Spaces:
Runtime error
Runtime error
espejelomar
commited on
Commit
·
e149a99
1
Parent(s):
48fb736
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,96 +1,96 @@
|
|
1 |
import torch
|
2 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
3 |
-
from datasets import load_dataset
|
4 |
-
from PIL import Image
|
5 |
import numpy as np
|
6 |
-
import paddlehub as hub
|
7 |
-
import random
|
8 |
-
from PIL import ImageDraw,ImageFont
|
9 |
|
10 |
-
import streamlit as st
|
11 |
|
12 |
-
@st.experimental_singleton
|
13 |
-
def load_bg_model():
|
14 |
-
|
15 |
-
|
16 |
|
17 |
|
18 |
-
bg_model = load_bg_model()
|
19 |
-
def remove_bg(img):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
meme_template=Image.open("./assets/pigeon_meme.jpg").convert("RGBA")
|
34 |
-
def make_meme(pigeon,text="Is this a pigeon?",show_text=True,remove_background=True):
|
35 |
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
from transformers import BeitFeatureExtractor, BeitForImageClassification
|
74 |
-
emb_feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
|
75 |
-
emb_model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
|
76 |
-
def embed(images):
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
def build_index():
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
def get_dataset():
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512',model_version=None):
|
96 |
gan = LightweightGAN.from_pretrained(model_name,version=model_version)
|
@@ -103,5 +103,5 @@ def generate(gan,batch_size=1):
|
|
103 |
ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8)
|
104 |
return ims
|
105 |
|
106 |
-
def interpolate():
|
107 |
-
|
|
|
1 |
import torch
|
2 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
3 |
+
# from datasets import load_dataset
|
4 |
+
# from PIL import Image
|
5 |
import numpy as np
|
6 |
+
# import paddlehub as hub
|
7 |
+
# import random
|
8 |
+
# from PIL import ImageDraw,ImageFont
|
9 |
|
10 |
+
# import streamlit as st
|
11 |
|
12 |
+
# @st.experimental_singleton
|
13 |
+
# def load_bg_model():
|
14 |
+
# bg_model = hub.Module(name='U2NetP', directory='assets/models/')
|
15 |
+
# return bg_model
|
16 |
|
17 |
|
18 |
+
# bg_model = load_bg_model()
|
19 |
+
# def remove_bg(img):
|
20 |
+
# result = bg_model.Segmentation(
|
21 |
+
# images=[np.array(img)[:,:,::-1]],
|
22 |
+
# paths=None,
|
23 |
+
# batch_size=1,
|
24 |
+
# input_size=320,
|
25 |
+
# output_dir=None,
|
26 |
+
# visualization=False)
|
27 |
+
# output = result[0]
|
28 |
+
# mask=Image.fromarray(output['mask'])
|
29 |
+
# front=Image.fromarray(output['front'][:,:,::-1]).convert("RGBA")
|
30 |
+
# front.putalpha(mask)
|
31 |
+
# return front
|
32 |
|
33 |
+
# meme_template=Image.open("./assets/pigeon_meme.jpg").convert("RGBA")
|
34 |
+
# def make_meme(pigeon,text="Is this a pigeon?",show_text=True,remove_background=True):
|
35 |
|
36 |
+
# meme=meme_template.copy()
|
37 |
+
# approx_butterfly_center=(850,30)
|
38 |
|
39 |
+
# if remove_background:
|
40 |
+
# pigeon=remove_bg(pigeon)
|
41 |
|
42 |
+
# else:
|
43 |
+
# pigeon=Image.fromarray(pigeon).convert("RGBA")
|
44 |
|
45 |
+
# random_rotate=random.randint(-30,30)
|
46 |
+
# random_size=random.randint(150,200)
|
47 |
+
# pigeon=pigeon.resize((random_size,random_size)).rotate(random_rotate,expand=True)
|
48 |
|
49 |
+
# meme.alpha_composite(pigeon, approx_butterfly_center)
|
50 |
|
51 |
+
# #ref: https://blog.lipsumarium.com/caption-memes-in-python/
|
52 |
+
# def drawTextWithOutline(text, x, y):
|
53 |
+
# draw.text((x-2, y-2), text,(0,0,0),font=font)
|
54 |
+
# draw.text((x+2, y-2), text,(0,0,0),font=font)
|
55 |
+
# draw.text((x+2, y+2), text,(0,0,0),font=font)
|
56 |
+
# draw.text((x-2, y+2), text,(0,0,0),font=font)
|
57 |
+
# draw.text((x, y), text, (255,255,255), font=font)
|
58 |
|
59 |
+
# if show_text:
|
60 |
+
# draw = ImageDraw.Draw(meme)
|
61 |
+
# font_size=52
|
62 |
+
# font = ImageFont.truetype("assets/impact.ttf", font_size)
|
63 |
+
# w, h = draw.textsize(text, font) # measure the size the text will take
|
64 |
+
# drawTextWithOutline(text, meme.width/2 - w/2, meme.height - font_size*2)
|
65 |
+
# meme = meme.convert("RGB")
|
66 |
+
# return meme
|
67 |
|
68 |
+
# def get_train_data(dataset_name="huggan/smithsonian_butterflies_subset"):
|
69 |
+
# dataset=load_dataset(dataset_name)
|
70 |
+
# dataset=dataset.sort("sim_score")
|
71 |
+
# return dataset["train"]
|
72 |
|
73 |
+
# from transformers import BeitFeatureExtractor, BeitForImageClassification
|
74 |
+
# emb_feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224')
|
75 |
+
# emb_model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224')
|
76 |
+
# def embed(images):
|
77 |
+
# inputs = emb_feature_extractor(images=images, return_tensors="pt")
|
78 |
+
# outputs = emb_model(**inputs,output_hidden_states= True)
|
79 |
+
# last_hidden=outputs.hidden_states[-1]
|
80 |
+
# pooler=emb_model.base_model.pooler
|
81 |
+
# final_emb=pooler(last_hidden).detach().numpy()
|
82 |
+
# return final_emb
|
83 |
|
84 |
+
# def build_index():
|
85 |
+
# dataset=get_train_data()
|
86 |
+
# ds_with_embeddings = dataset.map(lambda x: {"beit_embeddings":embed(x["image"])},batched=True,batch_size=20)
|
87 |
+
# ds_with_embeddings.add_faiss_index(column='beit_embeddings')
|
88 |
+
# ds_with_embeddings.save_faiss_index('beit_embeddings', 'beit_index.faiss')
|
89 |
|
90 |
+
# def get_dataset():
|
91 |
+
# dataset=get_train_data()
|
92 |
+
# dataset.load_faiss_index('beit_embeddings', 'beit_index.faiss')
|
93 |
+
# return dataset
|
94 |
|
95 |
def load_model(model_name='ceyda/butterfly_cropped_uniq1K_512',model_version=None):
|
96 |
gan = LightweightGAN.from_pretrained(model_name,version=model_version)
|
|
|
103 |
ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8)
|
104 |
return ims
|
105 |
|
106 |
+
# def interpolate():
|
107 |
+
# pass
|