Spaces:
Running
Running
philipp-zettl
commited on
Commit
•
1375e49
1
Parent(s):
46773aa
implement interactive ui
Browse files
app.py
CHANGED
@@ -34,28 +34,58 @@ tokenizer = Tokenizer.from_pretrained(tokenizer_path)
|
|
34 |
|
35 |
invalid_move_plot = Image.open('./invalid_move.png')
|
36 |
|
37 |
-
def
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
pgn_str = StringIO(pgn)
|
41 |
try:
|
42 |
game = chess.pgn.read_game(pgn_str)
|
43 |
board = game.board()
|
44 |
for move in game.mainline_moves():
|
45 |
board.push(move)
|
46 |
-
img = chess.svg.board(board)
|
47 |
except Exception as e:
|
48 |
if 'illegal san' in str(e):
|
49 |
-
return
|
50 |
-
|
51 |
-
with open(filename + '.svg', 'w') as f:
|
52 |
-
f.write(img)
|
53 |
-
drawing = svg2rlg(filename + '.svg')
|
54 |
-
renderPM.drawToFile(drawing, f"{filename}.png", fmt="PNG")
|
55 |
-
plot = Image.open(f'{filename}.png')
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return pgn, plot
|
60 |
|
61 |
|
@@ -66,21 +96,71 @@ with gr.Blocks() as demo:
|
|
66 |
|
67 |
The **C**hess-**P**re-trained-**T**ransformer.
|
68 |
|
69 |
-
The rules are simple:
|
|
|
|
|
70 |
""")
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
demo.launch()
|
|
|
34 |
|
35 |
invalid_move_plot = Image.open('./invalid_move.png')
|
36 |
|
37 |
+
def gen_image_from_svg(img, filename):
|
38 |
+
with open(filename + '.svg', 'w') as f:
|
39 |
+
f.write(img)
|
40 |
+
drawing = svg2rlg(filename + '.svg')
|
41 |
+
renderPM.drawToFile(drawing, f"{filename}.png", fmt="PNG")
|
42 |
+
plot = Image.open(f'{filename}.png')
|
43 |
+
|
44 |
+
os.remove(f'{filename}.png')
|
45 |
+
os.remove(f'{filename}.svg')
|
46 |
+
return plot
|
47 |
+
|
48 |
+
|
49 |
+
def get_board(pgn):
|
50 |
pgn_str = StringIO(pgn)
|
51 |
try:
|
52 |
game = chess.pgn.read_game(pgn_str)
|
53 |
board = game.board()
|
54 |
for move in game.mainline_moves():
|
55 |
board.push(move)
|
|
|
56 |
except Exception as e:
|
57 |
if 'illegal san' in str(e):
|
58 |
+
return None
|
59 |
+
return board
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
def gen_board_image(pgn):
|
62 |
+
board = get_board(pgn)
|
63 |
+
return chess.svg.board(board)
|
64 |
+
|
65 |
+
def gen_move(pgn):
|
66 |
+
model_input = torch.tensor(tokenizer.encode(pgn), dtype=torch.long, device=device).view((1, len(pgn)))
|
67 |
+
is_invalid = True
|
68 |
+
board = get_board(pgn)
|
69 |
+
while is_invalid:
|
70 |
+
new_pgn = tokenizer.decode(model.generate(model_input, max_new_tokens=4, context_size=context_size, temperature=0.2)[0].tolist())
|
71 |
+
try:
|
72 |
+
print(f'checking {new_pgn}')
|
73 |
+
mv = new_pgn[len(pgn):].split(' ')[0]
|
74 |
+
new_pgn = pgn.rstrip() + f' {mv}'
|
75 |
+
is_invalid = get_board(new_pgn) is None
|
76 |
+
except Exception:
|
77 |
+
is_invalid = True
|
78 |
+
print(f'For {pgn} invalid "{new_pgn[len(pgn):].split(" ")[0]}" {new_pgn}')
|
79 |
+
#print(mov in board.legal_moves)
|
80 |
+
return new_pgn
|
81 |
+
|
82 |
+
|
83 |
+
def generate(prompt):
|
84 |
+
model_input = torch.tensor(tokenizer.encode(prompt), dtype=torch.long, device=device).view((1, len(prompt)))
|
85 |
+
pgn = tokenizer.decode(model.generate(model_input, max_new_tokens=4, context_size=context_size, temperature=0.2)[0].tolist())
|
86 |
+
img = gen_board_image(pgn)
|
87 |
+
filename = f'./moves-{str(uuid4())}'
|
88 |
+
plot = gen_image_from_svg(img, filename)
|
89 |
return pgn, plot
|
90 |
|
91 |
|
|
|
96 |
|
97 |
The **C**hess-**P**re-trained-**T**ransformer.
