File size: 17,468 Bytes
aedd7d9
c5e57d6
e91ac58
 
 
 
 
 
9945fe7
4d5e173
b8abf64
 
c5e57d6
4d5e173
e91ac58
712822d
5590fea
712822d
e91ac58
 
c5e57d6
 
e91ac58
 
6965e7c
e91ac58
 
6965e7c
e91ac58
 
c5e57d6
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
ae215ea
 
 
 
 
e91ac58
 
4d5e173
af032b9
4d5e173
 
af032b9
e91ac58
 
 
 
 
 
 
6965e7c
af032b9
 
 
c5e57d6
7a93196
b8abf64
7a93196
 
af032b9
 
 
c5e57d6
e91ac58
af032b9
 
 
 
 
 
 
e91ac58
af032b9
 
 
 
 
 
 
 
c5e57d6
af032b9
 
 
 
 
 
 
c5e57d6
e91ac58
af032b9
 
 
 
 
 
 
 
e91ac58
 
 
6965e7c
7a93196
64ffaff
 
e91ac58
64ffaff
a1e2ec1
e91ac58
a1e2ec1
 
e91ac58
a1e2ec1
 
 
 
 
64ffaff
a1e2ec1
 
 
 
 
e91ac58
 
 
4d5e173
 
aedd7d9
4d5e173
 
 
 
 
 
3a1d033
4d5e173
 
 
 
 
 
aedd7d9
4d5e173
 
 
 
 
 
 
 
 
 
 
5590fea
4d5e173
 
 
 
 
 
 
 
 
 
5590fea
4d5e173
5590fea
aedd7d9
e91ac58
b8abf64
 
4d5e173
 
 
 
 
 
 
 
 
 
 
 
7a93196
 
b8abf64
 
 
 
 
 
 
 
 
 
 
 
 
 
4d5e173
 
 
 
 
 
 
 
 
 
 
 
 
7a93196
 
4d5e173
 
 
c5e57d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d5e173
 
c5e57d6
 
4d5e173
 
 
 
 
af032b9
7a93196
4d5e173
7a93196
 
 
 
4d5e173
 
e91ac58
eb76783
e91ac58
 
 
7a93196
af032b9
 
4d5e173
7a93196
af032b9
 
c5e57d6
 
7a93196
af032b9
4d5e173
7a93196
 
 
b8abf64
7a93196
c5e57d6
7a93196
 
 
 
 
 
 
 
28ebe52
 
 
af032b9
 
e91ac58
a03d740
4d5e173
 
 
 
 
 
 
 
a03d740
4d5e173
a03d740
 
c5e57d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d740
 
e91ac58
af032b9
e91ac58
 
 
 
 
 
 
 
 
c5e57d6
 
 
 
 
 
 
 
e91ac58
 
4d5e173
7a93196
e91ac58
 
 
 
 
b8abf64
 
 
 
e91ac58
 
 
 
 
 
 
a03d740
e91ac58
 
c3bedaf
 
e91ac58
 
 
 
 
 
 
 
af032b9
e91ac58
 
 
 
af032b9
e91ac58
 
 
 
 
 
 
 
 
64ffaff
e91ac58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import os, io, openai, vertexai, json, tempfile
import webbrowser
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from langchain.schema import HumanMessage
from langchain_openai import AzureChatOpenAI
from vertexai.language_models import TextGenerationModel
from vertexai.preview.generative_models import GenerativeModel
from google.cloud import vision
from google.cloud import vision_v1p3beta1 as vision_beta
# from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_vertexai import VertexAI
from huggingface_hub import HfApi, HfFolder

from datetime import datetime
# import google.generativeai as genai
from google.oauth2 import service_account
# from googleapiclient.discovery import build




class APIvalidation:

    def __init__(self, cfg_private, dir_home, is_hf) -> None:
        self.cfg_private = cfg_private
        self.dir_home = dir_home
        self.is_hf = is_hf
        self.formatted_date = self.get_formatted_date()

        self.HF_MODEL_LIST = ['microsoft/Florence-2-large','microsoft/Florence-2-base',
            'microsoft/trocr-base-handwritten','microsoft/trocr-large-handwritten',
            'google/gemma-2-9b','google/gemma-2-9b-it','google/gemma-2-27b','google/gemma-2-27b-it',
            'mistralai/Mistral-7B-Instruct-v0.3','mistralai/Mixtral-8x22B-v0.1','mistralai/Mixtral-8x22B-Instruct-v0.1',
            'unsloth/mistral-7b-instruct-v0.3-bnb-4bit'
            ]

    def get_formatted_date(self):
        # Get the current date
        current_date = datetime.now()

