jorgewired commited on
Commit
e615abd
1 Parent(s): ec4e754

Create app.py

Browse files

![Screenshot_20221027-110501_Gallery.jpg](https://s3.amazonaws.com/moonup/production/uploads/1666890530985-635abb03373275bf1564320c.jpeg)

Files changed (1) hide show
  1. app.py +0 -312
app.py CHANGED
@@ -1,312 +0,0 @@
1
- import sys
2
- sys.path.append('src/blip')
3
- sys.path.append('src/clip')
4
-
5
- import clip
6
- import gradio as gr
7
- import hashlib
8
- import math
9
- import numpy as np
10
- import os
11
- import pickle
12
- import torch
13
- import torchvision.transforms as T
14
- import torchvision.transforms.functional as TF
15
-
16
- from models.blip import blip_decoder
17
- from PIL import Image
18
- from torch import nn
19
- from torch.nn import functional as F
20
- from tqdm import tqdm
21
-
22
- from share_btn import community_icon_html, loading_icon_html, share_js
23
-
24
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
25
-
26
- print("Loading BLIP model...")
27
- blip_image_eval_size = 384
28
- blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
29
- blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json')
30
- blip_model.eval()
31
- blip_model = blip_model.to(device)
32
-
33
- print("Loading CLIP model...")
34
- clip_model_name = 'ViT-L/14' # https://huggingface.co/openai/clip-vit-large-patch14
35
- clip_model, clip_preprocess = clip.load(clip_model_name, device=device)
36
- clip_model.to(device).eval()
37
-
38
- chunk_size = 2048
39
- flavor_intermediate_count = 2048
40
-
41
-
42
- class LabelTable():
43
- def __init__(self, labels, desc):
44
- self.labels = labels
45
- self.embeds = []
46
-
47
- hash = hashlib.sha256(",".join(labels).encode()).hexdigest()
48
-
49
- os.makedirs('./cache', exist_ok=True)
50
- cache_filepath = f"./cache/{desc}.pkl"
51
- if desc is not None and os.path.exists(cache_filepath):
52
- with open(cache_filepath, 'rb') as f:
53
- data = pickle.load(f)
54
- if data['hash'] == hash:
55
- self.labels = data['labels']
56
- self.embeds = data['embeds']
57
-
58
- if len(self.labels) != len(self.embeds):
59
- self.embeds = []
60
- chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size))
61
- for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None):
62
- text_tokens = clip.tokenize(chunk).to(device)
63
- with torch.no_grad():
64
- text_features = clip_model.encode_text(text_tokens).float()
65
- text_features /= text_features.norm(dim=-1, keepdim=True)
66
- text_features = text_features.half().cpu().numpy()
67
- for i in range(text_features.shape[0]):
68
- self.embeds.append(text_features[i])
69
-
70
- with open(cache_filepath, 'wb') as f:
71
- pickle.dump({"labels":self.labels, "embeds":self.embeds, "hash":hash}, f)
72
-
73
- def _rank(self, image_features, text_embeds, top_count=1):
74
- top_count = min(top_count, len(text_embeds))
75
- similarity = torch.zeros((1, len(text_embeds))).to(device)
76
- text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device)
77
- for i in range(image_features.shape[0]):
78
- similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax(dim=-1)
79
- _, top_labels = similarity.cpu().topk(top_count, dim=-1)
80
- return [top_labels[0][i].numpy() for i in range(top_count)]
81
-
82
- def rank(self, image_features, top_count=1):
83
- if len(self.labels) <= chunk_size:
84
- tops = self._rank(image_features, self.embeds, top_count=top_count)
85
- return [self.labels[i] for i in tops]
86
-
87
- num_chunks = int(math.ceil(len(self.labels)/chunk_size))
88
- keep_per_chunk = int(chunk_size / num_chunks)
89
-
90
- top_labels, top_embeds = [], []
91
- for chunk_idx in tqdm(range(num_chunks)):
92
- start = chunk_idx*chunk_size
93
- stop = min(start+chunk_size, len(self.embeds))
94
- tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk)
95
- top_labels.extend([self.labels[start+i] for i in tops])
