrB2OdcFWdLGcbY55yfny+aNGkinn/+eXHx4kVx+PBh0bp1azFlyhRr3UKdYOxzjo+PFwqFQqxevVokJyeLY8eOiZCQENG9e3dr3UKdkJ+fLxITE0ViYqIAIJYtWyYSExM1U+4fl99BJjdGWrVqlQgMDBQODg6iW7du4vDhw5pjEyZMEH379tWq//PPP4uuXbsKBwcH0axZM7FmzRoLR1w3GfOc+/btKwDovCZMmGD5wOsYY/8+V8bkxnDGPufLly+LAQMGCCcnJ9GkSRMRFRUlCgsLLRx13WPsc16xYoVo3769cHJyEn5+fmLcuHEiIyPDwlHXLYcOHarx39vH5XdQJgTb34iIiMh2cMwNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDZEeGzZsgKenp7XDMFmzZs0QGxtbY51FixahS5cuFonncXPw4EG0bdsWarXaIp/3uHwfpnyGTCbDrl27avW5EydOxMiRI2t1DX2eeuop7NixQ/LrUt3H5IZs1sSJEyGTyXRef/zxh7VDw4YNG7Ri8vPzw+jRo5GSkiLJ9X/55Re8+uqrmvf6fqDeeOMNHDhwQJLPq07V+/T19cWwYcNw8eJFo68jZbI5b948LFy4ULNxYn35PuqSI0eOYNiwYfD39682wXrrrbcwf/58iyWpVHcwuSGb9uyzzyIzM1Pr1bx5c2uHBeD+TtuZmZm4ceMGvvrqKyQlJWH48OFQqVS1vra3tzecnZ1rrOPq6oqGDRvW+rMepfJ97t69GwUFBRg6dChKS0vN/tn6nDhxAleuXMELL7xQbZy2/H3UFQUFBejcuTNWrlxZbZ2hQ4ciNzcXe/futWBkVBcwuSGbplQq0ahRI62XnZ0dli1bho4dO8LFxQUBAQGYPn067t27V+11fv31V/Tr1w9ubm5wd3dHcHAwzpw5ozl+4sQJPP3003ByckJAQAAiIyNRUFBQY2wymQyNGjWCn58f+vXrh+joaFy4cEHTsrRmzRq0bNkSDg4OaNOmDb788kut8xctWoSmTZtCqVTC398fkZGRmmOVu0GaNWsGABg1ahRkMpnmfeUuir1798LR0RF3797V+ozIyEj07dtXsvsMCQnBnDlzkJqait9++01Tp6bv4+eff8akSZOQm5uraVlZtGgRAKC0tBTz5s1D48aN4eLigh49euDnn3+uMZ4tW7Zg0KBBcHR0rDZOW/4+Kvvll18wcOBAeHl5wcPDA3379sXZs2d16mVmZmLw4MFwcnJC8+bN8c0332gdv379OsLDw/HEE0+gYcOGGDFiBK5du2ZwHPoMHjwY7777Lp577rlq69jZ2WHIkCHYvHlzrT6LbA+TG6qX5HI5VqxYgQsXLuCLL77AwYMHMW/evGrrjxs3Dk2aNMEvv/yChIQEzJ8/H/b29gCA8+fPIywsDM899xzOnTuHrVu34tixY3j99deNisnJyQkAUFZWhp07d2LWrFn4+9//jgsXLuC1117DpEmTcOjQIQDAtm3bsHz5cnz66ae4cuUKdu3ahY4dO+q97i+//AIAiI+PR2ZmpuZ9ZQMGDICnpye2b9+uKVOpVPj6668xbtw4ye7z7t27+OqrrwBA8/yAmr+P3r17IzY2VtOykpmZiTfeeAMAMGnSJBw/fhxbtmzBuXPn8MILL+DZZ5/FlStXqo3hyJEjCAkJeWSs9eH7yM/Px4QJE3D06FGcOnUKrVu3xpAhQ5Cfn69V76233sLf/vY3/Prrr3jppZfw4osv4vLlywCAwsJC9OvXD66urjhy5AiOHTsGV1dXPPvss9W2zlV0A0qhe/fuOHr0qCTXIhti9n3HiaxkwoQJws7OTri4uGhezz//vN66X3/9tWjYsKHmfXx8vPDw8NC8d3NzExs2bNB77ssvvyxeffVVrbKjR48KuVwuioqK9J5T9frp6emiZ8+eokmTJqKkpET07t1bTJ06VeucF154QQwZMkQIIcRHH30kgoKCRGlpqd7rBwYGiuXLl2veAxA7d+7UqhMdHS06d+6seR8ZGSn69++veb93717h4OAgcnJyanWfAISLi4twdnYWAAQAMXz4cL31Kzzq+xBCiD/++EPIZDJx/fp1rfJnnnlGLFiwoNpre3h4iI0bN+rEWR++j6qfUVV5eblwc3MT33//vVasERERWvV69Oghpk2bJoQQIi4uTrRp00ao1WrN8ZKSEuHk5CT27t0rhLj//8URI0Zoju/YsUO0adOm2jiq0ve8Knz77bdCLpcLlUpl8PXI9rHlhmxav379kJSUpHmtWLECAHDo0CEMHDgQjRs3hpubG8aPH4/bt29X26QfFRWFKVOmYMCAAXj//feRnJysOZaQkIANGzbA1dVV8woLC4Nara5xQGpubi5cXV01XTGlpaXYsWMHHBwccPnyZYSGhmrVDw0N1fzX8gsvvICioiK0aNECU6dOxc6dO1FeXl6rZzVu3Dj8/PPPuHHjBgBg06ZNGDJkCJ544ola3aebmxuSkpKQkJCAtWvXomXLlli7dq1WHWO/DwA4e/YshBAICgrSiunw4cNa309VRUVFOl1SQP35Piq7efMmIiIiEBQUBA8PD3h4eODevXtIS0vTqterVy+d9xX3npCQgD/++ANubm6aOBo0aIDi4uJqv4dRo0bhf//7n1HPozpOTk5Qq9UoKSmR5HpkGxTWDoDInFxcXNCqVSutstTUVAwZMgQRERFYsmQJGjRogGPHjmHy5MkoKyvTe51FixZh7Nix2L17N3744QdER0djy5YtGDVqFNRqNV577TWtMRYVmjZtWm1sbm5uOHv2LORyOXx9feHi4qJ1vGqzvRBCUxYQEIDffvsN+/fvx08//YTp06fjn//8Jw4fPqzV3WOM7t27o2XLltiyZQumTZuGnTt3Ij4+XnPc1PuUy+Wa76Bt27bIyspCeHg4jhw5AsC076MiHjs7OyQkJMDOzk7rmKura7XneXl54c6dOzrl9eX7qGzixIm4desWYmNjERgYCKVSiV69ehk02Lvi3tVqNYKDg7Fp0yadOt7e3gbFURs5OTlwdnbWdCMSAUxuqB46c+YMysvL8dFHH2mmAn/99dePPC8oKAhBQUGYM2cOXnzxRcTHx2PUqFHo1q0bLl68qJNEPUrlH/2q2rVrh2PHjmH8+PGashMnTqBdu3aa905OThg+fDiGDx+OGTNmoG3btjh//jy6deumcz17e3uDZv2MHTsWmzZtQpMmTSCXyzF06FDNMVPvs6o5c+Zg2bJl2LlzJ0aNGmXQ9+Hg4KATf9euXaFSqXDz5k306dPH4M/v2rUrLl26pFNeH7+Po0ePYvXq1RgyZAgAID09HdnZ2Tr1Tp06pXXvp06dQteuXTVxbN26FT4+PnB3dzc5FlNduHBB7zOm+o3dUlTvtGzZEuXl5fjkk09w9epVfPnllzrdJJUVFRXh9ddfx88//4zU1FQcP34cv/zyi+aH7c0338TJkycxY8YMJCUl4cqVK/juu+8wc+ZMk2OcO3cuNmzYgLVr1+LKlStYtmwZduzYoRlIu2HDBsTFxeHChQuae3ByckJgYKDe6zVr1gwHDhxAVlaW3laLCuPGjcPZs2fx3nvv4fnnn9fqvpHqPt3d3TFlyhRER0dDCGHQ99GsWTPcu3cPBw4cQHZ2NgoLCxEUFIRx48Zh/Pjx2LFjB1JSUvDLL7/ggw8+wJ49e6r9/LCwMBw7dsyomG31+2jVqhW+/PJLXL58Gf/9738xbtw4vS0g33zzDdavX4/ff/8d0dHROH36tGbg8rhx4+Dl5YURI0bg6NGjSElJweHDhzFr1ixkZGTo/dydO3eibdu2NcZ27949TXcyAKSkpCApKUmny+zo0aMYNGiQwfdM9YR1h/wQmU/VQYyVLVu2TPj5+QknJycRFhYmNm7cKACIO3fuCCG0B5iWlJSIMWPGiICAAOHg4CD8/f3F66+/rjVo8/Tp02LgwIHC1dVVuLi4iE6dOon33nuv2tj0DZCtavXq1aJFixbC3t5eBAUFaQ2C3blzp+jRo4dwd3cXLi4uomfPnuKnn37SHK86gPW7774TrVq1EgqFQgQGBgohqh9c+tRTTwkA4uDBgzrHpLrP1NRUoVAoxNatW4UQj/4+hBAiIiJCNGzYUAAQ0dHRQgghSktLxdtvvy2aNWsm7O3tRaNGjcSoUaPEuXPnqo0pJydHODk5if/973+PjLMyW/g+qn7G2bNnRUhIiFAqlaJ169bim2++0Tv4edWqVWLgwIFCqVSKwMBAsXnzZq3rZmZmivHjxwsvLy+hVCpFixYtxNSpU0Vubq4QQvf/ixUDzWty6NAhzQD0yq8JEyZo6mRkZAh7e3uRnp5e47Wo/pEJIYR10ioiIuuYN28ecnNz8emnn1o7FKqFuXPnIjc3F5999pm1Q6HHDLuliKjeWbhwIQIDAyVZfZisx8fHB0uWLLF2GPQYYssNERER2RS23BAREZFNYXJDRERENoXJDREREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTfn/jzmE2UD3fSAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display = RocCurveDisplay.from_estimator(mdl, X_test, y_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "384b3609-330d-400d-a53a-e98885bd1566", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "71b6fedb-87d0-4b24-924a-17a0b0f97337", "metadata": {}, "source": [ "## Random Forest\n" ] }, { "cell_type": "code", "execution_count": 55, "id": "61aec462-a4c1-4093-b2be-b5b16d537c74", "metadata": {}, "outputs": [], "source": [ "clf = RandomForestClassifier(n_estimators =100)\n", "clf.fit(X_train, y_train)\n", "pp = clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 56, "id": "20e279ea-a247-48f9-8267-7327aa9cface", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.87 0.90 0.88 29\n", " 1 0.88 0.85 0.87 27\n", "\n", " accuracy 0.88 56\n", " macro avg 0.88 0.87 0.87 56\n", "weighted avg 0.88 0.88 0.87 56\n", "\n" ] } ], "source": [ "print(classification_report(y_test, pp))" ] }, { "cell_type": "code", "execution_count": 57, "id": "2c3d055e-cdc4-413e-a944-b54d5eec27e1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsdklEQVR4nO3de3gU9dn/8c8GyCZANhghJwkhIAgKIgJC8ABYRaLyA2kVim3Bgi0FpTxRsUqR2BYC9ikiUhDpU0ArFWsLnhClRcADKIkgFpCCBAhCykEgJJDT7vz+QFbXIOxmdrM7O+/Xdc0lO8c7uBd37vv7nRmHYRiGAACAJcWEOwAAAFB3JHIAACyMRA4AgIWRyAEAsDASOQAAFkYiBwDAwkjkAABYWMNwB2CGx+PRgQMHlJCQIIfDEe5wAAABMgxDJ0+eVHp6umJiQldbVlRUqKqqyvR5YmNjFRcXF4SIgsfSifzAgQPKyMgIdxgAAJOKi4vVsmXLkJy7oqJCWZlNVXLIbfpcqampKioqiqhkbulEnpCQIEna+3FruZoySoDodEf7zuEOAQiZGlXrPa3w/nseClVVVSo55NbewtZyJdQ9V5Se9Ciz2x5VVVWRyIPlbDvd1TTG1P8cIJI1dDQKdwhA6Hz1kPD6GB5tmuBQ04S6X8ejyBzCtXQiBwDAX27DI7eJt4u4DU/wggkiEjkAwBY8MuRR3TO5mWNDiX40AAAWRkUOALAFjzwy0xw3d3TokMgBALbgNgy5jbq3x80cG0q01gEAsDAqcgCALUTrZDcSOQDAFjwy5I7CRE5rHQAAC6MiBwDYQrS21qnIAQC2cHbWupklEPn5+erRo4cSEhKUnJyswYMHa8eOHT77jBw5Ug6Hw2fp1atXQNchkQMAEAJr167VuHHjtGHDBq1atUo1NTXq37+/ysvLffYbMGCADh486F1WrFgR0HVorQMAbMHz1WLmeEkqLS31We90OuV0Omvtv3LlSp/PCxcuVHJysgoLC3XDDTf4HJ+amlrnuKjIAQC24P5q1rqZRZIyMjKUmJjoXfLz8/26/okTJyRJSUlJPuvXrFmj5ORktW/fXvfee68OHToU0M