        # Format the date as "Month day, year" (e.g., "January 23, 2024")
        formatted_date = current_date.strftime("%B %d, %Y")

        return formatted_date


    def has_API_key(self, val):
        return isinstance(val, str) and bool(val.strip())
        # if val:
        #     return True
        # else:
        #     return False
            
    def check_openai_api_key(self):
        if self.is_hf:
            openai.api_key = os.getenv('OPENAI_API_KEY')
        else:
            openai.api_key = self.cfg_private['openai']['OPENAI_API_KEY']

        try:
            openai.models.list()
            return True
        except:
            return False
        
    def check_azure_openai_api_key(self):
        if not self.is_hf:
            try:
                # Initialize the Azure OpenAI client
                model = AzureChatOpenAI(
                    deployment_name = 'gpt-4',#'gpt-35-turbo',
                    openai_api_version = self.cfg_private['openai_azure']['OPENAI_API_VERSION'],
                    openai_api_key = self.cfg_private['openai_azure']['OPENAI_API_KEY_AZURE'],
                    azure_endpoint = self.cfg_private['openai_azure']['OPENAI_API_BASE'],
                    openai_organization = self.cfg_private['openai_azure']['OPENAI_ORGANIZATION'],
                )
                msg = HumanMessage(content="hello")
                # self.llm_object.temperature = self.config.get('temperature')
                response = model.invoke([msg])

                # Check the response content (you might need to adjust this depending on how your AzureChatOpenAI class handles responses)
                if response:
                    return True
                else:
                    return False

            except Exception as e:  # Use a more specific exception if possible
                return False
        else:
            try:
                azure_api_version = os.getenv('AZURE_API_VERSION')
                azure_api_key = os.getenv('AZURE_API_KEY')
                azure_api_base = os.getenv('AZURE_API_BASE')
                azure_organization = os.getenv('AZURE_ORGANIZATION')
                # Initialize the Azure OpenAI client
                model = AzureChatOpenAI(
                    deployment_name = 'gpt-4',#'gpt-35-turbo',
                    openai_api_version = azure_api_version,
                    openai_api_key = azure_api_key,
                    azure_endpoint = azure_api_base,
                    openai_organization = azure_organization,
                )
                msg = HumanMessage(content="hello")
                # self.llm_object.temperature = self.config.get('temperature')
                response = model.invoke([msg])

                # Check the response content (you might need to adjust this depending on how your AzureChatOpenAI class handles responses)
                if response:
                    return True
                else:
                    return False

            except Exception as e:  # Use a more specific exception if possible
                return False
        
    def check_mistral_api_key(self):
        try:
            if not self.is_hf:
                client = MistralClient(api_key=self.cfg_private['mistral']['MISTRAL_API_KEY'])
            else:
                client = MistralClient(api_key=os.getenv('MISTRAL_API_KEY'))

            
            # Initialize the Mistral Client with the API key

            # Create a simple message
            messages = [ChatMessage(role="user", content="hello")]

            # Send the message and get the response
            chat_response = client.chat(
                model="mistral-tiny",  
                messages=messages,
            )

            # Check if the response is valid (adjust this according to the actual response structure)
            if chat_response and chat_response.choices:
                return True
            else:
                return False
        except Exception as e:  # Replace with a more specific exception if possible
            return False
        
    def check_google_vision_client(self):
        results = {"ocr_print": False, "ocr_hand": False}

        if self.is_hf:
            client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
            client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
        else:
            client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials()) 
            client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
        
        try:
            with open(os.path.join(self.dir_home,'demo', 'ocr_test', 'ocr_test.jpg'), "rb") as image_file:
                content = image_file.read()
        except:
            with open("./demo/ocr_test/ocr_test.jpg", "rb") as image_file:
                content = image_file.read()

        try:
            image = vision_beta.Image(content=content)
            image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
            response = client_beta.document_text_detection(image=image, image_context=image_context)
            texts = response.text_annotations
            
            print(f"OCR Hand:\n{texts[0].description}")
            if len(texts[0].description) > 0:
                results['ocr_hand'] = True
        except:
            pass

