#!/usr/bin/env python3 import gradio as gr import os from clip_interrogator import Config, Interrogator from huggingface_hub import hf_hub_download from share_btn import community_icon_html, loading_icon_html, share_js MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)'] # download preprocessed files PREPROCESS_FILES = [ 'ViT-H-14_laion2b_s32b_b79k_artists.pkl', 'ViT-H-14_laion2b_s32b_b79k_flavors.pkl', 'ViT-H-14_laion2b_s32b_b79k_mediums.pkl', 'ViT-H-14_laion2b_s32b_b79k_movements.pkl', 'ViT-H-14_laion2b_s32b_b79k_trendings.pkl', 'ViT-L-14_openai_artists.pkl', 'ViT-L-14_openai_flavors.pkl', 'ViT-L-14_openai_mediums.pkl', 'ViT-L-14_openai_movements.pkl', 'ViT-L-14_openai_trendings.pkl', ] print("Download preprocessed cache files...") for file in PREPROCESS_FILES: path = hf_hub_download(repo_id="pharma/ci-preprocess", filename=file, cache_dir="cache") cache_path = os.path.dirname(path) # load BLIP and ViT-L https://huggingface.co./openai/clip-vit-large-patch14 config = Config(cache_path=cache_path, clip_model_path="cache", clip_model_name="ViT-L-14/openai") ci_vitl = Interrogator(config) ci_vitl.clip_model = ci_vitl.clip_model.to("cpu") # load ViT-H https://huggingface.co./laion/CLIP-ViT-H-14-laion2B-s32B-b79K config.blip_model = ci_vitl.blip_model config.clip_model_name = "ViT-H-14/laion2b_s32b_b79k" ci_vith = Interrogator(config) ci_vith.clip_model = ci_vith.clip_model.to("cpu") def inference(image, clip_model_name, mode): # move selected model to GPU and other model to CPU if clip_model_name == MODELS[0]: ci_vith.clip_model = ci_vith.clip_model.to("cpu") ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device) ci = ci_vitl else: ci_vitl.clip_model = ci_vitl.clip_model.to("cpu") ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device) ci = ci_vith ci.config.blip_num_beams = 64 ci.config.chunk_size = 2048 ci.config.flavor_intermediate_count = 2048 if clip_model_name == MODELS[0] else 1024 image = image.convert('RGB') if mode == 'best': prompt = ci.interrogate(image) elif mode == 'classic': prompt = ci.interrogate_classic(image) else: prompt = ci.interrogate_fast(image) return prompt, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) TITLE = """

CLIP Interrogator

Want to figure out what a good prompt might be to create new images like an existing one?
The CLIP Interrogator is here to get you answers!

""" ARTICLE = """

Example art by Layers and Lin Tong from pixabay.com

Server busy? You can also run on Google Colab

Has this been helpful to you? Follow me on twitter @pharmapsychotic
and check out more tools at my Ai generative art tools list

""" CSS = ''' #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' with gr.Blocks(css=CSS) as block: with gr.Column(elem_id="col-container"): gr.HTML(TITLE) input_image = gr.Image(type='pil', elem_id="input-img") input_model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model') input_mode = gr.Radio(['best', 'fast'], value='best', label='Mode') submit_btn = gr.Button("Submit") output_text = gr.Textbox(label="Output", elem_id="output-txt") with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']] ex = gr.Examples( examples=examples, fn=inference, inputs=[input_image, input_model, input_mode], outputs=[output_text, share_button, community_icon, loading_icon], cache_examples=True, run_on_click=True ) ex.dataset.headers = [""] gr.HTML(ARTICLE) submit_btn.click( fn=inference, inputs=[input_image, input_model, input_mode], outputs=[output_text, share_button, community_icon, loading_icon] ) share_button.click(None, [], [], _js=share_js) block.queue(max_size=32).launch(show_api=False)