File size: 15,902 Bytes
f637442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n",
    "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
    "from tensorflow.keras.models import Sequential\n",
    "from tensorflow.keras.layers import Dense\n",
    "from scipy.stats import f\n",
    "\n",
    "# Load the dataset\n",
    "dataset = pd.read_csv('/Users/ashishpoudel/Downloads/AircraftFuelPrediction-main/datasets/preprocessed_data.csv')\n",
    "dataset.dropna(inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Features and target\n",
    "features = dataset[['distance', 'model', 'seats', 'fuel_burn', 'fuel_burn_total']]\n",
    "target = dataset['fuel_burn_total']\n",
    "\n",
    "# Encoding the 'model' column\n",
    "encoder = OneHotEncoder(sparse_output=False)\n",
    "model_encoded = pd.DataFrame(encoder.fit_transform(features[['model']]))\n",
    "model_encoded.columns = encoder.get_feature_names_out(['model'])\n",
    "\n",
    "# Drop the original 'model' column and add the encoded data\n",
    "features = features.drop('model', axis=1)\n",
    "features = pd.concat([features.reset_index(drop=True), model_encoded.reset_index(drop=True)], axis=1)\n",
    "\n",
    "# Train-test split\n",
    "feature_train, feature_test, target_train, target_test = train_test_split(features, target, test_size=0.1, random_state=42)\n",
    "\n",
    "# Feature scaling\n",
    "scaler = StandardScaler()\n",
    "feature_train_scaled = scaler.fit_transform(feature_train)\n",
    "feature_test_scaled = scaler.transform(feature_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/50\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/anaconda3/envs/Intenv/lib/python3.9/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
      "  super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 6ms/step - loss: 140.5811\n",
      "Epoch 2/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 1.9729\n",
      "Epoch 3/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.7662\n",
      "Epoch 4/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 7ms/step - loss: 0.8330\n",
      "Epoch 5/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.7197\n",
      "Epoch 6/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.7294\n",
      "Epoch 7/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.6337\n",
      "Epoch 8/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 7ms/step - loss: 0.4558\n",
      "Epoch 9/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 7ms/step - loss: 0.3461\n",
      "Epoch 10/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.4073\n",
      "Epoch 11/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.3993\n",
      "Epoch 12/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.3657\n",
      "Epoch 13/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.3334\n",
      "Epoch 14/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.3895\n",
      "Epoch 15/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.4462\n",
      "Epoch 16/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2150\n",
      "Epoch 17/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.3340\n",
      "Epoch 18/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2634\n",
      "Epoch 19/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 7ms/step - loss: 0.2737\n",
      "Epoch 20/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2614\n",
      "Epoch 21/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2445\n",
      "Epoch 22/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2159\n",
      "Epoch 23/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.4048\n",
      "Epoch 24/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2998\n",
      "Epoch 25/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2747\n",
      "Epoch 26/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2207\n",
      "Epoch 27/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1944\n",
      "Epoch 28/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.3801\n",
      "Epoch 29/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2268\n",
      "Epoch 30/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 6ms/step - loss: 0.2105\n",
      "Epoch 31/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1308\n",
      "Epoch 32/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 6ms/step - loss: 0.1518\n",
      "Epoch 33/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 6ms/step - loss: 0.1473\n",
      "Epoch 34/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2194\n",
      "Epoch 35/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 6ms/step - loss: 0.1172\n",
      "Epoch 36/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1910\n",
      "Epoch 37/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1921\n",
      "Epoch 38/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2753\n",
      "Epoch 39/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2847\n",
      "Epoch 40/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1538\n",
      "Epoch 41/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1008\n",
      "Epoch 42/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1592\n",
      "Epoch 43/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.0971\n",
      "Epoch 44/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1211\n",
      "Epoch 45/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1177\n",
      "Epoch 46/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.0955\n",
      "Epoch 47/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.0695\n",
      "Epoch 48/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.2184\n",
      "Epoch 49/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1073\n",
      "Epoch 50/50\n",
      "\u001b[1m1314/1314\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 6ms/step - loss: 0.1462\n",
      "\u001b[1m146/146\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - loss: 0.0717\n",
      "Mean Squared Error: 0.16058479249477386\n",
      "\u001b[1m146/146\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n"
     ]
    }
   ],
   "source": [
    "# Neural network model\n",
    "model = Sequential([\n",
    "    Dense(64, activation='relu', input_shape=(feature_train_scaled.shape[1],)),\n",
    "    Dense(64, activation='relu'),\n",
    "    Dense(1)\n",
    "])\n",
    "\n",
    "# Compile and train the model\n",
    "model.compile(optimizer='adam', loss='mean_squared_error')\n",
    "model.fit(feature_train_scaled, target_train, epochs=50, batch_size=32, verbose=1)\n",
    "\n",
    "# Evaluate the model\n",
    "mse = model.evaluate(feature_test_scaled, target_test)\n",
    "print(\"Mean Squared Error:\", mse)\n",
    "\n",
    "# Predictions and performance metrics\n",
    "target_prediction = model.predict(feature_test_scaled)\n",
    "r2 = r2_score(target_test, target_prediction)\n",
    "mae = mean_absolute_error(target_test, target_prediction)\n",
    "mse = mean_squared_error(target_test, target_prediction)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "R-squared: 0.9780861666108605\n",
      "Mean Absolute Error: 0.7006260730692777\n",
      "Mean Squared Error: 2.554603752569432\n",
      "p-value: 0.0000\n",
      "Root Squared Error: 1.60\n",
      "F-statistic: 24052.88\n"
     ]
    }
   ],
   "source": [
    "# Calculate F-statistic and p-value \n",
    "n_samples = len(target)\n",
    "n_predictors = feature_train_scaled.shape[1]\n",
    "residual = n_samples - n_predictors - 1\n",
    "explained_variance = r2 * np.sum((target - np.mean(target))**2)\n",
    "unexplained_variance = mse * n_samples\n",
    "\n",
    "F_value = (explained_variance / n_predictors) / (unexplained_variance / residual)\n",
    "p_value = 1 - f.cdf(F_value, n_predictors, residual)\n",
    "rse = np.sqrt(mse)\n",
    "\n",
    "# Print the results\n",
    "print(f\"R-squared: {r2}\")\n",
    "print(f\"Mean Absolute Error: {mae}\")\n",
    "print(f\"Mean Squared Error: {mse}\")\n",
    "print(f\"p-value: {p_value:.4f}\")\n",
    "print(f\"Root Squared Error: {rse:.2f}\")\n",
    "print(f\"F-statistic: {F_value:.2f}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Intenv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}