        try:
            image = vision.Image(content=content)
            response = client.document_text_detection(image=image)
            texts = response.text_annotations
        
            print(f"OCR Print:\n{texts[0].description}")
            if len(texts[0].description) > 0:
                results['ocr_print'] = True
        except:
            pass

        return results


    def check_google_vertex_genai_api_key(self):
        results = {"palm2": False, "gemini": False, "palm2_langchain": False}


        try:
            model = TextGenerationModel.from_pretrained("text-bison@001")
            response = model.predict("Hello")
            test_response_palm = response.text
            if test_response_palm:
                results["palm2"] = True
                print(f"palm2 pass [{test_response_palm}]")
            else:
                print(f"palm2 fail [{test_response_palm}]")

        except Exception as e:
            # print(f"palm2 fail2 [{e}]")
            print(f"palm2 fail2")

        try:
            model = VertexAI(model="text-bison@001", max_output_tokens=10)
            response = model.predict("Hello")
            test_response_palm2 = response
            if test_response_palm2:
                results["palm2_langchain"] = True
                print(f"palm2_langchain pass [{test_response_palm2}]")
            else:
                print(f"palm2_langchain fail [{test_response_palm2}]")

        except Exception as e:
            print(f"palm2 fail2 [{e}]")
            print(f"palm2_langchain fail2")
            

        try:
            model = GenerativeModel("gemini-pro")
            response = model.generate_content("Hello")
            test_response_gemini = response.text
            if test_response_gemini:
                results["gemini"] = True
                print(f"gemini pass [{test_response_gemini}]")
            else:
                print(f"gemini fail [{test_response_gemini}]")

        except Exception as e:
            # print(f"palm2 fail2 [{e}]")
            print(f"palm2 fail2")

        return results

    def test_hf_token(self, k_huggingface):
        if not k_huggingface:
            print("Hugging Face API token not found in environment variables.")
            return False

        # Create an instance of the API
        api = HfApi()

        try:
            # Try to get details of a known public model
            model_info = api.model_info("bert-base-uncased", use_auth_token=k_huggingface)
            if model_info:
                print("Token is valid. Accessed model details successfully.")
                return True
            else:
                print("Token is valid but failed to access model details.")
                return True
        except Exception as e:
            print(f"Failed to validate token: {e}")
            return False

    def check_gated_model_access(self, model_id, k_huggingface):
        api = HfApi()
        attempts = 0
        max_attempts = 2

        while attempts < max_attempts:
            try:
                model_info = api.model_info(model_id, use_auth_token=k_huggingface)
                print(f"Access to model '{model_id}' is granted.")
                return "valid"
            except Exception as e:
                error_message = str(e)
                if 'awaiting a review' in error_message:
                    print(f"Access to model '{model_id}' is awaiting review. (Under Review)")
                    return "under_review"
                print(f"Access to model '{model_id}' is denied. Please accept the terms and conditions.")
                print(f"Error: {e}")
                webbrowser.open(f"https://huggingface.co./{model_id}")
                input("Press Enter after you have accepted the terms and conditions...")

            attempts += 1

        print(f"Failed to access model '{model_id}' after {max_attempts} attempts.")
        return "invalid"


    

    def get_google_credentials(self):
        if self.is_hf:
            creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
            credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
            return credentials
        else:
            with open(self.cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'], 'r') as file:
                data = json.load(file)
            creds_json_str = json.dumps(data)
            credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
            os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = creds_json_str
            return credentials



    def report_api_key_status(self):
        missing_keys = []
        present_keys = []

        if self.is_hf:
            k_OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
            k_openai_azure = os.getenv('AZURE_API_VERSION')

            k_google_application_credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
            k_project_id = os.getenv('GOOGLE_PROJECT_ID')
            k_location = os.getenv('GOOGLE_LOCATION')

            k_huggingface = None
            
            k_mistral = os.getenv('MISTRAL_API_KEY')
            k_here = os.getenv('HERE_API_KEY')
            k_opencage = os.getenv('OPENCAGE_API_KEY')
        else:
            k_OPENAI_API_KEY = self.cfg_private['openai']['OPENAI_API_KEY']
            k_openai_azure = self.cfg_private['openai_azure']['OPENAI_API_KEY_AZURE']


            k_project_id = self.cfg_private['google']['GOOGLE_PROJECT_ID']
            k_location = self.cfg_private['google']['GOOGLE_LOCATION']
            k_google_application_credentials = self.cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS']
            
            k_mistral = self.cfg_private['mistral']['MISTRAL_API_KEY']
            k_here = self.cfg_private['here']['API_KEY']
            k_opencage = self.cfg_private['open_cage_geocode']['API_KEY']

            k_huggingface = self.cfg_private['huggingface']['hf_token']
            os.environ["HUGGING_FACE_KEY"] = k_huggingface



