Spaces:
Sleeping
Sleeping
import sys | |
import logging | |
import copy | |
import torch | |
from utils import factory | |
from utils.data_manager import DataManager | |
from utils.toolkit import count_parameters | |
import os | |
import numpy as np | |
def train(args): | |
seed_list = copy.deepcopy(args["seed"]) | |
device = copy.deepcopy(args["device"]) | |
for seed in seed_list: | |
args["seed"] = seed | |
args["device"] = device | |
_train(args) | |
def _train(args): | |
init_cls = 0 if args ["init_cls"] == args["increment"] else args["init_cls"] | |
logs_name = "logs/{}/{}_{}/{}/{}".format(args["model_name"],args["dataset"], args['data'], init_cls, args['increment']) | |
if not os.path.exists(logs_name): | |
os.makedirs(logs_name) | |
save_name = "models/{}/{}_{}/{}/{}".format(args["model_name"],args["dataset"], args['data'], init_cls, args['increment']) | |
if not os.path.exists(save_name): | |
os.makedirs(save_name) | |
if not os.path.exists(logs_name): | |
os.makedirs(logs_name) | |
logfilename = "logs/{}/{}_{}/{}/{}/{}_{}_{}".format( | |
args["model_name"], | |
args["dataset"], | |
args['data'], | |
init_cls, | |
args["increment"], | |
args["prefix"], | |
args["seed"], | |
args["convnet_type"], | |
) | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s [%(filename)s] => %(message)s", | |
handlers=[ | |
logging.FileHandler(filename=logfilename + ".log"), | |
logging.StreamHandler(sys.stdout), | |
], | |
force=True | |
) | |
args['logfilename'] = logs_name | |
args['csv_name'] = "{}_{}_{}".format( | |
args["prefix"], | |
args["seed"], | |
args["convnet_type"], | |
) | |
_set_random() | |
_set_device(args) | |
print_args(args) | |
model = factory.get_model(args["model_name"], args) | |
data_manager = DataManager( | |
args["dataset"], | |
args["shuffle"], | |
args["seed"], | |
args["init_cls"], | |
args["increment"], | |
path = args["data"], | |
) | |
if data_manager.get_task_size(0) < 5: | |
top_string = "top{}".format(data_manager.get_task_size(0)) | |
else: | |
top_string = "top5" | |
cnn_curve, nme_curve = {"top1": [], top_string: []}, {"top1": [], top_string: []} | |
cnn_matrix, nme_matrix = [], [] | |
for task in range(data_manager.nb_tasks): | |
print(args["device"]) | |
logging.info("All params: {}".format(count_parameters(model._network))) | |
logging.info( | |
"Trainable params: {}".format(count_parameters(model._network, True)) | |
) | |
model.incremental_train(data_manager) | |
cnn_accy, nme_accy = model.eval_task(save_conf=True) | |
model.after_task() | |
if nme_accy is not None: | |
logging.info("CNN: {}".format(cnn_accy["grouped"])) | |
logging.info("NME: {}".format(nme_accy["grouped"])) | |
cnn_keys = [key for key in cnn_accy["grouped"].keys() if '-' in key] | |
cnn_keys_sorted = sorted(cnn_keys) | |
cnn_values = [cnn_accy["grouped"][key] for key in cnn_keys_sorted] | |
cnn_matrix.append(cnn_values) | |
nme_keys = [key for key in nme_accy["grouped"].keys() if '-' in key] | |
nme_keys_sorted = sorted(nme_keys) | |
nme_values = [nme_accy["grouped"][key] for key in nme_keys_sorted] | |
nme_matrix.append(nme_values) | |
cnn_curve["top1"].append(cnn_accy["top1"]) | |
cnn_curve[top_string].append(cnn_accy["top{}".format(model.topk)]) | |
nme_curve["top1"].append(nme_accy["top1"]) | |
