Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- activity_recognition.h5 +3 -0
- activity_recognition2.h5 +3 -0
- classes.txt +30 -0
- main.py +87 -0
- requirements.txt +7 -0
- utils.py +34 -0
activity_recognition.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dbceddfb0b6e54dafd62e7a06831659633db33694bf3859f32b8639af75cd38
|
3 |
+
size 44792360
|
activity_recognition2.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13a14c7b271bb053fefc262a231e94ed8210218120a6aba936d164140efea524
|
3 |
+
size 18776384
|
classes.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1 ApplyEyeMakeup
|
2 |
+
2 ApplyLipstick
|
3 |
+
3 Archery
|
4 |
+
4 BabyCrawling
|
5 |
+
5 BalanceBeam
|
6 |
+
6 BandMarching
|
7 |
+
7 BaseballPitch
|
8 |
+
8 Basketball
|
9 |
+
9 BasketballDunk
|
10 |
+
10 BenchPress
|
11 |
+
11 Biking
|
12 |
+
12 Billiards
|
13 |
+
13 BlowDryHair
|
14 |
+
14 BlowingCandles
|
15 |
+
15 BodyWeightSquats
|
16 |
+
16 Bowling
|
17 |
+
17 BoxingPunchingBag
|
18 |
+
18 BoxingSpeedBag
|
19 |
+
19 BreastStroke
|
20 |
+
20 BrushingTeeth
|
21 |
+
21 CleanAndJerk
|
22 |
+
22 CliffDiving
|
23 |
+
23 CricketBowling
|
24 |
+
24 CricketShot
|
25 |
+
25 CuttingInKitchen
|
26 |
+
26 Diving
|
27 |
+
27 Drumming
|
28 |
+
28 Fencing
|
29 |
+
29 FieldHockeyPenalty
|
30 |
+
30 FloorGymnastics
|
main.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Mon Dec 11 19:31:04 2023
|
4 |
+
|
5 |
+
@author: Pranav
|
6 |
+
"""
|
7 |
+
|
8 |
+
import streamlit as st
|
9 |
+
import os
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import tensorflow as tf
|
14 |
+
from tensorflow import keras
|
15 |
+
from keras.models import load_model
|
16 |
+
from utils import eval_real,load_video
|
17 |
+
import tempfile
|
18 |
+
|
19 |
+
st.title('Action Recognition video spliter')
|
20 |
+
st.header('Please Upload a Video')
|
21 |
+
|
22 |
+
file = st.file_uploader('',type=['mp4'])
|
23 |
+
isresnet = st.button("Load Resnet Model")
|
24 |
+
iscnnlstm = st.button("Load CNN-LSTM Model")
|
25 |
+
|
26 |
+
label_data = pd.read_csv("classes.txt", sep = ' ', header = None)
|
27 |
+
label_data.columns = ['index','labels']
|
28 |
+
classes = label_data['labels']
|
29 |
+
|
30 |
+
if file is not None :
|
31 |
+
video_bytes = file.read()
|
32 |
+
st.video(video_bytes)
|
33 |
+
|
34 |
+
with tempfile.NamedTemporaryFile(dir='.') as f:
|
35 |
+
f.write(file.getbuffer())
|
36 |
+
|
37 |
+
model = load_model('activity_recognition.h5',compile = False)
|
38 |
+
|
39 |
+
if iscnnlstm == True :
|
40 |
+
model = load_model('activity_recognition2.h5',compile = False)
|
41 |
+
|
42 |
+
images = load_video(f.name)
|
43 |
+
|
44 |
+
edited_img = []
|
45 |
+
count = 0
|
46 |
+
for count in range(len(images[0]) - 15):
|
47 |
+
imgs = images[0][count:count+15]
|
48 |
+
edited_img.append(imgs)
|
49 |
+
count += 1
|
50 |
+
edited_imgs = np.array(edited_img)
|
51 |
+
images_arr = np.array(images)
|
52 |
+
|
53 |
+
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
|
54 |
+
pred = []
|
55 |
+
with st.spinner('Wait for it...'):
|
56 |
+
for img in edited_imgs:
|
57 |
+
img = img.reshape(1,15,64,64,3)
|
58 |
+
prediction = eval_real(img,model)
|
59 |
+
pred.append(prediction)
|
60 |
+
st.success('Done!')
|
61 |
+
|
62 |
+
names = []
|
63 |
+
start = []
|
64 |
+
end = []
|
65 |
+
start.append(0)
|
66 |
+
names.append(classes[pred[0]])
|
67 |
+
for i in range(len(pred)-1):
|
68 |
+
if pred[i] != pred[i+1] :
|
69 |
+
names.append(classes[pred[i]])
|
70 |
+
if len(end) != 0:
|
71 |
+
end.pop()
|
72 |
+
end.append(i)
|
73 |
+
start.append(i+1)
|
74 |
+
end.append(i+1)
|
75 |
+
else :
|
76 |
+
if len(end) != 0:
|
77 |
+
end.pop()
|
78 |
+
end.append(i)
|
79 |
+
|
80 |
+
for j in range(len(end)):
|
81 |
+
if j < len(names) :
|
82 |
+
name = names[j]
|
83 |
+
else: name = names[j-1]
|
84 |
+
if start[j] - end[j] != 0:
|
85 |
+
st.write('Video ',j,' Start: ',start[j],' End: ',end[j],name)
|
86 |
+
else:
|
87 |
+
st.write('Video',j,'Insignificant Change')
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
keras==2.12.0
|
2 |
+
numpy==2.0.0
|
3 |
+
opencv_python==4.9.0.80
|
4 |
+
pandas==2.2.2
|
5 |
+
streamlit==1.33.0
|
6 |
+
tensorflow==2.12.0
|
7 |
+
tensorflow_intel==2.12.0
|
utils.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def video_Frames(clip_path,img_size = 64):
|
6 |
+
video = cv2.VideoCapture(clip_path)
|
7 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
8 |
+
for count in range(frame_count):
|
9 |
+
flag, frame = video.read()
|
10 |
+
if not flag:
|
11 |
+
break
|
12 |
+
frame = cv2.resize(frame,(img_size,img_size))
|
13 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
14 |
+
#normalizing the pixels between 0 and 1
|
15 |
+
frame = frame/255.0
|
16 |
+
yield frame
|
17 |
+
video.release()
|
18 |
+
|
19 |
+
|
20 |
+
def load_video(folder_path):
|
21 |
+
imgs = []
|
22 |
+
frames_generator = video_Frames(folder_path)
|
23 |
+
frames_array = np.array(list(frames_generator))
|
24 |
+
imgs.append(frames_array)
|
25 |
+
real_imgs = np.array(imgs)
|
26 |
+
|
27 |
+
return imgs
|
28 |
+
|
29 |
+
|
30 |
+
def eval_real(real_imgs, model):
|
31 |
+
pred1 = model.predict(real_imgs)
|
32 |
+
pred1_max = pred1.argmax()
|
33 |
+
|
34 |
+
return pred1_max
|