|
98 |
|
99 |
+
The rules are simple:
|
100 |
+
- "Interactive": Play a game against the model
|
101 |
+
- "Next turn prediction": provide a PGN string of your current game, the model will predict the next token
|
102 |
""")
|
103 |
+
def manual():
|
104 |
+
with gr.Tab("Next turn prediction"):
|
105 |
+
prompt = gr.Text(label="PGN")
|
106 |
+
output = gr.Text(label="Next turn", interactive=False)
|
107 |
+
img = gr.Image()
|
108 |
+
submit = gr.Button("Submit")
|
109 |
+
submit.click(generate, [prompt], [output, img])
|
110 |
+
|
111 |
+
gr.Examples(
|
112 |
+
[
|
113 |
+
["1. e4", ],
|
114 |
+
["1. e4 g6 2."],
|
115 |
+
],
|
116 |
+
inputs=[prompt],
|
117 |
+
outputs=[output, img],
|
118 |
+
fn=generate
|
119 |
+
)
|
120 |
+
def interactive():
|
121 |
+
with gr.Tab("Interactive"):
|
122 |
+
color = gr.Dropdown(["white", "black"], value='white', label="Chose a color")
|
123 |
+
start_button = gr.Button("Start Game")
|
124 |
+
|
125 |
+
def start_game(c):
|
126 |
+
pgn = '1. '
|
127 |
+
if c == 'black':
|
128 |
+
pgn += gen_move(pgn)
|
129 |
+
img = gen_board_image(pgn)
|
130 |
+
fn = 'foo'
|
131 |
+
return gen_image_from_svg(img, fn), pgn, 1
|
132 |
+
|
133 |
+
state = gr.Text(label='PGN', value='', interactive=False)
|
134 |
+
game = gr.Image()
|
135 |
+
move_counter = gr.State(value=1)
|
136 |
+
start_button.click(
|
137 |
+
start_game,
|
138 |
+
inputs=[color],
|
139 |
+
outputs=[game, state, move_counter]
|
140 |
+
)
|
141 |
+
|
142 |
+
next_move = gr.Text(label='Next move')
|
143 |
+
gen_next_move_button = gr.Button("Submit")
|
144 |
+
|
145 |
+
def gen_next_move(pgn, new_move, move_ctr, c):
|
146 |
+
pgn += new_move.strip() + ' '
|
147 |
+
if c == 'black':
|
148 |
+
move_ctr += 1
|
149 |
+
pgn = f'{pgn.rstrip()} {move_ctr}. '
|
150 |
+
print(f'gen for {pgn}')
|
151 |
+
pgn = gen_move(pgn)
|
152 |
+
print(f'got {pgn}')
|
153 |
+
img = gen_board_image(pgn)
|
154 |
+
if c == 'white':
|
155 |
+
move_ctr += 1
|
156 |
+
pgn = f'{pgn.rstrip()} {move_ctr}. '
|
157 |
+
return gen_image_from_svg(img, 'foo-bar'), pgn, move_ctr
|
158 |
+
|
159 |
+
gen_next_move_button.click(
|
160 |
+
gen_next_move,
|
161 |
+
inputs=[state, next_move, move_counter, color],
|
162 |
+
outputs=[game, state, move_counter]
|
163 |
+
)
|
164 |
+
interactive()
|
165 |
+
manual()
|
166 |
demo.launch()
|
model.py
CHANGED
@@ -120,7 +120,7 @@ class DecoderTransformer(nn.Module):
|
|
120 |
loss = F.cross_entropy(logits, targets)
|
121 |
return logits, loss
|
122 |
|
123 |
-
def generate(self, idx, max_new_tokens=50, context_size=None):
|
124 |
if context_size is None:
|
125 |
context_size = int(self.position_embedding_table.weight.shape[0])
|
126 |
print(context_size)
|
@@ -128,7 +128,7 @@ class DecoderTransformer(nn.Module):
|
|
128 |
for _ in range(max_new_tokens):
|
129 |
idx_cond = idx[:, -context_size:]
|
130 |
logits, loss = self(idx_cond)
|
131 |
-
logits = logits[:,-1,:]
|
132 |
probs = F.softmax(logits, dim=-1)
|
133 |
idx_next = torch.multinomial(probs, num_samples=1)
|
134 |
idx = torch.cat([idx, idx_next], dim=1)
|
|
|
120 |
loss = F.cross_entropy(logits, targets)
|
121 |
return logits, loss
|
122 |
|
123 |
+
def generate(self, idx, max_new_tokens=50, context_size=None, temperature=1.0):
|
124 |
if context_size is None:
|
125 |
context_size = int(self.position_embedding_table.weight.shape[0])
|
126 |
print(context_size)
|
|
|
128 |
for _ in range(max_new_tokens):
|
129 |
idx_cond = idx[:, -context_size:]
|
130 |
logits, loss = self(idx_cond)
|
131 |
+
logits = logits[:,-1,:] / temperature
|
132 |
probs = F.softmax(logits, dim=-1)
|
133 |
idx_next = torch.multinomial(probs, num_samples=1)
|
134 |
idx = torch.cat([idx, idx_next], dim=1)
|