fountai commited on
Commit
419f7c2
·
1 Parent(s): 4d06751

customizable lora

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -21,7 +21,7 @@ hf_hub_download("XLabs-AI/flux-controlnet-canny", "controlnet.safetensors")
21
  print("downloaded!")
22
 
23
  @spaces.GPU(duration=240)
24
- def process_image(number_of_images, image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
25
  from src.flux.xflux_pipeline import XFluxPipeline
26
  def run_xflux_pipeline(
27
  prompt, image, repo_id, name, device,
@@ -131,6 +131,8 @@ def process_image(number_of_images, image, prompt, steps, use_lora, use_controln
131
  num_steps=steps,
132
  num_images_per_prompt=number_of_images,
133
  use_lora=use_lora,
 
 
134
  true_gs=true_gs,
135
  use_ip=use_ip,
136
  guidance=guidance
@@ -202,6 +204,8 @@ with gr.Blocks(css=custom_css) as demo:
202
  use_depth = gr.Checkbox(label="Use depth")
203
  use_hed = gr.Checkbox(label="Use hed")
204
  use_lora = gr.Checkbox(label="Use LORA", value=True)
 
 
205
  lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
206
 
207
  number_of_images = gr.Slider(step=1, minimum=0, maximum=4, value=2, label="Number of Images")
@@ -215,7 +219,7 @@ with gr.Blocks(css=custom_css) as demo:
215
  with gr.Column(scale=2, elem_classes="app"):
216
  output = gr.Gallery(label="Galery output", elem_classes="galery")
217
 
218
- submit_btn.click(process_image, inputs=[number_of_images, input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
219
 
220
  if __name__ == '__main__':
221
  demo.launch(share=True, debug=True)
 
21
  print("downloaded!")
22
 
23
  @spaces.GPU(duration=240)
24
+ def process_image(lora_path, lora_name, number_of_images, image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
25
  from src.flux.xflux_pipeline import XFluxPipeline
26
  def run_xflux_pipeline(
27
  prompt, image, repo_id, name, device,
 
131
  num_steps=steps,
132
  num_images_per_prompt=number_of_images,
133
  use_lora=use_lora,
134
+ lora_repo_id=lora_path,
135
+ lora_name=lora_name,
136
  true_gs=true_gs,
137
  use_ip=use_ip,
138
  guidance=guidance
 
204
  use_depth = gr.Checkbox(label="Use depth")
205
  use_hed = gr.Checkbox(label="Use hed")
206
  use_lora = gr.Checkbox(label="Use LORA", value=True)
207
+ lora_path = gr.Checkbox(label="Lora Path", value="XLabs-AI/flux-lora-collection")
208
+ lora_name = gr.Checkbox(label="Lora Name", value="realism_lora.safetensors")
209
  lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
210
 
211
  number_of_images = gr.Slider(step=1, minimum=0, maximum=4, value=2, label="Number of Images")
 
219
  with gr.Column(scale=2, elem_classes="app"):
220
  output = gr.Gallery(label="Galery output", elem_classes="galery")
221
 
222
+ submit_btn.click(process_image, inputs=[lora_path, lora_name, number_of_images, input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
223
 
224
  if __name__ == '__main__':
225
  demo.launch(share=True, debug=True)