Spaces:
Runtime error
Runtime error
Paula Leonova
commited on
Commit
•
1f1805f
1
Parent(s):
0473b75
Update description for summary generation
Browse files
app.py
CHANGED
@@ -61,27 +61,28 @@ if submit_button:
|
|
61 |
|
62 |
with st.spinner('Generating summaries and matching labels...'):
|
63 |
my_expander = st.expander(label='Expand to see summary generation details')
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
# final_summary = summarizer_gen(summarizer, sequence=text_input, maximum_tokens = 30, minimum_tokens = 100)
|
87 |
st.markdown("### Combined Summary")
|
|
|
61 |
|
62 |
with st.spinner('Generating summaries and matching labels...'):
|
63 |
my_expander = st.expander(label='Expand to see summary generation details')
|
64 |
+
with my_expander:
|
65 |
+
# For each body of text, create text chunks of a certain token size required for the transformer
|
66 |
+
nested_sentences = create_nest_sentences(document = text_input, token_max_length = 1024)
|
67 |
+
|
68 |
+
summary = []
|
69 |
+
# st.markdown("### Text Chunk & Summaries")
|
70 |
+
st.markdown("_Breaks up the original text into sections with complete sentences totaling \
|
71 |
+
less than 1024 tokens, a requirement for the summarizer. Each block of text is than summarized separately \
|
72 |
+
and then combined at the very end to generate the final summary._")
|
73 |
+
|
74 |
+
# For each chunk of sentences (within the token max), generate a summary
|
75 |
+
for n in range(0, len(nested_sentences)):
|
76 |
+
text_chunk = " ".join(map(str, nested_sentences[n]))
|
77 |
+
st.markdown(f"###### Original Text Chunk {n+1}/{len(nested_sentences)}" )
|
78 |
+
st.markdown(text_chunk)
|
79 |
+
|
80 |
+
chunk_summary = summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens = 300, minimum_tokens = 20)
|
81 |
+
summary.append(chunk_summary)
|
82 |
+
st.markdown(f"###### Partial Summary {n+1}/{len(nested_sentences)}")
|
83 |
+
st.markdown(chunk_summary)
|
84 |
+
# Combine all the summaries into a list and compress into one document, again
|
85 |
+
final_summary = " \n\n".join(list(summary))
|
86 |
|
87 |
# final_summary = summarizer_gen(summarizer, sequence=text_input, maximum_tokens = 30, minimum_tokens = 100)
|
88 |
st.markdown("### Combined Summary")
|