96
- top_embeds.extend([self.embeds[start+i] for i in tops])
97
-
98
- tops = self._rank(image_features, top_embeds, top_count=top_count)
99
- return [top_labels[i] for i in tops]
100
-
101
- def generate_caption(pil_image):
102
- gpu_image = T.Compose([
103
- T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
104
- T.ToTensor(),
105
- T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
106
- ])(pil_image).unsqueeze(0).to(device)
107
-
108
- with torch.no_grad():
109
- caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
110
- return caption[0]
111
-
112
- def load_list(filename):
113
- with open(filename, 'r', encoding='utf-8', errors='replace') as f:
114
- items = [line.strip() for line in f.readlines()]
115
- return items
116
-
117
- def rank_top(image_features, text_array):
118
- text_tokens = clip.tokenize([text for text in text_array]).to(device)
119
- with torch.no_grad():
120
- text_features = clip_model.encode_text(text_tokens).float()
121
- text_features /= text_features.norm(dim=-1, keepdim=True)
122
-
123
- similarity = torch.zeros((1, len(text_array)), device=device)
124
- for i in range(image_features.shape[0]):
125
- similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
126
-
127
- _, top_labels = similarity.cpu().topk(1, dim=-1)
128
- return text_array[top_labels[0][0].numpy()]
129
-
130
- def similarity(image_features, text):
131
- text_tokens = clip.tokenize([text]).to(device)
132
- with torch.no_grad():
133
- text_features = clip_model.encode_text(text_tokens).float()
134
- text_features /= text_features.norm(dim=-1, keepdim=True)
135
- similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
136
- return similarity[0][0]
137
-
138
- def interrogate(image):
139
- caption = generate_caption(image)
140
-
141
- images = clip_preprocess(image).unsqueeze(0).to(device)
142
- with torch.no_grad():
143
- image_features = clip_model.encode_image(images).float()
144
- image_features /= image_features.norm(dim=-1, keepdim=True)
145
-
146
- flaves = flavors.rank(image_features, flavor_intermediate_count)
147
- best_medium = mediums.rank(image_features, 1)[0]
148
- best_artist = artists.rank(image_features, 1)[0]
149
- best_trending = trendings.rank(image_features, 1)[0]
150
- best_movement = movements.rank(image_features, 1)[0]
151
-
152
- best_prompt = caption
153
- best_sim = similarity(image_features, best_prompt)
154
-
155
- def check(addition):
156
- nonlocal best_prompt, best_sim
157
- prompt = best_prompt + ", " + addition
158
- sim = similarity(image_features, prompt)
159
- if sim > best_sim:
160
- best_sim = sim
161
- best_prompt = prompt
162
- return True
163
- return False
164
-
165
- def check_multi_batch(opts):
166
- nonlocal best_prompt, best_sim
167
- prompts = []
168
- for i in range(2**len(opts)):
169
- prompt = best_prompt
170
- for bit in range(len(opts)):
171
- if i & (1 << bit):
172
- prompt += ", " + opts[bit]
173
- prompts.append(prompt)
174
-
175
- prompt = rank_top(image_features, prompts)
176
- sim = similarity(image_features, prompt)
177
- if sim > best_sim:
178
- best_sim = sim
179
- best_prompt = prompt
180
-
181
- check_multi_batch([best_medium, best_artist, best_trending, best_movement])
182
-
183
- extended_flavors = set(flaves)
184
- for _ in tqdm(range(25), desc="Flavor chain"):
185
- try:
186
- best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors])
187
- flave = best[len(best_prompt)+2:]
188
- if not check(flave):
189
- break
190
- extended_flavors.remove(flave)
191
- except:
192
- # exceeded max prompt length
193
- break
194
-
195
- return best_prompt
196
-
197
-
198
- sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
199
- trending_list = [site for site in sites]
200
- trending_list.extend(["trending on "+site for site in sites])
201