9FRQ4AsAW3IZNvPzvz3+LiYrlcLu/6c1Xj32YYhnJzc3XdddepU6dO3vU5OTm68847lZmZqaKiIk2ePFk33nijCgsL/TqvRCIHACAgLpfLJ5H747777tOWLVv03nvv+awfOnSo98+dOnVS9+7dlZmZqTfeeENDhgzx69wkcgCALQRrjDxQ999/v1599VWtW7dOLVu2PO++aWlpyszM1M6dO/0+P4kcAGALHjnklsPU8YEwDEP333+/li1bpjVr1igrK+uCxxw9elTFxcVKS0vz+zpMdgMAIATGjRunv/zlL1qyZIkSEhJUUlKikpISnT59WpJUVlamBx98UOvXr9eePXu0Zs0aDRw4UM2bN9cdd9zh93WoyAEAtuAxzixmjg/EvHnzJEl9+/b1Wb9w4UKNHDlSDRo00KeffqrnnntOx48fV1pamvr166elS5cqISHB7+uQyAEAtuA22VoP9FjjAk+Ci4+P11tvvVXneM6itQ4AgIVRkQMAbKG+K/L6QiIHANiCx3DIY5iYtW7i2FCitQ4AgIVRkQMAbIHWOgAAFuZWjNwmGtHuIMYSTCRyAIAtGCbHyA3GyAEAQLBRkQMAbIExcgAALMxtxMhtmBgjN/F411CitQ4AgIVRkQMAbMEjhzwm6lePIrMkJ5EDAGwhWsfIaa0DAGBhVOQAAFswP9mN1joAAGFzZozcxEtTaK0DAIBgoyIHANiCx+Sz1pm1DgBAGDFGDgCAhXkUE5X3kTNGDgCAhVGRAwBswW045DbxKlIzx4YSiRwAYAtuk5Pd3LTWAQBAsFGRAwBswWPEyGNi1rqHWesAAIQPrXUAABBxqMgBALbgkbmZ557ghRJUJHIAgC2YfyBMZDaxIzMqAADgFypyAIAtmH/WemTWviRyAIAtROv7yEnkAABbiNaKPDKjAgAAfqEiBwDYgvkHwkRm7UsiBwDYgsdwyGPmPvIIfftZZP56AQAA/EJFDgCwBY/J1nqkPhCGRA4AsAXzbz+LzEQemVEBAAC/UJEDAGzBLYfcJh7qYubYUCKRAwBsgdY6AACIOFTkAABbcMtce9wdvFCCikQOALCFaG2tk8gBALbAS1MAAEDEoSIHANiCYfJ95Aa3nwEAED601gEAQMShIgcA2EK0vsaURA4AsAW3ybefmTk2lCIzKgAA4BcqcgCALdBaBwDAwjyKkcdEI9rMsaEUmVEBAAC/UJEDAGzBbTjkNtEeN3NsKJHIAQC2wBg5AAAWZph8+5nBk90AAECwUZEDAGzBLYfcJl58YubYUCKRAwBswWOYG+f2GEEMJohorQMAYGFU5KjlxaeT9f6KZire5VRsnEeXdz+lUZMOKOPSSp/99u106v9+l64tG5rK8EiZl1Vo0jN7lNyyOkyRA3Vz+0+O6LafHFVKRpUkae+OOL3wZIoK3nGFOTIEk8fkZDczx4YSiRy1bFnfVANHHlH7q07JXSMtmpGmR3/YVgvWfqa4xh5J0oE9scod3E4Dhh3Vjx8sUROXW/t2xik2LkJ7T8B5HD7YSH+elqYDe5ySpJvv/FJ5C/doXP/22vufuDBHh2DxyCGPiXFuM8eGUth/vZg7d66ysrIUFxenbt266d133w13SLY3bclu9R/6pVpfVqG2V1TogSf36dAXsdq5Jd67z6LpabrmxlKNnnxQl3Y+rbTMKvW8qVTNmteEMXKgbj5claiNq136YrdTX+x2atGMNFWUx6hDt/JwhwZcUFgT+dKlSzVhwgRNmjRJmzZt0vXXX6+cnBzt27cvnGHhW8pLG0iSEpq5JUkej/TRv1y6pE2lHv1hG93V+QqNv62dPngzMZxhAkERE2Ooz6Bjcjb2aHtBk3CHgyA6+2Q3M0skCmsinzlzpkaNGqXRo0erY8eOmjVrljIyMjRv3rxwhoVvMAzp2bxLdMU1ZWrdoUKSdPxIQ50ub6Clc5LVvd9J5f91t64dcEK/Gd1aW9bzDx+sqXWH01q+81O9vmeLxk/fr9+Maq19O2mrR5OzY+RmlkgUtjHyqqoqFRYW6le/+pXP+v79++uDDz445zGVlZWqrPx6wlVpaWlIY4T0x0cvUdH2eP1h+U7vOuPMMLmybynVkJ8dliS17XRa2wqa6I3nmuvKbNqRsJ79nzs19ub2auJy67rbTujBp/bpoSGXkswR8cL268WRI0fkdruVkpLisz4lJUUlJSXnPCY/P1+JiYneJSMjoz5Cta0/TrpE699O1BMv71KL9K9noruS3GrQ0FBm+wqf/TPaVejQF43qO0wgKGqqY3Rgj1M7tzTWwvw0FW2L1+DRh8MdFoLII4f3eet1WgKc7Jafn68ePXooISFBycnJGjx4sHbs2OGzj2EYysvLU3p6uuLj49W3b19t3bo1oOuEvU/gcPj+xRiGUWvdWY888ohOnDjhXYqLi+sjRNsxDGnOo5fo/TcT9cTfdim1VZXP9kaxhtp3OaX9nzt91n+x28mtZ4gqjWK5CyOaGF/NWq/rYgSYyNeuXatx48Zpw4YNWrVqlWpqatS/f3+Vl3/dtXziiSc0c+ZMzZkzRxs3blRqaqpuvvlmnTx50u/rhK213rx5czVo0KBW9X3o0KFaVfpZTqdTTqfznNsQPHMebal3ll2kvIW7Fd/Uoy8PnfmaNElwyxl/5h+2O8ce0rQxmerUq0xdepep4B2XNqxK1O9f3hXO0IE6uedXB7VxdYIOH4hVfFO3+g46rit7l+nXd7cJd2gIovp++9nKlSt9Pi9cuFDJyckqLCzUDTfcIMMwNGvWLE2aNElDhgyRJC1evFgpKSlasmSJfv7zn/t1nbAl8tjYWHXr1k2rVq3SHXfc4V2/atUqDRo0KFxhQdLri5tLkh76fjuf9Q88uU/9h34pSbo254TGT9+vF+ekaN7klmrZplKTFxSpU0/Gx2E9zVrU6KGn9ykpuUanTjZQ0fY4/fruNvp4XUK4Q0ME+vb8LH+LzBMnTkiSkpKSJElFRUUqKSlR//79fc7Vp08fffDBB5GfyCUpNzdXP/7xj9W9e3dlZ2fr2Wef1b59+zRmzJhwhmV7bx3Y7Nd+t/zwS93ywy9DGwxQD558gPk2dhCsJ7t9e37WlClTlJeXd95jDcNQbm6urrvuOnXq1EmSvB3pc80V27t3r99xhTWRDx06VEePHtVvfvMbHTx4UJ06ddKKFSuUmZkZzrAAAFEoWK314uJiuVxfP77Xn2r8vvvu05YtW/Tee+/V2hbIXLFzCfsjWseOHauxY8eGOwwAAPzicrl8EvmF3H///Xr11Ve1bt06tWzZ0rs+NTVV0pnKPC0tzbv+fHPFziXss9YBAKgPZmas1+U57YZh6L777tM//vEPrV69WllZWT7bs7KylJqaqlWrVnnXVVVVae3aterdu7ff1wl7RQ4AQH2o71nr48aN05IlS/TKK68oISHBOyaemJio+Ph4ORwOTZgwQdOmTVO7du3Url07TZs2TY0bN9bw4cP9vg6JHACAEDj7uPG+ffv6rF+4cKFGjhwpSZo4caJOnz6tsWPH6tixY+rZs6fefvttJST4f8cEiRwAYAv1XZEbxoUfKORwOJSXl3fBWe/nQyIHANhCfSfy+sJkNwAALIyKHABgC9FakZPIAQC2YEgB30L27eMjEYkcAGAL0VqRM0YOAICFUZEDAGwhWityEjkAwBaiNZHTWgcAwMKoyAEAthCtFTmJHABgC4bhkGEiGZs5NpRorQMAYGFU5AAAW6jLO8W/fXwkIpEDAGwhWsfIaa0DAGBhVOQAAFuI1sluJHIAgC1Ea2udRA4AsIVorcgZIwcAwMKoyAEAtmCYbK1HakVOIgcA2IIhyTDMHR+JaK0DAGBhVOQAAFvwyCEHT3YDAMCamLUOAAAiDhU5AMAWPIZDDh4IAwCANRmGyVnrETptndY6AAAWRkUOALCFaJ3sRiIHANgCiRwAAAuL1slujJEDAGBhVOQAAFuI1lnrJHIAgC2cSeRmxsiDGEwQ0VoHAMDCqMgBALbArHUAACzMkLl3ikdoZ53WOgAAVkZFDgCwBVrrAABYWZT21knkAAB7MFmRK0IrcsbIAQCwMCpyAIAt8GQ3AAAsLFonu9FaBwDAwqjIAQD2YDjMTViL0IqcRA4AsIVoHSOntQ4AgIVRkQMA7IEHwgAAYF3ROmvdr0Q+e/Zsv084fvz4OgcDAAAC41cif/LJJ/06mcPhIJEDACJXhLbHzfArkRcVFYU6DgAAQipaW+t1nrVeVVWlHTt2qKamJpjxAAAQGkYQlggUcCI/deqURo0apcaNG+uKK67Qvn37JJ0ZG58+fXrQAwQAAN8t4ET+yCOP6JNPPtGaNWsUFxfnXX/TTTdp6dKlQQ0OAIDgcQRhiTwB3362fPlyLV26VL169ZLD8fUPdfnll+vzzz8PanAAAARNlN5HHnBFfvjwYSUnJ9daX15e7pPYAQBA6AWcyHv06KE33njD+/ls8l6wYIGys7ODFxkAAMEUpZPdAm6t5+fna8CAAdq2bZtqamr01FNPaevWrVq/fr3Wrl0bihgBADAvSt9+FnBF3rt3b73//vs6deqU2rZtq7ffflspKSlav369unXrFooYAQDAd6jTs9Y7d+6sxYsXBzsWAABCJlpfY1qnRO52u7Vs2TJt375dDodDHTt21KBBg9SwIe9gAQBEqCidtR5w5v33v/+tQYMGqaSkRJdddpkk6T//+Y9atGihV199VZ07dw56kAAA4NwCHiMfPXq0rrjiCu3fv18ff/yxPv74YxUXF+vKK6/Uz372s1DECACAeWcnu5lZIlDAFfknn3yigoICXXTRRd51F110kaZOnaoePXoENTgAAILFYZxZzBwfiQKuyC+77DL997//rbX+0KFDuvTSS4MSFAAAQRel95H7lchLS0u9y7Rp0zR+/Hi9/PLL2r9/v/bv36+XX35ZEyZM0IwZM0IdLwAA+Aa/WuvNmjXzefyqYRi66667vOuMr+bkDxw4UG63OwRhAgBgUpQ+EMavRP7OO++EOg4AAEKrnm8/W7dunX7/+9+rsLBQBw8e1LJlyzR48GDv9pEjR9Z6JkvPnj21YcOGgK7jVyLv06dPQCcFAMDuysvL1aVLF91zzz36/ve/f859BgwYoIULF3o/x8bGBnydOj/B5dSpU9q3b5+qqqp81l955ZV1PSUAAKFTzxV5Tk6OcnJyzruP0+lUamqqiaDqkMgPHz6se+65R2+++eY5tzNGDgCISEFK5KWlpT6rnU6nnE5nnU65Zs0aJScnq1mzZurTp4+mTp16zleFn0/At59NmDBBx44d04YNGxQfH6+VK1dq8eLFateunV599dVATwcAgKVkZGQoMTHRu+Tn59fpPDk5OXrhhRe0evVq/eEPf9DGjRt14403qrKyMqDzBFyRr169Wq+88op69OihmJgYZWZm6uabb5bL5VJ+fr5uu+22QE8JAEDoBWnWenFxsVwul3d1XavxoUOHev/cqVMnde/eXZmZmXrjjTc0ZMgQv88TcCIvLy/3lv1JSUk6fPiw2rdvr86dO+vjjz8O9HQAANSLYD3ZzeVy+STyYElLS1NmZqZ27twZ0HF1erLbjh07JElXXXWV5s+fry+++ELPPPOM0tLSAj0dAACQdPToURUXFwecSwOuyCdMmKCDBw9KkqZMmaJbbrlFL7zwgmJjY7Vo0aJATwcAQP2o51nrZWVl2rVrl/dzUVGRNm/erKSkJCUlJSkvL0/f//73lZaWpj179ujRRx9V8+bNdccddwR0nYAT+d133+39c9euXbVnzx599tlnatWqlZo3bx7o6QAAiEoFBQXq16+f93Nubq4kacSIEZo3b54+/fRTPffcczp+/LjS0tLUr18/LV26VAkJCQFdp873kZ/VuHFjXX311WZPAwBASDlkcow8wP379u3rfYT5ubz11lt1D+Yb/ErkZ3+L8MfMmTPrHAwAAAiMX4l806ZNfp3smy9WqU8/uOZaNXQE/lg7wApG/WdzuEMAQubUSbfW1FdTl5emAABgYfU82a2+BHz7GQAAiBymJ7sBAGAJUVqRk8gBALYQrCe7RRpa6wAAWBgVOQDAHqK0tV6nivz555/Xtddeq/T0dO3du1eSNGvWLL3yyitBDQ4AgKAxgrBEoIAT+bx585Sbm6tbb71Vx48fl9vtliQ1a9ZMs2bNCnZ8AADgPAJO5E8//bQWLFigSZMmqUGDBt713bt316effhrU4AAACJazk93MLJEo4DHyoqIide3atdZ6p9Op8vLyoAQFAEDQRemT3QKuyLOysrR58+Za6998801dfvnlwYgJAIDgi9Ix8oAr8oceekjjxo1TRUWFDMPQRx99pL/+9a/Kz8/Xn/70p1DECAAAvkPAifyee+5RTU2NJk6cqFOnTmn48OG65JJL9NRTT2nYsGGhiBEAANOi9YEwdbqP/N5779W9996rI0eOyOPxKDk5OdhxAQAQXFF6H7mpB8I0b948WHEAAIA6CDiRZ2Vlnfe947t37zYVEAAAIWH2FrJoqcgnTJjg87m6ulqbNm3SypUr9dBDDwUrLgAAgovW+hm//OUvz7n+j3/8owoKCkwHBAAA/Be0t5/l5OTo73//