feat: change dataset to custom datset
Browse files- Readme.md +19 -0
- article_base_train_test.py +83 -66
Readme.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset Structure
|
2 |
+
|
3 |
+
/custom_vqa_project/
|
4 |
+
β
|
5 |
+
βββ /dataset/
|
6 |
+
β βββ /images/
|
7 |
+
β β βββ train/
|
8 |
+
β β β βββ image1.jpg
|
9 |
+
β β β βββ image2.jpg
|
10 |
+
β β βββ val/
|
11 |
+
β β βββ image3.jpg
|
12 |
+
β β βββ image4.jpg
|
13 |
+
β βββ train.json # Metadata for the training set
|
14 |
+
β βββ val.json # Metadata for the validation set
|
15 |
+
β
|
16 |
+
βββ /scripts/
|
17 |
+
β βββ train.py # Your fine-tuning script
|
18 |
+
β
|
19 |
+
βββ README.md
|
article_base_train_test.py
CHANGED
@@ -1,80 +1,97 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
|
4 |
import torch
|
|
|
5 |
from peft import get_peft_model, LoraConfig
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def main():
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
18 |
-
image_token = processor.tokenizer.convert_tokens_to_ids("<image>")
|
19 |
-
device = "cuda"
|
20 |
|
21 |
-
|
22 |
load_in_4bit=True,
|
23 |
bnb_4bit_quant_type="nf4",
|
24 |
bnb_4bit_compute_type=torch.bfloat16
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
args=TrainingArguments(
|
37 |
-
num_train_epochs=2,
|
38 |
-
remove_unused_columns=False,
|
39 |
-
per_device_train_batch_size=16,
|
40 |
-
gradient_accumulation_steps=4,
|
41 |
-
warmup_steps=2,
|
42 |
-
learning_rate=2e-5,
|
43 |
-
weight_decay=1e-6,
|
44 |
-
adam_beta2=0.999,
|
45 |
-
logging_steps=100,
|
46 |
-
# optim="adamw_hf",
|
47 |
-
optim="paged_adamw_8bit", # for QLoRA
|
48 |
-
save_strategy="steps",
|
49 |
-
save_steps=1000,
|
50 |
-
push_to_hub=True,
|
51 |
-
save_total_limit=1,
|
52 |
-
bf16=True,
|
53 |
-
report_to=["tensorboard"],
|
54 |
-
dataloader_pin_memory=False
|
55 |
-
)
|
56 |
-
|
57 |
-
def collate_fn(examples):
|
58 |
-
texts = ["answer " + example["question"] for example in examples]
|
59 |
-
labels= [example['multiple_choice_answer'] for example in examples] # μ°λ¦¬λ label μ΄ νμ μμλ―?
|
60 |
-
images = [example["image"].convert("RGB") for example in examples]
|
61 |
-
tokens = processor(text=texts, images=images, suffix=labels,
|
62 |
-
return_tensors="pt", padding="longest")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
-
|
80 |
-
main()
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from datasets import load_dataset, Dataset
|
4 |
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
from peft import get_peft_model, LoraConfig
|
8 |
|
9 |
+
# Function to load custom dataset
|
10 |
+
def load_custom_dataset(json_file, image_folder):
|
11 |
+
with open(json_file, 'r') as f:
|
12 |
+
data = json.load(f)
|
13 |
+
|
14 |
+
# Prepare dataset format for Hugging Face
|
15 |
+
questions = []
|
16 |
+
images = []
|
17 |
+
answers = []
|
18 |
+
multiple_choice_answers = []
|
19 |
|
20 |
+
for item in data:
|
21 |
+
questions.append(item['question'])
|
22 |
+
images.append(os.path.join(image_folder, item['image_id']))
|
23 |
+
answers.append(item['answer'])
|
24 |
+
multiple_choice_answers.append(item['multiple_choice_answer'])
|
25 |
+
|
26 |
+
return Dataset.from_dict({
|
27 |
+
'question': questions,
|
28 |
+
'image': images,
|
29 |
+
'answer': answers,
|
30 |
+
'multiple_choice_answer': multiple_choice_answers
|
31 |
+
})
|
32 |
+
|
33 |
+
# Main training function
|
34 |
def main():
|
35 |
+
# Load custom dataset
|
36 |
+
train_ds = load_custom_dataset('dataset/train.json', 'dataset/images/train')
|
37 |
+
val_ds = load_custom_dataset('dataset/val.json', 'dataset/images/val')
|
38 |
+
|
39 |
+
model_id = "google/paligemma-3b-pt-224"
|
40 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
41 |
+
image_token = processor.tokenizer.convert_tokens_to_ids("<image>")
|
42 |
+
device = "cuda"
|
|
|
|
|
|
|
43 |
|
44 |
+
bnb_config = BitsAndBytesConfig(
|
45 |
load_in_4bit=True,
|
46 |
bnb_4bit_quant_type="nf4",
|
47 |
bnb_4bit_compute_type=torch.bfloat16
|
48 |
+
)
|
49 |
+
lora_config = LoraConfig(
|
50 |
+
r=8,
|
51 |
+
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
52 |
+
task_type="CAUSAL_LM"
|
53 |
+
)
|
54 |
+
|
55 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={"": 0})
|
56 |
+
model = get_peft_model(model, lora_config)
|
57 |
+
model.print_trainable_parameters()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
args = TrainingArguments(
|
60 |
+
num_train_epochs=2,
|
61 |
+
remove_unused_columns=False,
|
62 |
+
per_device_train_batch_size=16,
|
63 |
+
gradient_accumulation_steps=4,
|
64 |
+
warmup_steps=2,
|
65 |
+
learning_rate=2e-5,
|
66 |
+
weight_decay=1e-6,
|
67 |
+
logging_steps=100,
|
68 |
+
optim="paged_adamw_8bit",
|
69 |
+
save_strategy="steps",
|
70 |
+
save_steps=1000,
|
71 |
+
save_total_limit=1,
|
72 |
+
bf16=True,
|
73 |
+
report_to=["tensorboard"],
|
74 |
+
dataloader_pin_memory=False
|
75 |
+
)
|
76 |
|
77 |
+
# Custom collate function
|
78 |
+
def collate_fn(examples):
|
79 |
+
texts = ["answer " + example["question"] for example in examples]
|
80 |
+
labels = [example['multiple_choice_answer'] for example in examples]
|
81 |
+
images = [Image.open(image_path).convert("RGB") for image_path in examples['image']]
|
82 |
+
tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
|
83 |
+
tokens = tokens.to(torch.bfloat16).to(device)
|
84 |
+
return tokens
|
85 |
+
|
86 |
+
trainer = Trainer(
|
87 |
+
model=model,
|
88 |
+
train_dataset=train_ds,
|
89 |
+
eval_dataset=val_ds,
|
90 |
+
data_collator=collate_fn,
|
91 |
+
args=args
|
92 |
+
)
|
93 |
+
|
94 |
+
trainer.train()
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
+
main()
|
|