- trending_list.extend(["featured on "+site for site in sites])
202
- trending_list.extend([site+" contest winner" for site in sites])
203
-
204
- raw_artists = load_list('data/artists.txt')
205
- artists = [f"by {a}" for a in raw_artists]
206
- artists.extend([f"inspired by {a}" for a in raw_artists])
207
-
208
- artists = LabelTable(artists, "artists")
209
- flavors = LabelTable(load_list('data/flavors.txt'), "flavors")
210
- mediums = LabelTable(load_list('data/mediums.txt'), "mediums")
211
- movements = LabelTable(load_list('data/movements.txt'), "movements")
212
- trendings = LabelTable(trending_list, "trendings")
213
-
214
-
215
- def inference(image):
216
- return interrogate(image), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
217
-
218
- title = """
219
- <div style="text-align: center; max-width: 650px; margin: 0 auto;">
220
- <div
221
- style="
222
- display: inline-flex;
223
- align-items: center;
224
- gap: 0.8rem;
225
- font-size: 1.75rem;
226
- "
227
- >
228
- <h1 style="font-weight: 900; margin-bottom: 7px;">
229
- CLIP Interrogator
230
- </h1>
231
- </div>
232
- <p style="margin-bottom: 10px; font-size: 94%">
233
- Want to figure out what a good prompt might be to create new images like an existing one? The CLIP Interrogator is here to get you answers!
234
- </p>
235
- </div>
236
- """
237
- article = """
238
- <div style="text-align: center; max-width: 650px; margin: 0 auto;">
239
- <p>
240
- Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
241
- and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a>
242
- from pixabay.com
243
- </p>
244
-
245
- <p>
246
- Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb">Google Colab</a>
247
- </p>
248
-
249
- <p>
250
- Has this been helpful to you? Follow me on twitter
251
- <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a>
252
- and check out more tools at my
253
- <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
254
- </p>
255
- </div>
256
- """
257
-
258
- css = '''
259
- #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
260
- a {text-decoration-line: underline; font-weight: 600;}
261
- .animate-spin {
262
- animation: spin 1s linear infinite;
263
- }
264
- @keyframes spin {
265
- from {
266
- transform: rotate(0deg);
267
- }
268
- to {
269
- transform: rotate(360deg);
270
- }
271
- }
272
- #share-btn-container {
273
- display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
274
- }
275
- #share-btn {
276
- all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
277
- }
278
- #share-btn * {
279
- all: unset;
280
- }
281
- #share-btn-container div:nth-child(-n+2){
282
- width: auto !important;
283
- min-height: 0px !important;
284
- }
285
- #share-btn-container .wrap {
286
- display: none !important;
287
- }
288
- '''
289
-
290
- with gr.Blocks(css=css) as block:
291
- with gr.Column(elem_id="col-container"):
292
- gr.HTML(title)
293
-
294
- input_image = gr.Image(type='pil', elem_id="input-img")
295
- submit_btn = gr.Button("Submit")
296
- output_text = gr.Textbox(label="Output", elem_id="output-txt")
297
-
298
- with gr.Group(elem_id="share-btn-container"):
299
- community_icon = gr.HTML(community_icon_html, visible=False)
300
- loading_icon = gr.HTML(loading_icon_html, visible=False)
301
- share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
302
-
303
- examples=[['example01.jpg'], ['example02.jpg']]
304
- ex = gr.Examples(examples=examples, fn=inference, inputs=input_image, outputs=[output_text, share_button, community_icon, loading_icon], cache_examples=True, run_on_click=True)
305
- ex.dataset.headers = [""]
306
-
307
- gr.HTML(article)
308
-
309
- submit_btn.click(fn=inference, inputs=input_image, outputs=[output_text, share_button, community_icon, loading_icon])
310
- share_button.click(None, [], [], _js=share_js)
311
-
312
- block.queue(max_size=32).launch(show_api=False)