e7BOBwBAcHEf+fm9/PLLSkpKCtbpAAAIKm4/+0rXrl19JrsZhqGSkhIdPnxYc+fODWpwAADg/AJO5IMHD/b5HBMToxYtWqhv377q0KFDsOICAAB+CCiR19TUqHXr1rrllluUmpoaqpgAAAi+KJ21HtBkt4YNG+oXv/iFKisrQxUPAAAhEa2vMQ141nrPnj21adOmUMQCAAACFPAY+dixY/XAAw9o//796tatm5o0aeKz/corrwxacAAABFWEVtVm+J3If/rTn2rWrFkaOnSoJGn8+PHebQ6HQ4ZhyOFwyO12Bz9KAADMitIxcr8T+eLFizV9+nQVFRWFMh4AABAAvxO5YZz5VSQzMzNkwQAAECo8EEY671vPAACIaHZvrUtS+/btL5jMv/zyS1MBAQAA/wWUyB9//HElJiaGKhYAAEKG1rqkYcOGKTk5OVSxAAAQOlHaWvf7gTCMjwMAEHkCnrUOAIAlRWlF7nci93g8oYwDAICQYowcAAAri9KKPOCXpgAAgMhBRQ4AsIcorchJ5AAAW4jWMXJa6wAAWBgVOQDAHmitAwBgXbTWAQBAxKEiBwDYA611AAAsLEoTOa11AAAsjIocAGALjq8WM8dHIhI5AMAeorS1TiIHANgCt58BAICIQ0UOALAHWusAAFhchCZjM2itAwBgYVTkAABbiNbJbiRyAIA9ROkYOa11AAAsjIocAGALtNYBALAyWusAACDSUJEDAGyB1joAAFYWpa11EjkAwB6iNJEzRg4AgIVRkQMAbIExcgAArIzWOgAAiDRU5AAAW3AYhhxG3ctqM8eGEhU5AMAejCAsAVi3bp0GDhyo9PR0ORwOLV++3Dccw1BeXp7S09MVHx+vvn37auvWrQH/WCRyAABCoLy8XF26dNGcOXPOuf2JJ57QzJkzNWfOHG3cuFGpqam6+eabdfLkyYCuQ2sdAGALwZq1Xlpa6rPe6XTK6XTW2j8nJ0c5OTnnPJdhGJo1a5YmTZqkIUOGSJIWL16slJQULVmyRD//+c/9jouKHABgD0FqrWdkZCgxMdG75OfnBxxKUVGRSkpK1L9/f+86p9OpPn366IMPPgjoXFTkAAAEoLi4WC6Xy/v5XNX4hZSUlEiSUlJSfNanpKRo7969AZ2LRA4AsIVgtdZdLpdPIjcVk8Ph89kwjFrrLoTWOgDAHup51vr5pKamSvq6Mj/r0KFDtar0CyGRAwBs4WxFbmYJlqysLKWmpmrVqlXedVVVVVq7dq169+4d0LlorQMAEAJlZWXatWuX93NRUZE2b96spKQktWrVShMmTNC0adPUrl07tWvXTtOmTVPjxo01fPjwgK5DIgcA2EM9P2u9oKBA/fr1837Ozc2VJI0YMUKLFi3SxIkTdfr0aY0dO1bHjh1Tz5499fbbbyshISGg65DIAQC2UZ9vMOvbt6+M8zzW1eFwKC8vT3l5eaauwxg5AAAWRkUOALAHwzizmDk+ApHIAQC2EKz7yCMNrXUAACyMihwAYA/1PGu9vpDIAQC24PCcWcwcH4lorQMAYGFU5AjYXffu08j/2aPlz12iZ6e3DXc4QEA+eSZRe95uohNFjdTAaSi5a4V6PHRMzdpUe/f5eHYz7X6jicpLGiqmkaHmV1SpW+4xJXepDGPkMC1KW+tU5AhIu04nNeDOg9r9WZNwhwLUycGNcer4o1INfOmABiwskeF2aOVPU1V96us3TiVmVSv7saO647UvdPtfD6rpJTVaeU+qTn/JP5lWFknPWg+msH4r161bp4EDByo9PV0Oh0PLly8PZzi4gLjGbk184jPNntJeZaU0c2BNA/7vv2o/pEwXtavWxR2rdP30wyo/0FBHtn79Tum2A8t1ybUVcrWq0UXtqtXz0aOqLovRsc9iwxg5TDt7H7mZJQKFNZGXl5erS5cumjNnTjjDgJ/G/nqnPlqbpM3rLwp3KEDQVJ8888+gM9F9zu3uKmnH0gTFJriV1KGqPkMD/BLWsionJ0c5OTl+719ZWanKyq/HqEpLS0MRFs7hhpxDuvTyMv3yrqvDHQoQNIYhfZifpJRuFUpqX+2zbd878Xrnf5JVc9qhxi3cGrCwRHFJETptGX7hgTARID8/X4mJid4lIyMj3CHZQvPUCv38kc/1+4c7qLrKUl8Z4LzWP36xvtwRq35PHqq1La1nhe545QsNXHpQLW84rdUTknX6KN9/SzOCsEQgS30rH3nkEZ04ccK7FBcXhzskW2h3RZkual6t2X/7WK9tWafXtqzTldec0P/70Rd6bcs6xcRE6LcbOI/1v0nSvtWNdetzJWqSWrut3qixIVdmjZKvqtT1044opoH0n78F9npJoD5YasaS0+mU0+m88I4Iqs3rm+kX/6+bz7r/mbpD+4sa629/ypDH4/iOI4HIYxjS+t9crL2rGuvWvxxUQkaN38e5q/iuW1m0ttYtlcgRHqdPNdTeXb5flYrTDVR6vJH27uI2NFjLB49frN2vNdFN8w6pURNDpw43kCTFJnjUMM5Q9SmHPpnXTK2+d0rxLdyqPB6j7S+4dKqkgbJyysMcPUzh7WcAYH2fLXFJklb8KM1n/fXTD6v9kDI5GkjHdzfSzmXJqjjWQHEXudW8c6VuW3JQF7WrPtcpgbAKayIvKyvTrl27vJ+Lioq0efNmJSUlqVWrVmGMDBfyq5Fdwh0CUCej/lN03u0NnYZu+mPtyW+wPlrrIVBQUKB+/fp5P+fm5kqSRowYoUWLFoUpKgBAVIrSR7SGNZH37dtXRoSOOQAAYAWMkQMAbIHWOgAAVuYxzixmjo9AJHIAgD1E6Ri5pZ7sBgAAfFGRAwBswSGTY+RBiyS4SOQAAHuI0ie70VoHAMDCqMgBALbA7WcAAFgZs9YBAECkoSIHANiCwzDkMDFhzcyxoUQiBwDYg+erxczxEYjWOgAAFkZFDgCwBVrrAABYWZTOWieRAwDsgSe7AQCASENFDgCwBZ7sBgCAldFaBwAAkYaKHABgCw7PmcXM8ZGIRA4AsAda6wAAINJQkQMA7IEHwgAAYF3R+ohWWusAAFgYFTkAwB6idLIbiRwAYA+GzL1TPDLzOIkcAGAPjJEDAICIQ0UOALAHQybHyIMWSVCRyAEA9hClk91orQMAYGFU5AAAe/BIcpg8PgKRyAEAtsCsdQAAEHGoyAEA9hClk91I5AAAe4jSRE5rHQAAC6MiBwDYQ5RW5CRyAIA9cPsZAADWxe1nAAAg4lCRAwDsgTFyAAAszGNIDhPJ2BOZiZzWOgAAFkZFDgCwB1rrAABYmclErshM5LTWAQCwMBI5AMAezrbWzSwByMvLk8Ph8FlSU1OD/mPRWgcA2IPHkKn2eB1mrV9xxRX65z//6f3coEGDul//O5DIAQAIkYYNG4akCv8mWusAAHswPOYXSaWlpT5LZWXld15y586dSk9PV1ZWloYNG6bdu3cH/ccikQMA7CFIY+QZGRlKTEz0Lvn5+ee8XM+ePfXcc8/prbfe0oIFC1RSUqLevXvr6NGjQf2xaK0DAOwhSGPkxcXFcrlc3tVOp/Ocu+fk5Hj/3LlzZ2VnZ6tt27ZavHixcnNz6x7Ht5DIAQAIgMvl8knk/mrSpIk6d+6snTt3BjUeWusAAHuo59vPvq2yslLbt29XWlpakH6gM0jkAAB7MGQykQd2uQcffFBr165VUVGRPvzwQ/3gBz9QaWmpRowYEdQfi9Y6AAAhsH//fv3whz/UkSNH1KJFC/Xq1UsbNmxQZmZmUK9DIgcA2EM9vzTlxRdfrPu1AkAiBwDYg8cjyWPy+MjDGDkAABZGRQ4AsAfeRw4AgIVFaSKntQ4AgIVRkQMA7CEMrzGtDyRyAIAtGIZHhlH3medmjg0lEjkAwB4Mw1xVzRg5AAAINipyAIA9GCbHyCO0IieRAwDsweORHCbGuSN0jJzWOgAAFkZFDgCwB1rrAABYl+HxyDDRWo/U289orQMAYGFU5AAAe6C1DgCAhXkMyRF9iZzWOgAAFkZFDgCwB8OQZOY+8sisyEnkAABbMDyGDBOtdYNEDgBAGBkemavIuf0MAAAEGRU5AMAWaK0DAGBlUdpat3QiP/vbUY1RFeZIgNA5ddId7hCAkDlddub7XR/Vbo2qTT0PpkbVwQsmiBxGpPYK/LB//35lZGSEOwwAgEnFxcVq2bJlSM5dUVGhrKwslZSUmD5XamqqioqKFBcXF4TIgsPSidzj8ejAgQNKSEiQw+EIdzi2UFpaqoyMDBUXF8vlcoU7HCCo+H7XP8MwdPLkSaWnpysmJnTzrysqKlRVZb57GxsbG1FJXLJ4az0mJiZkv8Hh/FwuF//QIWrx/a5fiYmJIb9GXFxcxCXgYOH2MwAALIxEDgCAhZHIERCn06kpU6bI6XSGOxQg6Ph+w4osPdkNAAC7oyIHAMDCSOQAAFgYiRwAAAsjkQMAYGEkcvht7ty5ysrKUlxcnLp166Z333033CEBQbFu3ToNHDhQ6enpcjgcWr58ebhDAvxGIodfli5dqgkTJmjSpEnatGmTrr/+euXk5Gjfvn3hDg0wrby8XF26dNGcOXPCHQoQMG4/g1969uypq6++WvPmzfOu69ixowYPHqz8/PwwRgYEl8Ph0LJlyzR48OBwhwL4hYocF1RVVaXCwkL179/fZ33//v31wQcfhCkqAIBEIocfjhw5IrfbrZSUFJ/1KSkpQXktIACg7kjk8Nu3XxVrGAavjwWAMCOR44KaN2+uBg0a1Kq+Dx06VKtKBwDULxI5Lig2NlbdunXTqlWrfNavWrVKvXv3DlNUAABJahjuAGANubm5+vGPf6zu3bsrOztbzz77rPbt26cxY8aEOzTAtLKyMu3atcv7uaioSJs3b1ZSUpJatWoVxsiAC+P2M/ht7ty5euKJJ3Tw4EF16tRJTz75pG644YZwhwWYtmbNGvXr16/W+hEjRmjRokX1HxAQABI5AAAWxhg5AAAWRiIHAMDCSOQAAFgYiRwAAAsjkQMAYGEkcgAALIxEDgCAhZHIAQCwMBI5YFJeXp6uuuoq7+eRI0dq8ODB9R7Hnj175HA4tHnz5u/cp3Xr1po1a5bf51y0aJGaNWtmOjaHw6Hly5ebPg+A2kjkiEojR46Uw+GQw+FQo0aN1KZNGz344IMqLy8P+bWfeuopvx/r6U/yBYDz4aUpiFoDBgzQwoULVV1drXfffVejR49WeXm55s2bV2vf6upqNWrUKCjXTUxMDMp5AMAfVOSIWk6nU6mpqcrIyNDw4cN19913e9u7Z9vhf/7zn9WmTRs5nU4ZhqETJ07oZz/7mZKTk+VyuXTjjTfqk08+8Tnv9OnTlZKSooSEBI0aNUoVFRU+27/dWvd4PJoxY4YuvfRSOZ1OtWrVSlOnTpUkZWVlSZK6du0qh8Ohvn37eo9buHChOnbsqLi4OHXo0EFz5871uc5HH32krl27Ki4uTt27d9emTZsC/juaOXOmOnfurCZNmigjI0Njx45VWVlZrf2WL1+u9u3bKy4uTjfffLOKi4t9tr/22mvq1q2b4uLi1KZNGz3++OOqqakJOB4AgSORwzbi4+NVXV3t/bxr1y699NJL+vvf/+5tbd92220qKSnRihUrVFhYqKuvvlrf+9739OWXX0qSXnrpJU2ZMkVTp05VQUGB0tLSaiXYb3vkkUc0Y8YMTZ48Wdu2bdOSJUuUkpIi6UwylqR//vOfOnjwoP7xj39IkhYsWKBJkyZp6tSp2r59u6ZNm6bJkydr8eLFkqTy8nLdfvvtuuyyy1RYWKi8vDw9+OCDAf+dxMTEaPbs2fr3v/+txYsXa/Xq1Zo4caLPPqdOndLUqVO1ePFivf/++yotLdWwYcO829966y396Ec/0vjx47Vt2zbNnz9fixYt8v6yAiDEDCAKjRgxwhg0aJD384cffmhcfPHFxl133WUYhmFMmTLFaNSokXHo0CHvPv/6178Ml8tlVFRU+Jyrbdu2xvz58w3DMIzs7GxjzJgxPtt79uxpdOnS5ZzXLi0tNZxOp7FgwYJzxllUVGRIMjZt2uSzPiMjw1iyZInPut/+9rdGdna2YRiGMX/+fCMpKckoLy/3bp83b945z/VNmZmZxpNPPvmd21966SXj4osv9n5euHChIcnYsGGDd9327dsNScaHH35oGIZhXH/99ca0adN8zvP8888baWlp3s+SjGXLln3ndQHUHWPkiFqvv/66mjZtqpqaGlVXV2vQoEF6+umnvdszMzPVokUL7+fCwkKVlZXp4osv9jnP6dOn9fnnn0uStm/frjFjxvhsz87O1jvvvHPOGLZv367Kykp973vf8zvuw4cPq7i4WKNGjdK9997rXV9TU+Mdf9++fbu6dOmixo0b+8QRqHfeeUfTpk3Ttm3bVFpaqpqaGlVUVKi8vFxNmjSRJDVs2FDdu3f3HtOhQwc1a9ZM27dv1zXXXKPCwkJt3LjRpwJ3u92qqKjQqVOnfGIEEHwkckStfv36ad68eWrUqJHS09NrTWY7m6jO8ng8SktL05o1a2qdq663YMXHxwd8jMfjkXSmvd6zZ0+fbQ0aNJAkGYZRp3i+ae/evbr11ls1ZswY/fa3v1VSUpLee+89jRo1ymcIQjpz+9i3nV3n8Xj0+OOPa8iQIbX2iYuLMx0ngPMjkSNqNWnSRJdeeqnf+1999dUqKSlRw4YN1bp163Pu07FjR23YsEE/+clPvOs2bNjwneds166d4uPj9a9//UujR4+utT02NlbSmQr2rJSUFF1yySXavXu37r777nOe9/LLL9fzzz+v06dPe39ZOF8c51JQUKCamhr94Q9/UEzMmekyL730Uq39ampqVFBQoGuuuUaStGPHDh0/flwdOnSQdObvbceOHQH9XQMIHhI58JWbbrpJ2dnZGjx4sGbMmKHLLrtMBw4c0IoVKzR48GB1795dv/zlLzVixAh1795d1113nV544QVt3bpVbdq0Oec54+Li9PDDD2vixImKjY3Vtddeq8OHD2vr1q0aNWqUkpOTFR8fr5UrV6ply5aKi4tTYmKi8vLyNH78eLlcLuXk5KiyslIFBQU6duyYcnNzNXz4cE2aNEmjRo3Sr3/9a+3Zs0f/+7//G9DP27ZtW9XU1Ojpp5/WwIED9f777+uZZ56ptV+jRo10//33a/bs2WrUqJHuu+8+9erVy5vYH3vsMd1+++3KyMjQnXfeqZiYGG3ZskWffvqpfve73wX+PwJAQJi1DnzF4XBoxYoVuuGGG/TTn/5U7du317Bhw7Rnzx7vLPOhQ4fqscce08MPP6xu3bpp7969+sUvfnHe806ePFkPPPCAHnvsMXXs2FFDhw7VoUOHJJ0Zf549e7bmz5+v9PR0DRo0SJI0evRo/elPf9KiRYvUuXNn9enTR4sWLfLerta0aVO99tpr2rZtm7p27apJkyZpxowZAf28V111lWbOnKkZM2aoU6dOeuGFF5Sfn19rv8aNG+vhhx/W8OHDlZ2drfj4eL344ove7bfccotef/11rVq1Sj169FCvXr00c+ZMZWZmBhQPgLpxGMEYbAMAAGFBRQ4AgIWRyAEAsDASOQAAFkYiBwDAwkjkAABYGIkcAAALI5EDAGBhJHIAACyMRA4AgIWRyAEAsDASOQAAFvb/Aeyd683V9syTAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm = confusion_matrix(y_test, pp, labels=clf.classes_)\n", "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)\n", "disp.plot()" ] }, { "cell_type": "code", "execution_count": 58, "id": "eeed3511-1c37-47bc-b18b-bcd5a7545d07", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy of Random forest classifier model is 87.5\n" ] } ], "source": [ "print('Accuracy of Random forest classifier model is {}'.format(accuracy_score(y_test,pp)*100))" ] }, { "cell_type": "code", "execution_count": null, "id": "38bb3b07-3826-4095-8ac5-a0f758168a95", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 59, "id": "8a59d445-be1c-4e4e-91fe-89f2f82051cb", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUtklEQVR4nO3dd1gU1/oH8O/SYWlRuiJFgqIGRYgFrjEau9eWRLEkKooJaiwQ9eo1CWoSSUU0dkWNxkJii0ls3EQFW1SEWPBaEAUUolgAAUHg/P7wx15XFtwdFpD1+3meeeKeOXPmnVnCvJxzZkYmhBAgIiIi0hF6dR0AERERkTYxuSEiIiKdwuSGiIiIdAqTGyIiItIpTG6IiIhIpzC5ISIiIp3C5IaIiIh0ikFdB1DbysrKcPPmTVhYWEAmk9V1OERERKQGIQTy8vLg5OQEPb2q+2ZeuOTm5s2bcHZ2ruswiIiISIL09HQ0bty4yjovXHJjYWEB4PHJsbS0rONoiIiISB25ublwdnZWXMer8sIlN+VDUZaWlkxuiIiI6hl1ppRwQjERERHpFCY3REREpFOY3BAREZFOYXJDREREOoXJDREREekUJjdERESkU5jcEBERkU5hckNEREQ6hckNERER6RQmN0RERKRT6jS5iYuLQ79+/eDk5ASZTIadO3c+c5tDhw7B19cXJiYmcHd3x/Lly2s+UCIiIqo36jS5yc/PR+vWrbF48WK16qempqJPnz7o1KkTEhMT8e9//xuTJ0/Gtm3bajhSIiIiqi/q9MWZvXv3Ru/evdWuv3z5cjRp0gRRUVEAAC8vL5w6dQrffPMN3nrrrRqKkoiIiNR1N78Yd/OL4GH37Ld315R69VbwY8eOoUePHkplPXv2RHR0NB49egRDQ8MK2xQVFaGoqEjxOTc3t8bjJCIi0mVCCNzMeYgrtx4olpRbD3Dl9gPczS+Gu60cf3z4ep3FV6+Sm6ysLNjb2yuV2dvbo6SkBNnZ2XB0dKywTUREBObOnVtbIRIREemMR6VluH6n4HHycvuJROb2AxQUl1a6XVmZQGmZgL6erBaj/Z96ldwAgEymfKKEECrLy82aNQthYWGKz7m5uXB2dq65AImIiOqZguISXL2dr9QTc+X2A1zLzkdJmVC5jaG+DK4N5fCwM1csTW0fL6ZG+rV8BMrqVXLj4OCArKwspbJbt27BwMAADRs2VLmNsbExjI2NayM8IiKi59rd/OIKCUzKrQe4cb+w0m3kRvpoamcOD1vzx//9/6VJAzMY6j+fT5SpV8lNx44d8csvvyiV7d+/H35+firn2xAREb1onjUfpjIN5Ub/S15s/5fEOFqZVDo68ryq0+TmwYMHuHLliuJzamoqkpKS0KBBAzRp0gSzZs3CjRs3sH79egBASEgIFi9ejLCwMIwbNw7Hjh1DdHQ0Nm/eXFeHQEREVCekzodpZG2qNJRUnsy8JDeqxehrVp0mN6dOnUKXLl0Un8vnxowaNQrr1q1DZmYm0tLSFOvd3Nywe/duhIaGYsmSJXBycsKiRYt4GzgREemsyubDXL+Tj0elqufDGOjJ4GojV+qB8bAzh7utHGZG9WrQRhKZKJ+R+4LIzc2FlZUVcnJyYGlpWdfhEBERAQDu5RfjyhM9MOVLVfNhzIz00dRWeUKvh505XBo+v/NhpNLk+q376RsREdFz4un5MOXDSSm3HuBOFfNhGsiNKkzo9bAzh6OlCfTq6Hbr5xmTGyIiIi3T1nyY8p6YBjo0H6Y2MLkhIiKSiPNhnk88i0RERM/A+TD1C5MbIiLSSX/nPsS3+y8it7BEcht3C4o5H6YeYnJDREQ66eekG/jxVIbW2mtkbap4Uu+TSQznwzx/mNwQEZFOKp/z0raJNQa1bSypDQtjAzS1fTwfRm7MS2Z9wW+KiIh02st2Fni3g0tdh0G1iDOaiIiISKcwuSEiIiKdwuSGiIiIdAqTGyIiItIpTG6IiIhIpzC5ISIiIp3C5IaIiIh0CpMbIiIi0il8iB9V24OiEvw3M7euwyAiUpJxr/KXWpJuY3JD1XIi9S4mbExA9oPKXypHRFSXZHx35QuHyQ1JIoTAD8evY+4vySgpE2goN4KlqWFdh0VEpMTEUB8DfRrVdRhUy5jckMYePirFJz+fU7xt95/ejvjqbW+YGfHHiYiI6h6vRqSRrJyHeP+HBPyVfh96MuBfvZrjvdfcIWO/LxERPSeY3JDaTl67i/E/nEb2gyJYmRriu2E+eM3Ttq7DIiIiUsLkhp7p6fk1zR0ssPJdPzRpaFbXoREREVXA5Iaq9PT8mr7ejvia82uIiOg5xisUVerp+TUzejXH+5xfQ0REzzkmN6QS59cQEVF9xeSGlKiaX7PiXV+4NJTXdWhERERqYXJDCkUlpfhk53nEnEoHwPk1RERUP/GqRQAez68J+SEBSen3IZMBM3o2R0hnzq8hIqL6h8kN4eb9QvRffATZD4pgaWKA74a3RWfOryEionqKyQ1hz7ksZD8ogktDM6wf047za4iIqF7Tq+sAqO6VlQkAQNsmLzGxISKieo/JDREREekUJjdERESkU5jcEBERkU5hckNEREQ6hckNERER6RQmN0RERKRTmNwQERGRTtH4IX45OTnYsWMH4uPjce3aNRQUFMDW1hY+Pj7o2bMn/P39ayJOIiIiIrWo3XOTmZmJcePGwdHREfPmzUN+fj7atGmDN954A40bN8aBAwfQvXt3tGjRAjExMTUZMxEREVGl1O65ad26NUaOHIkTJ06gVatWKusUFhZi586diIyMRHp6OqZNm6a1QImIiIjUoXZyc/78edjaVv0yRVNTUwwbNgzDhg3D7du3qx0cERERkabUHpZ6VmJT3fpERERE2qDVu6Xu3buH9evXa7NJIiIiIo1oNblJS0tDUFCQNpskIiIi0ohGt4Ln5uZWuT4vL69awRARERFVl0bJjbW1NWQyWaXrhRBVriciIiKqaRolNxYWFpg9ezbat2+vcv3ly5fx/vvvayUwIiIiIik0Sm7atm0LAOjcubPK9dbW1hBCVD8qIiIiIok0mlA8fPhwmJiYVLrewcEB4eHh1Q6KiIiISCqNem7GjRtX5Xp7e3smN0RERFSn+FZwIiIi0ilMboiIiEinaDQsRc+vj3aexf7zf0vatqC4VMvREBER1R0mNzpi459pqO6Nah525toJhoiIqA4xudER5YnNpuD2sDIz1Hh7YwN9NLWVazkqIiKi2lfnc26WLl0KNzc3mJiYwNfXF/Hx8VXW37hxI1q3bg0zMzM4OjoiKCgId+7cqaVon3+eDhZo6WSl8eJhZ86nSxMRkU6QnNx06dIFo0ePViobNWoUunbtqnYbMTExmDp1KmbPno3ExER06tQJvXv3Rlpamsr6hw8fxsiRIzF27FicP38eP/30E06ePIng4GCph0FEREQ6RnJy4+rqCicnJ6WyRo0awcXFRe02IiMjMXbsWAQHB8PLywtRUVFwdnbGsmXLVNY/fvw4XF1dMXnyZLi5ueEf//gH3n//fZw6darSfRQVFSE3N1dpISIiIt0lOblZu3Yt5s+fr1Q2f/58rF27Vq3ti4uLkZCQgB49eiiV9+jRA0ePHlW5jb+/PzIyMrB7924IIfD3339j69at6Nu3b6X7iYiIgJWVlWJxdnZWKz4iIiKqn+pszk12djZKS0thb2+vVG5vb4+srCyV2/j7+2Pjxo0IDAyEkZERHBwcYG1tje+++67S/cyaNQs5OTmKJT09XavHQURERM8Xte+WWrRokdqNTp48We26T09iFUJUOrE1OTkZkydPxieffIKePXsiMzMT06dPR0hICKKjo1VuY2xsDGNjY7XjISIiovpN7eRmwYIFatWTyWRqJTc2NjbQ19ev0Etz69atCr055SIiIhAQEIDp06cDALy9vSGXy9GpUyd89tlncHR0VCtGIiIi0l1qJzepqala3bGRkRF8fX0RGxuLQYMGKcpjY2MxYMAAldsUFBTAwEA5ZH19fQCPe3yIiIiIqjXnpri4GBcvXkRJSYmk7cPCwrB69WqsWbMGFy5cQGhoKNLS0hASEgLg8XyZkSNHKur369cP27dvx7Jly3D16lUcOXIEkydPRrt27SrcuUVEREQvJklPKC4oKMCkSZPw/fffAwAuXboEd3d3TJ48GU5OTpg5c6Za7QQGBuLOnTuYN28eMjMz0apVK+zevVtxO3lmZqbSM29Gjx6NvLw8LF68GB9++CGsra3RtWtXfPnll1IOg4iIiHSQTEgYz5kyZQqOHDmCqKgo9OrVC2fOnIG7uzt27dqF8PBwJCYm1kSsWpGbmwsrKyvk5OTA0tKyrsPRGteZvwEATn3UDTbmnEBNRES6RZPrt6Sem507dyImJgYdOnRQurOpRYsWSElJkdIkERERkVZImnNz+/Zt2NnZVSjPz8/n+4mIiIioTklKbl599VX89ttvis/lCc2qVavQsWNH7URGREREJIGkYamIiAj06tULycnJKCkpwcKFC3H+/HkcO3YMhw4d0naMRERERGqT1HPj7++PI0eOoKCgAE2bNsX+/fthb2+PY8eOwdfXV9sxEhEREalNUs8NALzyyiuKW8GJiIiInheSk5vS0lLs2LEDFy5cgEwmg5eXFwYMGFDhCcJEREREtUlSJnLu3DkMGDAAWVlZaNasGYDHD/KztbXFrl278Morr2g1SCIiIiJ1SZpzExwcjJYtWyIjIwOnT5/G6dOnkZ6eDm9vb7z33nvajpGIiIhIbZJ6bv766y+cOnUKL730kqLspZdewueff45XX31Va8ERERERaUpSz02zZs3w999/Vyi/desWPDw8qh0UERERkVRqJze5ubmKZf78+Zg8eTK2bt2KjIwMZGRkYOvWrZg6dSpfYklERER1Su1hKWtra6VXKwghMGTIEEVZ+fs3+/Xrh9LSUi2HSURERKQetZObAwcO1GQcRERERFqhdnLTuXPnmoyDiIiISCuq9cS9goICpKWlobi4WKnc29u7WkERERERSSUpubl9+zaCgoKwZ88eles554aIiIjqiqRbwadOnYp79+7h+PHjMDU1xd69e/H999/j5Zdfxq5du7QdIxEREZHaJPXc/PHHH/j555/x6quvQk9PDy4uLujevTssLS0RERGBvn37ajtOIiIiIrVI6rnJz8+HnZ0dAKBBgwa4ffs2gMdvCj99+rT2oiMiIiLSkOQnFF+8eBEA0KZNG6xYsQI3btzA8uXL4ejoqNUAiYiIiDQhaVhq6tSpyMzMBACEh4ejZ8+e2LhxI4yMjLBu3TptxkdERESkEUnJzYgRIxT/9vHxwbVr1/Df//4XTZo0gY2NjdaCIyIiItJUtZ5zU87MzAxt27bVRlNERERE1aJ2chMWFqZ2o5GRkZKCISIiIqoutZObxMREteo9+XJNIiIiotrGF2cSERGRTpF0KzgRERHR84rJDREREekUJjdERESkU5jcEBERkU5hckNEREQ6RXJys2HDBgQEBMDJyQnXr18HAERFReHnn3/WWnBEREREmpKU3CxbtgxhYWHo06cP7t+/j9LSUgCAtbU1oqKitBkfERERkUYkJTffffcdVq1ahdmzZ0NfX19R7ufnh7Nnz2otOCIiIiJNSUpuUlNT4ePjU6Hc2NgY+fn51Q6KiIiISCpJyY2bmxuSkpIqlO/ZswctWrSobkxEREREkkl6K/j06dMxceJEPHz4EEIInDhxAps3b0ZERARWr16t7RiJiIiI1CYpuQkKCkJJSQlmzJiBgoICDB8+HI0aNcLChQsxdOhQbcdIREREpDZJyQ0AjBs3DuPGjUN2djbKyspgZ2enzbiIiIiIJJE052bu3LlISUkBANjY2DCxISIioueGpORm27Zt8PT0RIcOHbB48WLcvn1b23ERERERSSIpuTlz5gzOnDmDrl27IjIyEo0aNUKfPn2wadMmFBQUaDtGIiIiIrVJfv1Cy5YtMX/+fFy9ehUHDhyAm5sbpk6dCgcHB23GR0RERKQRrbw4Uy6Xw9TUFEZGRnj06JE2miQiIiKSRHJyk5qais8//xwtWrSAn58fTp8+jTlz5iArK0ub8RERERFpRNKt4B07dsSJEyfwyiuvICgoSPGcGyIiIqK6Jim56dKlC1avXo2WLVtqOx4iIiKiapGU3MyfP1/bcVA1lJaJug6BiIjouaF2chMWFoZPP/0UcrkcYWFhVdaNjIysdmCknvsFxZi0OREAYGakDzMj/TqOiIiIqG6pndwkJiYq7oRKTEyssYBIfRcyc/H+hgSk3S2AqaE+vhncGmZGkt+oQUREpBNkQogXakwjNzcXVlZWyMnJgaWlZV2HI9mvZ25i+k9nUPioFM4NTLHyXT94Odbf4yEiIqqKJtdvSbeCjxkzBnl5eRXK8/PzMWbMGClNkppKywS+2PNffLApEYWPStHpZRv88sE/mNgQERH9P0k9N/r6+sjMzKzwwszs7Gw4ODigpKREawFqW33uublfUIzJW5IQd+nxu7zef80d03s2g4G+Vp7FSERE9NzS5Pqt0QSN3NxcCCEghEBeXh5MTEwU60pLS7F7926+IbyG/DcrF++t/9/8mq/e9ka/1k51HRYREdFzR6PkxtraGjKZDDKZDJ6enhXWy2QyzJ07V2vB0WNPz69Z8Y4fWjjVr14nIiKi2qLReMaBAwfw+++/QwiBrVu34o8//lAshw8fRlpaGmbPnq1RAEuXLoWbmxtMTEzg6+uL+Pj4KusXFRVh9uzZcHFxgbGxMZo2bYo1a9ZotM/6QtX8ml0T/8HEhoiIqAoa9dx07twZwOP3SjVp0gQymaxaO4+JicHUqVOxdOlSBAQEYMWKFejduzeSk5PRpEkTldsMGTIEf//9N6Kjo+Hh4YFbt24913N8pOL8GiIiImnUnlB85swZtGrVCnp6ejhz5kyVdb29vdXaefv27dG2bVssW7ZMUebl5YWBAwciIiKiQv29e/di6NChuHr1Kho0aKDWPoqKilBUVKT4nJubC2dn5+d6QvGT82tMDPXw1dut0Z/za4iI6AVWIxOK27Rpg6ysLNjZ2aFNmzaQyWRQlRfJZDKUlpY+s73i4mIkJCRg5syZSuU9evTA0aNHVW6za9cu+Pn54auvvsKGDRsgl8vRv39/fPrppzA1NVW5TURERL2aB/TbmUxM++kvFD4qReOXHj+/hsNQRERE6lM7uUlNTYWtra3i39WVnZ2N0tJS2NvbK5Xb29sjKytL5TZXr17F4cOHYWJigh07diA7OxsTJkzA3bt3K513M2vWLKXXRZT33NSEu/nFuHr7geTtYy/8jRWHrgIA/uFhg++G+eAluZG2wiMiInohqJ3cuLi4qPx3dT09b0cIUelcnrKyMshkMmzcuBFWVlYAHr/H6u2338aSJUtU9t4YGxvD2NhYa/FW5uGjUnT99iDuFzyqdlucX0NERCSdpBcRff/997CxsUHfvn0BADNmzMDKlSvRokULbN68Wa3kx8bGBvr6+hV6aW7dulWhN6eco6MjGjVqpEhsgMdzdIQQyMjIwMsvvyzlcLQi9+EjRWLjZiOX1IapoT7Gv96Uz68hIiKqBknJzfz58xWTgI8dO4bFixcjKioKv/76K0JDQ7F9+/ZntmFkZARfX1/ExsZi0KBBivLY2FgMGDBA5TYBAQH46aef8ODBA5ibmwMALl26BD09PTRu3FjKoWidngw4MO31ug6DiIjohSVp3CM9PR0eHh4AgJ07d+Ltt9/Ge++9h4iIiGc+p+ZJYWFhWL16NdasWYMLFy4gNDQUaWlpCAkJAfB4vszIkSMV9YcPH46GDRsiKCgIycnJiIuLw/Tp0zFmzJhKJxQTERHRi0VSz425uTnu3LmDJk2aYP/+/QgNDQUAmJiYoLCwUO12AgMDcefOHcybNw+ZmZlo1aoVdu/erRjWyszMRFpamtJ+Y2NjMWnSJPj5+aFhw4YYMmQIPvvsMymHQURERDpIUnLTvXt3BAcHw8fHB5cuXVLMvTl//jxcXV01amvChAmYMGGCynXr1q2rUNa8eXPExsZqGjIRERG9ICQNSy1ZsgQdO3bE7du3sW3bNjRs2BAAkJCQgGHDhmk1QCIiIiJNSOq5sba2xuLFiyuU16eH5REREZFukpTcAMD9+/cRHR2NCxcuQCaTwcvLC2PHjlW6TZuIiIiotkkaljp16hSaNm2KBQsW4O7du8jOzsaCBQvQtGlTnD59WtsxEhEREalNUs9NaGgo+vfvj1WrVsHA4HETJSUlCA4OxtSpUxEXF6fVIImIiIjUJSm5OXXqlFJiAwAGBgaYMWMG/Pz8tBYcERERkaYkDUtZWloqPX+mXHp6OiwsLKodFBEREZFUkpKbwMBAjB07FjExMUhPT0dGRga2bNmC4OBg3gpOREREdUrSsNQ333wDmUyGkSNHoqSkBABgaGiI8ePH44svvtBqgERERESakJTcGBkZYeHChYiIiEBKSgqEEPDw8ICZmZm24yMiIiLSiEbDUgUFBZg4cSIaNWoEOzs7BAcHw9HREd7e3kxsiIiI6LmgUXITHh6OdevWoW/fvhg6dChiY2Mxfvz4moqNiIiISGMaDUtt374d0dHRGDp0KADgnXfeQUBAAEpLS6Gvr18jARIRERFpQqOem/T0dHTq1EnxuV27djAwMMDNmze1HhgRERGRFBolN6WlpTAyMlIqMzAwUNwxRURERFTXNBqWEkJg9OjRMDY2VpQ9fPgQISEhkMvlirLt27drL0IiIiIiDWiU3IwaNapC2TvvvKO1YIiIiIiqS6PkZu3atTUVBxEREZFWSHr9AhEREdHzSu3kJiQkBOnp6WrVjYmJwcaNGyUHRURERCSV2sNStra2aNWqFfz9/dG/f3/4+fnByckJJiYmuHfvHpKTk3H48GFs2bIFjRo1wsqVK2sybiIiIiKV1E5uPv30U0yaNAnR0dFYvnw5zp07p7TewsIC3bp1w+rVq9GjRw+tB0pERESkDo0mFNvZ2WHWrFmYNWsW7t+/j+vXr6OwsBA2NjZo2rQpZDJZTcVJREREpBZJbwUHAGtra1hbW2sxFCIiIqLq491SREREpFOY3BAREZFOYXJDREREOoXJDREREekUyclNSUkJ/vOf/2DFihXIy8sDANy8eRMPHjzQWnBEREREmpJ0t9T169fRq1cvpKWloaioCN27d4eFhQW++uorPHz4EMuXL9d2nERERERqkdRzM2XKFPj5+eHevXswNTVVlA8aNAi///671oIjIiIi0pSknpvDhw/jyJEjMDIyUip3cXHBjRs3tBIYERERkRSSem7KyspQWlpaoTwjIwMWFhbVDoqIiIhIKknJTffu3REVFaX4LJPJ8ODBA4SHh6NPnz7aio2IiIhIY5KGpRYsWIAuXbqgRYsWePjwIYYPH47Lly/DxsYGmzdv1naMRERERGqTlNw4OTkhKSkJW7ZsQUJCAsrKyjB27FiMGDFCaYIxERERUW2TlNzExcXB398fQUFBCAoKUpSXlJQgLi4Or732mtYCJCIiItKEpDk3Xbp0wd27dyuU5+TkoEuXLtUOioiIiEgqScmNEAIymaxC+Z07dyCXy6sdFBEREZFUGg1LvfnmmwAe3x01evRoGBsbK9aVlpbizJkz8Pf3126ERERERBrQKLmxsrIC8LjnxsLCQmnysJGRETp06IBx48ZpN0IiIiIiDWiU3KxduxYA4OrqimnTpnEIioiIiJ47ku6WCg8P13YcRERERFohKbkBgK1bt+LHH39EWloaiouLldadPn262oERERERSSHpbqlFixYhKCgIdnZ2SExMRLt27dCwYUNcvXoVvXv31naMRERERGqTlNwsXboUK1euxOLFi2FkZIQZM2YgNjYWkydPRk5OjrZjJCIiIlKbpOQmLS1Nccu3qakp8vLyAADvvvsu3y1FREREdUpScuPg4IA7d+4AAFxcXHD8+HEAQGpqKoQQ2ouOiIiISEOSkpuuXbvil19+AQCMHTsWoaGh6N69OwIDAzFo0CCtBkhERESkCUl3S61cuRJlZWUAgJCQEDRo0ACHDx9Gv379EBISotUAiYiIiDQhKbnR09ODnt7/On2GDBmCIUOGAABu3LiBRo0aaSc6IiIiIg1JGpZSJSsrC5MmTYKHh4e2miQiIiLSmEbJzf379zFixAjY2trCyckJixYtQllZGT755BO4u7vj+PHjWLNmTU3FSkRERPRMGg1L/fvf/0ZcXBxGjRqFvXv3IjQ0FHv37sXDhw+xZ88edO7cuabiJCIiIlKLRsnNb7/9hrVr16Jbt26YMGECPDw84OnpiaioqBoKj4iIiEgzGg1L3bx5Ey1atAAAuLu7w8TEBMHBwTUSGBEREZEUGiU3ZWVlMDQ0VHzW19eHXC6vVgBLly6Fm5sbTExM4Ovri/j4eLW2O3LkCAwMDNCmTZtq7Z+IiIh0i0bDUkIIjB49GsbGxgCAhw8fIiQkpEKCs337drXai4mJwdSpU7F06VIEBARgxYoV6N27N5KTk9GkSZNKt8vJycHIkSPxxhtv4O+//9bkEIiIiEjHadRzM2rUKNjZ2cHKygpWVlZ455134OTkpPhcvqgrMjISY8eORXBwMLy8vBAVFQVnZ2csW7asyu3ef/99DB8+HB07dtQkfCIiInoBaNRzs3btWq3tuLi4GAkJCZg5c6ZSeY8ePXD06NEqY0hJScEPP/yAzz777Jn7KSoqQlFRkeJzbm6u9KCJiIjouae1h/hpKjs7G6WlpbC3t1cqt7e3R1ZWlsptLl++jJkzZ2Ljxo0wMFAvL4uIiFDqVXJ2dq527ERERPT8qrPkppxMJlP6LISoUAYApaWlGD58OObOnQtPT0+12581axZycnIUS3p6erVjJiIioueXpHdLaYONjQ309fUr9NLcunWrQm8OAOTl5eHUqVNITEzEBx98AODx3VtCCBgYGGD//v3o2rVrhe2MjY0VE6CJiIhI99VZz42RkRF8fX0RGxurVB4bGwt/f/8K9S0tLXH27FkkJSUplpCQEDRr1gxJSUlo3759bYVOREREz7E667kBgLCwMLz77rvw8/NDx44dsXLlSqSlpSEkJATA4yGlGzduYP369dDT00OrVq2Utrezs4OJiUmFciIiInpxSe652bBhAwICAuDk5ITr168DAKKiovDzzz+r3UZgYCCioqIwb948tGnTBnFxcdi9ezdcXFwAAJmZmUhLS5MaIhEREb2AJCU3y5YtQ1hYGPr06YP79++jtLQUAGBtba3xe6YmTJiAa9euoaioCAkJCXjttdcU69atW4eDBw9Wuu2cOXOQlJQk4QiIiIhIV0lKbr777jusWrUKs2fPhr6+vqLcz88PZ8+e1VpwRERERJqSlNykpqbCx8enQrmxsTHy8/OrHRQRERGRVJKSGzc3N5XDQXv27FG8NZyIiIioLki6W2r69OmYOHEiHj58CCEETpw4gc2bNyMiIgKrV6/WdoxEREREapOU3AQFBaGkpAQzZsxAQUEBhg8fjkaNGmHhwoUYOnSotmMkIiIiUpvk59yMGzcO48aNQ3Z2NsrKymBnZ6fNuIiIiIgkkTTnZu7cuUhJSQHw+DUKTGyIiIjoeSEpudm2bRs8PT3RoUMHLF68GLdv39Z2XERERESSSEpuzpw5gzNnzqBr166IjIxEo0aN0KdPH2zatAkFBQXajpGIiIhIbZJfv9CyZUvMnz8fV69exYEDB+Dm5oapU6fCwcFBm/ERERERaUQrbwWXy+UwNTWFkZERHj16pI0miYiIiCSRnNykpqbi888/R4sWLeDn54fTp09jzpw5yMrK0mZ8RERERBqRdCt4x44dceLECbzyyisICgpSPOeGiIiIqK5JSm66dOmC1atXo2XLltqOh4iIiKhaJCU38+fP13YcRERERFqhdnITFhaGTz/9FHK5HGFhYVXWjYyMrHZgRERERFKondwkJiYq7oRKTEyssYCIiIiIqkPt5ObAgQMq/01ERET0PJF0K/iYMWOQl5dXoTw/Px9jxoypdlBEREREUklKbr7//nsUFhZWKC8sLMT69eurHRQRERGRVBrdLZWbmwshBIQQyMvLg4mJiWJdaWkpdu/ezTeEExERUZ3SKLmxtraGTCaDTCaDp6dnhfUymQxz587VWnBEREREmtIouTlw4ACEEOjatSu2bduGBg0aKNYZGRnBxcUFTk5OWg+SiIiISF0aJTedO3cG8Pi9Uk2aNIFMJquRoIiIiIikUju5OXPmDFq1agU9PT3k5OTg7Nmzldb19vbWSnBEREREmlI7uWnTpg2ysrJgZ2eHNm3aQCaTQQhRoZ5MJkNpaalWgyQiIiJSl9rJTWpqKmxtbRX/JiIiInoeqZ3cuLi4qPw3ERER0fNE8kP8fvvtN8XnGTNmwNraGv7+/rh+/brWgiMiIiLSlKTkZv78+TA1NQUAHDt2DIsXL8ZXX30FGxsbhIaGajVAIiIiIk1odCt4ufT0dHh4eAAAdu7cibfffhvvvfceAgIC8Prrr2szPiIiIiKNSOq5MTc3x507dwAA+/fvR7du3QAAJiYmKt85RURERFRbJPXcdO/eHcHBwfDx8cGlS5fQt29fAMD58+fh6uqqzfiIiIiINCKp52bJkiXo2LEjbt++jW3btqFhw4YAgISEBAwbNkyrARIRERFpQlLPjbW1NRYvXlyhnC/NJCIioromKbkBgPv37yM6OhoXLlyATCaDl5cXxo4dCysrK23GR0RERKQRScNSp06dQtOmTbFgwQLcvXsX2dnZWLBgAZo2bYrTp09rO0YiIiIitUnquQkNDUX//v2xatUqGBg8bqKkpATBwcGYOnUq4uLitBokERERkbokJTenTp1SSmwAwMDAADNmzICfn5/WgiMiIiLSlKRhKUtLS6SlpVUoT09Ph4WFRbWDIiIiIpJKUnITGBiIsWPHIiYmBunp6cjIyMCWLVsQHBzMW8GJiIioTkkalvrmm28gk8kwcuRIlJSUAAAMDQ0xfvx4fPHFF1oNkIiIiEgTkpIbIyMjLFy4EBEREUhJSYEQAh4eHjAzM9N2fEREREQa0WhYqqCgABMnTkSjRo1gZ2eH4OBgODo6wtvbm4kNERERPRc0Sm7Cw8Oxbt069O3bF0OHDkVsbCzGjx9fU7ERERERaUyjYant27cjOjoaQ4cOBQC88847CAgIQGlpKfT19WskQCIiIiJNaNRzk56ejk6dOik+t2vXDgYGBrh586bWAyMiIiKSQqPkprS0FEZGRkplBgYGijumiIiIiOqaRsNSQgiMHj0axsbGirKHDx8iJCQEcrlcUbZ9+3btRUhERESkAY2Sm1GjRlUoe+edd7QWDBEREVF1aZTcrF27tqbiICIiItIKSa9fICIiInpeMbkhIiIincLkhoiIiHQKkxsiIiLSKUxuiIiISKdITm42bNiAgIAAODk54fr16wCAqKgo/Pzzzxq1s3TpUri5ucHExAS+vr6Ij4+vtO727dvRvXt32NrawtLSEh07dsS+ffukHgIRERHpIEnJzbJlyxAWFoY+ffrg/v37KC0tBQBYW1sjKipK7XZiYmIwdepUzJ49G4mJiejUqRN69+6NtLQ0lfXj4uLQvXt37N69GwkJCejSpQv69euHxMREKYdBREREOkgmhBCabtSiRQvMnz8fAwcOhIWFBf766y+4u7vj3LlzeP3115Gdna1WO+3bt0fbtm2xbNkyRZmXlxcGDhyIiIgItdpo2bIlAgMD8cknn6hVPzc3F1ZWVsjJyYGlpaVa26jjVt5DtPv8d+jJgKsRfbXWLhEREWl2/ZbUc5OamgofH58K5cbGxsjPz1erjeLiYiQkJKBHjx5K5T169MDRo0fVaqOsrAx5eXlo0KBBpXWKioqQm5urtBAREZHukpTcuLm5ISkpqUL5nj170KJFC7XayM7ORmlpKezt7ZXK7e3tkZWVpVYb3377LfLz8zFkyJBK60RERMDKykqxODs7q9U2ERER1U8avX6h3PTp0zFx4kQ8fPgQQgicOHECmzdvRkREBFavXq1RWzKZTOmzEKJCmSqbN2/GnDlz8PPPP8POzq7SerNmzUJYWJjic25uLhMcIiIiHSYpuQkKCkJJSQlmzJiBgoICDB8+HI0aNcLChQsxdOhQtdqwsbGBvr5+hV6aW7duVejNeVpMTAzGjh2Ln376Cd26dauyrrGxsdJbzImIiEi3Sb4VfNy4cbh+/Tpu3bqFrKwspKenY+zYsWpvb2RkBF9fX8TGxiqVx8bGwt/fv9LtNm/ejNGjR2PTpk3o25cTd4mIiEiZpJ6bJ9nY2EjeNiwsDO+++y78/PzQsWNHrFy5EmlpaQgJCQHweEjpxo0bWL9+PYDHic3IkSOxcOFCdOjQQdHrY2pqCisrq+oeChEREekAScmNm5tblfNirl69qlY7gYGBuHPnDubNm4fMzEy0atUKu3fvhouLCwAgMzNT6Zk3K1asQElJCSZOnIiJEycqykeNGoV169ZJORQiIiLSMZKSm6lTpyp9fvToERITE7F3715Mnz5do7YmTJiACRMmqFz3dMJy8OBBjdomIiKiF4+k5GbKlCkqy5csWYJTp05VKyAiIiKi6tDqizN79+6Nbdu2abNJIiIiIo1oNbnZunVrlU8LJiIiIqppkoalfHx8lCYUCyGQlZWF27dvY+nSpVoLjoiIiEhTkpKbgQMHKn3W09ODra0tXn/9dTRv3lwbcRERERFJonFyU1JSAldXV/Ts2RMODg41ERMRERGRZBrPuTEwMMD48eNRVFRUE/EQERERVYukCcXt27dHYmKitmMhIiIiqjZJc24mTJiADz/8EBkZGfD19YVcLlda7+3trZXgiIiIiDSlUXIzZswYREVFITAwEAAwefJkxTqZTAYhBGQyGUpLS7UbJREREZGaNEpuvv/+e3zxxRdITU2tqXiIiIiIqkWj5EYIAQCKF1sSERERPW80nlBc1dvAiYiIiOqaxhOKPT09n5ng3L17V3JARERERNWhcXIzd+5cWFlZ1UQsRERERNWmcXIzdOhQ2NnZ1UQsRERERNWm0ZwbzrchIiKi551GyU353VJEREREzyuNhqXKyspqKg4iIiIirZD0bikiIiKi5xWTGyIiItIpTG6IiIhIpzC5ISIiIp3C5IaIiIh0CpMbIiIi0ilMboiIiEinMLkhIiIincLkhoiIiHQKkxsiIiLSKUxuiIiISKcwuSEiIiKdwuSGiIiIdAqTGyIiItIpTG6IiIhIpzC5ISIiIp3C5IaIiIh0CpMbIiIi0ilMboiIiEinMLkhIiIincLkhoiIiHQKkxsiIiLSKUxuiIiISKcwuSEiIiKdwuSGiIiIdIpBXQdARNUjhEBJSQlKS0vrOhQiomoxNDSEvr5+tdthckNUjxUXFyMzMxMFBQV1HQoRUbXJZDI0btwY5ubm1WqHyQ1RPVVWVobU1FTo6+vDyckJRkZGkMlkdR0WEZEkQgjcvn0bGRkZePnll6vVg8PkhqieKi4uRllZGZydnWFmZlbX4RARVZutrS2uXbuGR48eVSu54YRionpOT4//GxORbtBW7zN/KxIREZFOYXJDREREOoXJDREREekUJjdE9MJxdXVFVFRUXYdR74wePRoDBw6slX09/R1lZWWhe/fukMvlsLa2BvB4fsbOnTtrLIbXXnsNmzZtqrH2XzRFRUVo0qQJEhISanxfTG6IqNaNHj0aMpkMMpkMBgYGaNKkCcaPH4979+7VdWha5erqqjjO8qVx48Z1HpOqxE4IgZUrV6J9+/YwNzeHtbU1/Pz8EBUVVSfPUTp58iTee+89xecFCxYgMzMTSUlJuHTpEgAgMzMTvXv3rpH9//rrr8jKysLQoUMrrJs/fz709fXxxRdfVFg3Z84ctGnTpkL5/fv3IZPJcPDgQaXybdu24fXXX4eVlRXMzc3h7e2NefPm4e7du9o6lAqKioowadIk2NjYQC6Xo3///sjIyKhym7y8PEydOhUuLi4wNTWFv78/Tp48qVRn+/bt6NmzJ2xsbCCTyZCUlKS03tjYGNOmTcO//vUvbR9SBUxuiHSIEAIFxSV1sgghNIq1V69eyMzMxLVr17B69Wr88ssvmDBhQg2dmbozb948ZGZmKpbExETJbT169EiLkSl79913MXXqVAwYMAAHDhxAUlISPv74Y/z888/Yv39/je23Mra2tkqPOEhJSYGvry9efvll2NnZAQAcHBxgbGwseR/FxcWVrlu0aBGCgoJU3o24du1azJgxA2vWrJG8bwCYPXs2AgMD8eqrr2LPnj04d+4cvv32W/z111/YsGFDtdquytSpU7Fjxw5s2bIFhw8fxoMHD/DPf/6zyqecBwcHIzY2Fhs2bMDZs2fRo0cPdOvWDTdu3FDUyc/PR0BAgMqkr9yIESMQHx+PCxcuaPWYKhAvmJycHAFA5OTkaLXdv3MLhcu/fhVuM3/VartElSksLBTJycmisLBQUZZf9Ei4/OvXOlnyix6pHfuoUaPEgAEDlMrCwsJEgwYNFJ9LSkrEmDFjhKurqzAxMRGenp4iKipKZTtff/21cHBwEA0aNBATJkwQxcXFijp///23+Oc//ylMTEyEq6ur+OGHH4SLi4tYsGCBos7169dF//79hVwuFxYWFmLw4MEiKytLsT48PFy0bt1aREdHC2dnZyGXy0VISIgoKSkRX375pbC3txe2trbis88+U4rv6f08benSpcLd3V0YGhoKT09PsX79eqX1AMSyZctE//79hZmZmfjkk0+EEELs2rVLtG3bVhgbGws3NzcxZ84c8ejR/85/eHi4cHZ2FkZGRsLR0VFMmjRJCCFE586dBQClRQghYmJiBACxc+fOCjGWlZWJ+/fvK53vcnv27BEBAQHCyspKNGjQQPTt21dcuXJFsb6oqEhMnDhRODg4CGNjY+Hi4iLmz5//zDifPncuLi5KMY8aNUpxfnbs2KHYJiMjQwwZMkRYW1uLBg0aiP79+4vU1FTF+vL458+fLxwdHYWLi4vK7+X27dtCJpOJc+fOVVh38OBB0ahRI1FcXCycnJzEoUOHlNaX/6w87d69ewKAOHDggBBCiD///FMAqPAz/WT9mnD//n1haGgotmzZoii7ceOG0NPTE3v37lW5TUFBgdDX1xe//qp8fWvdurWYPXt2hfqpqakCgEhMTFTZ3uuvvy4+/vhjletU/V4rp8n1u857bpYuXQo3NzeYmJjA19cX8fHxVdY/dOgQfH19YWJiAnd3dyxfvryWIiWimnL16lXs3bsXhoaGirKysjI0btwYP/74I5KTk/HJJ5/g3//+N3788UelbQ8cOICUlBQcOHAA33//PdatW4d169Yp1o8ePRrXrl3DH3/8ga1bt2Lp0qW4deuWYr0QAgMHDsTdu3dx6NAhxMbGIiUlBYGBgUr7SUlJwZ49e7B3715s3rwZa9asQd++fZGRkYFDhw7hyy+/xEcffYTjx4+rdcw7duzAlClT8OGHH+LcuXN4//33ERQUhAMHDijVCw8Px4ABA3D27FmMGTMG+/btwzvvvIPJkycjOTkZK1aswLp16/D5558DALZu3YoFCxZgxYoVuHz5Mnbu3IlXXnkFwONhg8aNGyv1JgHAxo0b0axZMwwYMKBCnDKZDFZWViqPIT8/H2FhYTh58iR+//136OnpYdCgQSgrKwPwuPdj165d+PHHH3Hx4kX88MMPcHV1fWacTzt58iR69eqFIUOGIDMzEwsXLqxQp6CgAF26dIG5uTni4uJw+PBhmJubo1evXko9NL///jsuXLiA2NhY/Prrryr3d/jwYZiZmcHLy6vCuujoaAwbNgyGhoYYNmwYoqOjVbbxLBs3boS5uXmlvZXl84pUadmyJczNzStdWrZsWem2CQkJePToEXr06KEoc3JyQqtWrXD06FGV25S/u87ExESp3NTUFIcPH67iKFVr167dM6/11fbM9KcGbdmyRRgaGopVq1aJ5ORkMWXKFCGXy8X169dV1r969aowMzMTU6ZMEcnJyWLVqlXC0NBQbN26Ve19sueGdIWqv3DKyspEftGjOlnKysrUjn3UqFFCX19fyOVyYWJioviLPDIyssrtJkyYIN566y2ldlxcXERJSYmibPDgwSIwMFAIIcTFixcFAHH8+HHF+gsXLggAil6B/fv3C319fZGWlqaoc/78eQFAnDhxQgjx+K9xMzMzkZubq6jTs2dP4erqKkpLSxVlzZo1ExEREYrPLi4uwsjISMjlcsWycOFCIYQQ/v7+Yty4cUrHN3jwYNGnTx/FZwBi6tSpSnU6deqk1PshhBAbNmwQjo6OQgghvv32W+Hp6anUe/UkVb1JXl5eon///irrP0lVj9uTbt26JQCIs2fPCiGEmDRpkujatavKnw1N4xwwYICix6Ycnui5iY6OFs2aNVPaV1FRkTA1NRX79u1TxG9vby+KioqqPM4FCxYId3f3CuU5OTnCzMxMJCUlCSGESExMFGZmZkrXE3V7bnr37i28vb2rjKMy165dE5cvX650uXbtWqXbbty4URgZGVUo7969u3jvvfcq3a5jx46ic+fO4saNG6KkpERs2LBByGQy4enpWaHus3puFi5cKFxdXVWu04mem8jISIwdOxbBwcHw8vJCVFQUnJ2dsWzZMpX1ly9fjiZNmiAqKgpeXl4IDg7GmDFj8M0339Ry5ETPJ5lMBjMjgzpZNH2yaJcuXZCUlIQ///wTkyZNQs+ePTFp0iSlOsuXL4efnx9sbW1hbm6OVatWIS0tTalOy5YtlR7T7ujoqOiZuXDhAgwMDODn56dY37x5c6W/ii9cuABnZ2c4Ozsrylq0aAFra2uleQGurq6wsLBQfLa3t0eLFi2U5mTY29sr9QoBwPTp05GUlKRYRo4cqdhvQECAUt2AgIAKcxGejB14/Jf3vHnzlP5SHzdunOIFqoMHD0ZhYSHc3d0xbtw47NixAyUlJaiKEELSk2FTUlIwfPhwuLu7w9LSEm5ubgCg+I5Gjx6NpKQkNGvWDJMnT1aauyMlzqokJCTgypUrsLCwUJyXBg0a4OHDh0hJSVHUe+WVV2BkZFRlW4WFhRV6KQBg06ZNcHd3R+vWrQEAbdq0gbu7O7Zs2aJxvFLPOQC4uLjAw8Oj0sXFxUXr8WzYsAFCCDRq1AjGxsZYtGgRhg8fLukVCaampjU+Sb3Okpvi4mIkJCQodY0BQI8ePSrtGjt27FiF+j179sSpU6cqnWhXVFSE3NxcpYWI6p5cLoeHhwe8vb2xaNEiFBUVYe7cuYr1P/74I0JDQzFmzBjs378fSUlJCAoKqjAJ9MmhLOBxglc+LCL+f5JzVb+0K/ul/nS5qv1Ute9yNjY2SheeJxOrp/erKha5XK70uaysDHPnzlVKmM6ePYvLly/DxMQEzs7OuHjxIpYsWQJTU1NMmDABr732WpWTkT09PSVN8OzXrx/u3LmDVatW4c8//8Sff/4J4H8Tddu2bYvU1FR8+umnKCwsxJAhQ/D2228DgKQ4q1JWVgZfX1+l81J+Z9Xw4cMV9Z4+n6rY2NiovHNvzZo1OH/+PAwMDBTL+fPnlYamLC0tkZOTU2Hb+/fvA4BiiM/T0xMpKSmSjrc6w1IODg4oLi6ucHy3bt2Cvb19pds1bdoUhw4dwoMHD5Ceno4TJ07g0aNHioRWE3fv3oWtra3G22mizpKb7OxslJaWVjiZ9vb2yMrKUrlNVlaWyvolJSXIzs5WuU1ERASsrKwUy5N/nWmbsYEejA2kv+iL6EUWHh6Ob775Bjdv3gQAxMfHw9/fHxMmTICPjw88PDyU/gJXh5eXF0pKSnDq1ClF2cWLFxUXGuBxL01aWhrS09MVZcnJycjJyVE550JbvLy8KsxXOHr06DP32bZtW1y8eFHlX+zlvUimpqbo378/Fi1ahIMHD+LYsWM4e/YsAMDIyKjCXTHDhw/HpUuX8PPPP1fYnxBC5cX6zp07uHDhAj766CO88cYb8PLyUpkQWFpaIjAwEKtWrUJMTAy2bdumuM25qjg11bZtW1y+fBl2dnYVzktlc4Yq4+Pjg6ysLKXjOXv2LE6dOoWDBw8qJU9xcXE4efIkzp07B+Bxz2BGRkaF69jJkyehp6cHDw8PAI/P+YMHD7B06VKVMTz5M/q03bt3V0jinlx2795d6ba+vr4wNDREbGysoiwzMxPnzp2Dv7//M8+NXC6Ho6Mj7t27h3379qmcp/Us586dg4+Pj8bbaaLO3wquzl8uz6qvqrzcrFmzEBYWpvicm5tbIwmOnYUJLn5WM89bIHoRvP7662jZsiXmz5+PxYsXw8PDA+vXr8e+ffvg5uaGDRs24OTJkxr9pdisWTP06tUL48aNw8qVK2FgYICpU6fC1NRUUadbt27w9vbGiBEjEBUVhZKSEkyYMAGdO3euMCSkTdOnT8eQIUPQtm1bvPHGG/jll1+wfft2/Oc//6lyu08++QT//Oc/4ezsjMGDB0NPTw9nzpzB2bNn8dlnn2HdunUoLS1F+/btYWZmhg0bNsDU1FQxVOHq6oq4uDgMHToUxsbGsLGxwZAhQ7Bjxw4MGzYMH3/8Mbp37w5bW1ucPXsWCxYswKRJkyo8vO+ll15Cw4YNsXLlSjg6OiItLQ0zZ85UqrNgwQI4OjqiTZs20NPTw08//QQHBwdYW1s/M05NjRgxAl9//TUGDBiAefPmoXHjxkhLS8P27dsxffp0jZ4v5OPjA1tbWxw5cgT//Oc/ATyeSNyuXTu89tprFep37NgR0dHRWLBgAXr06AEvLy8MHToUn3/+OZycnHDmzBlMmzYNISEhiqHN9u3bY8aMGfjwww9x48YNDBo0CE5OTrhy5QqWL1+Of/zjH5gyZYrK+KSeI+Bxz9HYsWPx4YcfomHDhmjQoAGmTZuGV155Bd26dVPUe+ONNzBo0CB88MEHAIB9+/ZBCIFmzZrhypUrmD59Opo1a4agoCDFNnfv3kVaWpriD5SLFy8CeNxb5ODgoKgXHx+PTz/9VPIxqKPOem5sbGygr69fIbutqmvMwcFBZX0DAwM0bNhQ5TbGxsawtLRUWojo+RQWFoZVq1YhPT0dISEhePPNNxEYGIj27dvjzp07kp6Ds3btWjg7O6Nz585488038d577ymekwL87ym3L730El577TV069YN7u7uiImJ0eahVTBw4EAsXLgQX3/9NVq2bIkVK1Zg7dq1eP3116vcrmfPnvj1118RGxuLV199FR06dEBkZKTigmdtbY1Vq1YhICAA3t7e+P333/HLL78ofkfOmzcP165dQ9OmTRVDAzKZDJs2bUJkZCR27NiBzp07w9vbG3PmzMGAAQPQs2fPCnHo6elhy5YtSEhIQKtWrRAaGoqvv/5aqY65uTm+/PJL+Pn54dVXX8W1a9ewe/du6OnpPTNOTZmZmSEuLg5NmjTBm2++CS8vL4wZMwaFhYUa/97X19fHmDFjsHHjRgCPh9l++OEHvPXWWyrrv/XWW/jhhx9QXFwMAwMD7N+/H+7u7hgxYgRatmyJmTNnIjg4GJGRkUrbffnll9i0aRP+/PNP9OzZEy1btkRYWBi8vb0xatQoSedBHQsWLMDAgQMxZMgQBAQEwMzMDL/88ovS/JmUlBSlEZGcnBxMnDgRzZs3x8iRI/GPf/wD+/fvVxqa3bVrF3x8fNC3b18AwNChQ+Hj46N0V/OxY8eQk5OjGJ6sKTIhNHzylha1b98evr6+St1yLVq0wIABAxAREVGh/r/+9S/88ssvSE5OVpSNHz8eSUlJOHbsmFr7zM3NhZWVFXJycpjoUL328OFDpKamKh6lQETa8/fff6Nly5ZISEioVk8JKRs8eDB8fHzw73//W+X6qn6vaXL9rtO7pcLCwrB69WqsWbMGFy5cQGhoKNLS0hASEgLg8ZBS+Z0FABASEoLr168jLCwMFy5cwJo1axAdHY1p06bV1SEQEZEOsre3R3R0dIW780i6oqIitG7dGqGhoTW+rzqdcxMYGIg7d+4oHijVqlUr7N69W5ElZ2ZmKv1gubm5Yffu3QgNDcWSJUvg5OSERYsWVdpVSEREJJWUybJUOWNjY3z00Ue1sq86HZaqCxyWIl3BYSki0jU6MSxFRNX3gv19QkQ6TFu/z5jcENVT5Xcp1PSTPomIakv5AyClPPn4SXX+nBsikkZfXx/W1taKx/2bmZlJfpw7EVFdKysrw+3bt2FmZgYDg+qlJ0xuiOqx8gdjPf0+IyKi+khPTw9NmjSp9h9qTG6I6jGZTAZHR0fY2dlJficPEdHzwsjISOlltFIxuSHSAfr6+tUeoyYi0hWcUExEREQ6hckNERER6RQmN0RERKRTXrg5N+UPCMrNza3jSIiIiEhd5ddtdR7098IlN3l5eQAAZ2fnOo6EiIiINJWXlwcrK6sq67xw75YqKyvDzZs3YWFhofUHnuXm5sLZ2Rnp6el8b1UN4nmuHTzPtYPnufbwXNeOmjrPQgjk5eXBycnpmbeLv3A9N3p6emjcuHGN7sPS0pL/49QCnufawfNcO3ieaw/Pde2oifP8rB6bcpxQTERERDqFyQ0RERHpFCY3WmRsbIzw8HAYGxvXdSg6jee5dvA81w6e59rDc107nofz/MJNKCYiIiLdxp4bIiIi0ilMboiIiEinMLkhIiIincLkhoiIiHQKkxsNLV26FG5ubjAxMYGvry/i4+OrrH/o0CH4+vrCxMQE7u7uWL58eS1FWr9pcp63b9+O7t27w9bWFpaWlujYsSP27dtXi9HWX5r+PJc7cuQIDAwM0KZNm5oNUEdoep6Lioowe/ZsuLi4wNjYGE2bNsWaNWtqKdr6S9PzvHHjRrRu3RpmZmZwdHREUFAQ7ty5U0vR1k9xcXHo168fnJycIJPJsHPnzmduUyfXQUFq27JlizA0NBSrVq0SycnJYsqUKUIul4vr16+rrH/16lVhZmYmpkyZIpKTk8WqVauEoaGh2Lp1ay1HXr9oep6nTJkivvzyS3HixAlx6dIlMWvWLGFoaChOnz5dy5HXL5qe53L3798X7u7uokePHqJ169a1E2w9JuU89+/fX7Rv317ExsaK1NRU8eeff4ojR47UYtT1j6bnOT4+Xujp6YmFCxeKq1evivj4eNGyZUsxcODAWo68ftm9e7eYPXu22LZtmwAgduzYUWX9uroOMrnRQLt27URISIhSWfPmzcXMmTNV1p8xY4Zo3ry5Utn7778vOnToUGMx6gJNz7MqLVq0EHPnztV2aDpF6nkODAwUH330kQgPD2dyowZNz/OePXuElZWVuHPnTm2EpzM0Pc9ff/21cHd3VypbtGiRaNy4cY3FqGvUSW7q6jrIYSk1FRcXIyEhAT169FAq79GjB44ePapym2PHjlWo37NnT5w6dQqPHj2qsVjrMynn+WllZWXIy8tDgwYNaiJEnSD1PK9duxYpKSkIDw+v6RB1gpTzvGvXLvj5+eGrr75Co0aN4OnpiWnTpqGwsLA2Qq6XpJxnf39/ZGRkYPfu3RBC4O+//8bWrVvRt2/f2gj5hVFX18EX7sWZUmVnZ6O0tBT29vZK5fb29sjKylK5TVZWlsr6JSUlyM7OhqOjY43FW19JOc9P+/bbb5Gfn48hQ4bURIg6Qcp5vnz5MmbOnIn4+HgYGPBXhzqknOerV6/i8OHDMDExwY4dO5CdnY0JEybg7t27nHdTCSnn2d/fHxs3bkRgYCAePnyIkpIS9O/fH999911thPzCqKvrIHtuNCSTyZQ+CyEqlD2rvqpyUqbpeS63efNmzJkzBzExMbCzs6up8HSGuue5tLQUw4cPx9y5c+Hp6Vlb4ekMTX6ey8rKIJPJsHHjRrRr1w59+vRBZGQk1q1bx96bZ9DkPCcnJ2Py5Mn45JNPkJCQgL179yI1NRUhISG1EeoLpS6ug/zzS002NjbQ19ev8FfArVu3KmSl5RwcHFTWNzAwQMOGDWss1vpMynkuFxMTg7Fjx+Knn35Ct27dajLMek/T85yXl4dTp04hMTERH3zwAYDHF2EhBAwMDLB//3507dq1VmKvT6T8PDs6OqJRo0awsrJSlHl5eUEIgYyMDLz88ss1GnN9JOU8R0REICAgANOnTwcAeHt7Qy6Xo1OnTvjss8/Ys64ldXUdZM+NmoyMjODr64vY2Fil8tjYWPj7+6vcpmPHjhXq79+/H35+fjA0NKyxWOszKecZeNxjM3r0aGzatIlj5mrQ9DxbWlri7NmzSEpKUiwhISFo1qwZkpKS0L59+9oKvV6R8vMcEBCAmzdv4sGDB4qyS5cuQU9PD40bN67ReOsrKee5oKAAenrKl0B9fX0A/+tZoOqrs+tgjU5X1jHltxpGR0eL5ORkMXXqVCGXy8W1a9eEEELMnDlTvPvuu4r65bfAhYaGiuTkZBEdHc1bwdWg6XnetGmTMDAwEEuWLBGZmZmK5f79+3V1CPWCpuf5abxbSj2anue8vDzRuHFj8fbbb4vz58+LQ4cOiZdfflkEBwfX1SHUC5qe57Vr1woDAwOxdOlSkZKSIg4fPiz8/PxEu3bt6uoQ6oW8vDyRmJgoEhMTBQARGRkpEhMTFbfcPy/XQSY3GlqyZIlwcXERRkZGom3btuLQoUOKdaNGjRKdO3dWqn/w4EHh4+MjjIyMhKurq1i2bFktR1w/aXKeO3fuLABUWEaNGlX7gdczmv48P4nJjfo0Pc8XLlwQ3bp1E6ampqJx48YiLCxMFBQU1HLU9Y+m53nRokWiRYsWwtTUVDg6OooRI0aIjIyMWo66fjlw4ECVv2+fl+ugTAj2vxEREZHu4JwbIiIi0ilMboiIiEinMLkhIiIincLkhoiIiHQKkxsiIiLSKUxuiIiISKcwuSEiIiKdwuSGiIiIdAqTGyIV1q1bB2tr67oOQzJXV1dERUVVWWfOnDlo06ZNrcTzvPnjjz/QvHlzlJWV1cr+npfvQ8o+ZDIZdu7cWa39jh49GgMHDqxWG6q8+uqr2L59u9bbpfqPyQ3prNGjR0Mmk1VYrly5UtehYd26dUoxOTo6YsiQIUhNTdVK+ydPnsR7772n+KzqAjVt2jT8/vvvWtlfZZ4+Tnt7e/Tr1w/nz5/XuB1tJpszZszA7NmzFS9OfFG+j/okLi4O/fr1g5OTU6UJ1scff4yZM2fWWpJK9QeTG9JpvXr1QmZmptLi5uZW12EBePym7czMTNy8eRObNm1CUlIS+vfvj9LS0mq3bWtrCzMzsyrrmJubo2HDhtXe17M8eZy//fYb8vPz0bdvXxQXF9f4vlU5evQoLl++jMGDB1capy5/H/VFfn4+WrdujcWLF1dap2/fvsjJycG+fftqMTKqD5jckE4zNjaGg4OD0qKvr4/IyEi88sorkMvlcHZ2xoQJE/DgwYNK2/nrr7/QpUsXWFhYwNLSEr6+vjh16pRi/dGjR/Haa6/B1NQUzs7OmDx5MvLz86uMTSaTwcHBAY6OjujSpQvCw8Nx7tw5Rc/SsmXL0LRpUxgZGaFZs2bYsGGD0vZz5sxBkyZNYGxsDCcnJ0yePFmx7slhEFdXVwDAoEGDIJPJFJ+fHKLYt28fTExMcP/+faV9TJ48GZ07d9bacfr5+SE0NBTXr1/HxYsXFXWq+j4OHjyIoKAg5OTkKHpW5syZAwAoLi7GjBkz0KhRI8jlcrRv3x4HDx6sMp4tW7agR48eMDExqTROXf4+nnTy5El0794dNjY2sLKyQufOnXH69OkK9TIzM9G7d2+YmprCzc0NP/30k9L6GzduIDAwEC+99BIaNmyIAQMG4Nq1a2rHoUrv3r3x2Wef4c0336y0jr6+Pvr06YPNmzdXa1+ke5jc0AtJT08PixYtwrlz5/D999/jjz/+wIwZMyqtP2LECDRu3BgnT55EQkICZs6cCUNDQwDA2bNn0bNnT7z55ps4c+YMYmJicPjwYXzwwQcaxWRqagoAePToEXbs2IEpU6bgww8/xLlz5/D+++8jKCgIBw4cAABs3boVCxYswIoVK3D58mXs3LkTr7zyisp2T548CQBYu3YtMjMzFZ+f1K1bN1hbW2Pbtm2KstLSUvz4448YMWKE1o7z/v372LRpEwAozh9Q9ffh7++PqKgoRc9KZmYmpk2bBgAICgrCkSNHsGXLFpw5cwaDBw9Gr169cPny5UpjiIuLg5+f3zNjfRG+j7y8PIwaNQrx8fE4fvw4Xn75ZfTp0wd5eXlK9T7++GO89dZb+Ouvv/DOO+9g2LBhuHDhAgCgoKAAXbp0gbm5OeLi4nD48GGYm5ujV69elfbOlQ8DakO7du0QHx+vlbZIh9T4e8eJ6sioUaOEvr6+kMvliuXtt99WWffHH38UDRs2VHxeu3atsLKyUny2sLAQ69atU7ntu+++K9577z2lsvj4eKGnpycKCwtVbvN0++np6aJDhw6icePGoqioSPj7+4tx48YpbTN48GDRp08fIYQQ3377rfD09BTFxcUq23dxcRELFixQfAYgduzYoVQnPDxctG7dWvF58uTJomvXrorP+/btE0ZGRuLu3bvVOk4AQi6XCzMzMwFAABD9+/dXWb/cs74PIYS4cuWKkMlk4saNG0rlb7zxhpg1a1albVtZWYn169dXiPNF+D6e3sfTSkpKhIWFhfjll1+UYg0JCVGq1759ezF+/HghhBDR0dGiWbNmoqysTLG+qKhImJqain379gkhHv+/OGDAAMX67du3i2bNmlUax9NUna9yP//8s9DT0xOlpaVqt0e6jz03pNO6dOmCpKQkxbJo0SIAwIEDB9C9e3c0atQIFhYWGDlyJO7cuVNpl35YWBiCg4PRrVs3fPHFF0hJSVGsS0hIwLp162Bubq5YevbsibKysionpObk5MDc3FwxFFNcXIzt27fDyMgIFy5cQEBAgFL9gIAAxV/LgwcPRmFhIdzd3TFu3Djs2LEDJSUl1TpXI0aMwMGDB3Hz5k0AwMaNG9GnTx+89NJL1TpOCwsLJCUlISEhAcuXL0fTpk2xfPlypTqafh8AcPr0aQgh4OnpqRTToUOHlL6fpxUWFlYYkgJenO/jSbdu3UJISAg8PT1hZWUFKysrPHjwAGlpaUr1OnbsWOFz+bEnJCTgypUrsLCwUMTRoEEDPHz4sNLvYdCgQfjvf/+r0fmojKmpKcrKylBUVKSV9kg3GNR1AEQ1SS6Xw8PDQ6ns+vXr6NOnD0JCQvDpp5+iQYMGOHz4MMaOHYtHjx6pbGfOnDkYPnw4fvvtN+zZswfh4eHYsmULBg0ahLKyMrz//vtKcyzKNWnSpNLYLCwscPr0aejp6cHe3h5yuVxp/dPd9kIIRZmzszMuXryI2NhY/Oc//8GECRPw9ddf49ChQ0rDPZpo164dmjZtii1btmD8+PHYsWMH1q5dq1gv9Tj19PQU30Hz5s2RlZWFwMBAxMXFAZD2fZTHo6+vj4SEBOjr6yutMzc3r3Q7Gxsb3Lt3r0L5i/J9PGn06NG4ffs2oqKi4OLiAmNjY3Ts2FGtyd7lx15WVgZfX19s3LixQh1bW1u14qiOu3fvwszMTDGMSAQwuaEX0KlTp1BSUoJvv/1WcSvwjz/++MztPD094enpidDQUAwbNgxr167FoEGD0LZtW5w/f75CEvUsT170n+bl5YXDhw9j5MiRirKjR4/Cy8tL8dnU1BT9+/dH//79MXHiRDRv3hxnz55F27ZtK7RnaGio1l0/w4cPx8aNG9G4cWPo6emhb9++inVSj/NpoaGhiIyMxI4dOzBo0CC1vg8jI6MK8fv4+KC0tBS3bt1Cp06d1N6/j48PkpOTK5S/iN9HfHw8li5dij59+gAA0tPTkZ2dXaHe8ePHlY79+PHj8PHxUcQRExMDOzs7WFpaSo5FqnPnzqk8x/Ri47AUvXCaNm2KkpISfPfdd7h69So2bNhQYZjkSYWFhfjggw9w8OBBXL9+HUeOHMHJkycVF7Z//etfOHbsGCZOnIikpCRcvnwZu3btwqRJkyTHOH36dKxbtw7Lly/H5cuXERkZie3btysm0q5btw7R0dE4d+6c4hhMTU3h4uKisj1XV1f8/vvvyMrKUtlrUW7EiBE4ffo0Pv/8c7z99ttKwzfaOk5LS0sEBwcjPDwcQgi1vg9XV1c8ePAAv//+O7Kzs1FQUABPT0+MGDECI0eOxPbt25GamoqTJ0/iyy+/xO7duyvdf8+ePXH48GGNYtbV78PDwwMbNmzAhQsX8Oeff2LEiBEqe0B++uknrFmzBpcuXUJ4eDhOnDihmLg8YsQI2NjYYMCAAYiPj0dqaioOHTqEKVOmICMjQ+V+d+zYgebNm1cZ24MHDxTDyQCQmpqKpKSkCkNm8fHx6NGjh9rHTC+Iup3yQ1Rznp7E+KTIyEjh6OgoTE1NRc+ePcX69esFAHHv3j0hhPIE06KiIjF06FDh7OwsjIyMhJOTk/jggw+UJm2eOHFCdO/eXZibmwu5XC68vb3F559/XmlsqibIPm3p0qXC3d1dGBoaCk9PT6VJsDt27BDt27cXlpaWQi6Xiw4dOoj//Oc/ivVPT2DdtWuX8PDwEAYGBsLFxUUIUfnk0ldffVUAEH/88UeFddo6zuvXrwsDAwMRExMjhHj29yGEECEhIaJhw4YCgAgPDxdCCFFcXCw++eQT4erqKgwNDYWDg4MYNGiQOHPmTKUx3b17V5iamor//ve/z4zzSbrwfTy9j9OnTws/Pz9hbGwsXn75ZfHTTz+pnPy8ZMkS0b17d2FsbCxcXFzE5s2bldrNzMwUI0eOFDY2NsLY2Fi4u7uLcePGiZycHCFExf8XyyeaV+XAgQOKCehPLqNGjVLUycjIEIaGhiI9Pb3KtujFIxNCiLpJq4iI6saMGTOQk5ODFStW1HUoVA3Tp09HTk4OVq5cWdeh0HOGw1JE9MKZPXs2XFxctPL0Yao7dnZ2+PTTT+s6DHoOseeGiIiIdAp7boiIiEinMLkhIiIincLkhoiIiHQKkxsiIiLSKUxuiIiISKcwuSEiIiKdwuSGiIiIdAqTGyIiItIpTG6IiIhIp/wfQZO5O8IgN5IAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display = RocCurveDisplay.from_estimator(clf, X_test, y_test)" ] }, { "cell_type": "code", "execution_count": 66, "id": "a51764c6-c1cf-40c6-9d5b-8b775fac0e6c", "metadata": {}, "outputs": [], "source": [ "import joblib" ] }, { "cell_type": "code", "execution_count": 67, "id": "a132fcd8-0865-4e5f-8844-8dfd103d6f65", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['heart_model.sav']" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "heart_file = 'heart_model.sav'\n", "joblib.dump(mdl, heart_file)" ] }, { "cell_type": "code", "execution_count": 60, "id": "1f0a6616-21ff-48cc-9443-0b2d0e2b4765", "metadata": {}, "outputs": [], "source": [ "with open(\"heart_model.pkl\", 'wb') as f:\n", " pickle.dump(mdl,f)" ] }, { "cell_type": "code", "execution_count": null, "id": "0e3aa27c-1050-46cc-9c0e-a65f8fd60453", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "6ed45717-3cb6-4f7c-bee6-c43c8e9e3af7", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "e163807a-71d8-4095-a812-31ab4adcdafa", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "15f6f610-9422-40c1-a05c-12bc3c9dec85", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "7b2bd7b4-1696-46b3-a652-1b506f370919", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "5790ec8e-9a36-449a-817d-d9986898e970", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "4d130da8-a439-4ed3-9e0f-9b2d8b17d075", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "4a4bd3e7-9468-4b53-9fed-863182d3509b", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "59f85a06-fad5-49d6-85ec-d2a0ef8cef0e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "0e043b11-daa3-4189-ad8c-adc956080216", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "9b6f8ad7-1aa1-4bcf-88c9-a1b977d87466", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "f0c307ba-82ec-49c4-9cea-3f25833b75a8", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "04f26b1a-c44b-4a70-91fd-59b3cbf499ea", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "302c2c19-b4c2-4d0b-9b97-a87528112ff1", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "5a78f416-4c1b-4aa7-be7b-758f0ef51030", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "c7635531-e8b8-4daa-abaf-4c385c8a4f79", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 5 }