nme_curve[top_string].append(nme_accy["top{}".format(model.topk)]) | |
logging.info("CNN top1 curve: {}".format(cnn_curve["top1"])) | |
logging.info("CNN top5 curve: {}".format(cnn_curve[top_string])) | |
logging.info("NME top1 curve: {}".format(nme_curve["top1"])) | |
logging.info("NME top5 curve: {}\n".format(nme_curve[top_string])) | |
print('Average Accuracy (CNN):', sum(cnn_curve["top1"])/len(cnn_curve["top1"])) | |
print('Average Accuracy (NME):', sum(nme_curve["top1"])/len(nme_curve["top1"])) | |
logging.info("Average Accuracy (CNN): {}".format(sum(cnn_curve["top1"])/len(cnn_curve["top1"]))) | |
logging.info("Average Accuracy (NME): {}".format(sum(nme_curve["top1"])/len(nme_curve["top1"]))) | |
else: | |
logging.info("No NME accuracy.") | |
logging.info("CNN: {}".format(cnn_accy["grouped"])) | |
cnn_keys = [key for key in cnn_accy["grouped"].keys() if '-' in key] | |
cnn_keys_sorted = sorted(cnn_keys) | |
cnn_values = [cnn_accy["grouped"][key] for key in cnn_keys_sorted] | |
cnn_matrix.append(cnn_values) | |
cnn_curve["top1"].append(cnn_accy["top1"]) | |
cnn_curve[top_string].append(cnn_accy["top{}".format(model.topk)]) | |
logging.info("CNN top1 curve: {}".format(cnn_curve["top1"])) | |
logging.info("CNN top5 curve: {}\n".format(cnn_curve[top_string])) | |
print('Average Accuracy (CNN):', sum(cnn_curve["top1"])/len(cnn_curve["top1"])) | |
logging.info("Average Accuracy (CNN): {}".format(sum(cnn_curve["top1"])/len(cnn_curve["top1"]))) | |
model.save_checkpoint(save_name) | |
if len(cnn_matrix)>0: | |
np_acctable = np.zeros([ task + 1, int((args["init_cls"] // 10) + task * (args["increment"] // 10))]) | |
for idxx, line in enumerate(cnn_matrix): | |
idxy = len(line) | |
np_acctable[idxx, :idxy] = np.array(line) | |
np_acctable = np_acctable.T | |
forgetting = np.mean((np.max(np_acctable, axis=1) - np_acctable[:, -1])[:-1]) | |
logging.info('Forgetting (CNN): {}'.format(forgetting)) | |
logging.info('Accuracy Matrix (CNN): {}'.format(np_acctable)) | |
print('Accuracy Matrix (CNN):') | |
print(np_acctable) | |
print('Forgetting (CNN):', forgetting) | |
if len(nme_matrix)>0: | |
np_acctable = np.zeros([ task + 1, int((args["init_cls"] // 10) + task * (args["increment"] // 10))]) | |
for idxx, line in enumerate(nme_matrix): | |
idxy = len(line) | |
np_acctable[idxx, :idxy] = np.array(line) | |
np_acctable = np_acctable.T | |
forgetting = np.mean((np.max(np_acctable, axis=1) - np_acctable[:, -1])[:-1]) | |
logging.info('Forgetting (NME): {}'.format(forgetting)) | |
logging.info('Accuracy Matrix (NME): {}'.format(np_acctable)) | |
print('Accuracy Matrix (NME):') | |
print(np_acctable) | |
print('Forgetting (NME):', forgetting) | |
def _set_device(args): | |
device_type = args["device"] | |
gpus = [] | |
for device in device_type: | |
if device == -1: | |
device = torch.device("cpu") | |
else: | |
device = torch.device("cuda:{}".format(device)) | |
gpus.append(device) | |
args["device"] = gpus | |
def _set_random(): | |
torch.manual_seed(1) | |
torch.cuda.manual_seed(1) | |
torch.cuda.manual_seed_all(1) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
def print_args(args): | |
for key, value in args.items(): | |
logging.info("{}: {}".format(key, value)) | |