        # Check each key and add to the respective list
        # Google OCR key check
        if self.has_API_key(k_google_application_credentials) and self.has_API_key(k_project_id) and self.has_API_key(k_location):
            google_ocr_results = self.check_google_vision_client() 
            if google_ocr_results['ocr_print']:
                present_keys.append('Google OCR Print (Valid)')
            else:
                present_keys.append('Google OCR Print (Invalid)')
            if google_ocr_results['ocr_hand']:
                present_keys.append('Google OCR Handwriting (Valid)')
            else:
                present_keys.append('Google OCR Handwriting (Invalid)')
        else:
            missing_keys.append('Google OCR')

        # present_keys.append('[MODEL] TEST (Under Review)')

        # HF key check
        if self.has_API_key(k_huggingface):
            is_valid = self.test_hf_token(k_huggingface)
            if is_valid:
                present_keys.append('Hugging Face Local LLMs (Valid)')
            else:
                present_keys.append('Hugging Face Local LLMs (Invalid)')
        else:
            missing_keys.append('Hugging Face Local LLMs')

        # List of gated models to check access for
        for model_id in self.HF_MODEL_LIST:
            access_status = self.check_gated_model_access(model_id, k_huggingface)
            if access_status == "valid":
                present_keys.append(f'[MODEL] {model_id} (Valid)')
            elif access_status == "under_review":
                present_keys.append(f'[MODEL] {model_id} (Under Review)')
            else:
                present_keys.append(f'[MODEL] {model_id} (Invalid)')
        
        
        
        # OpenAI key check
        if self.has_API_key(k_OPENAI_API_KEY):
            is_valid = self.check_openai_api_key()
            if is_valid:
                present_keys.append('OpenAI (Valid)')
            else:
                present_keys.append('OpenAI (Invalid)')
        else:
            missing_keys.append('OpenAI')

        # Azure OpenAI key check
        # if self.has_API_key(k_openai_azure):
        #     is_valid = self.check_azure_openai_api_key()
        #     if is_valid:
        #         present_keys.append('Azure OpenAI (Valid)')
        #     else:
        #         present_keys.append('Azure OpenAI (Invalid)')
        # else:
        #     missing_keys.append('Azure OpenAI')

        # Google PALM2/Gemini key check
        if self.has_API_key(k_google_application_credentials) and self.has_API_key(k_project_id) and self.has_API_key(k_location): ##################
            vertexai.init(project=k_project_id, location=k_location, credentials=self.get_google_credentials())
            google_results = self.check_google_vertex_genai_api_key()
            if google_results['palm2']:
                present_keys.append('Palm2 (Valid)')
            else:
                present_keys.append('Palm2 (Invalid)')
            if google_results['palm2_langchain']:
                present_keys.append('Palm2 LangChain (Valid)')
            else:
                present_keys.append('Palm2 LangChain (Invalid)')
            if google_results['gemini']:
                present_keys.append('Gemini (Valid)')
            else:
                present_keys.append('Gemini (Invalid)')
        else:
            missing_keys.append('Google VertexAI/GenAI')

        

        # Mistral key check
        if self.has_API_key(k_mistral):
            is_valid = self.check_mistral_api_key()
            if is_valid:
                present_keys.append('Mistral (Valid)')
            else:
                present_keys.append('Mistral (Invalid)')
        else:
            missing_keys.append('Mistral')


        if self.has_API_key(k_here):
            present_keys.append('HERE Geocode (Valid)')
        else:
            missing_keys.append('HERE Geocode (Invalid)')

        if self.has_API_key(k_opencage):
            present_keys.append('OpenCage Geocode (Valid)')
        else:
            missing_keys.append('OpenCage Geocode (Invalid)')

        # Create a report string
        report = "API Key Status Report:\n"
        report += "Present Keys: " + ", ".join(present_keys) + "\n"
        report += "Missing Keys: " + ", ".join(missing_keys) + "\n"

        print(report)
        return present_keys, missing_keys, self.formatted_date