peterentroprise's picture
Duplicate from Future-Tense/Slo-Mo-YOLO-Video
3db562a
raw
history blame
4.06 kB
import gradio as gr
import time
import cv2 # opencv2 package for python.
import torch
from pytube import YouTube
from ultralyticsplus import YOLO, render_result
model = YOLO('ultralyticsplus/yolov8s')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
URL = "https://www.youtube.com/watch?v=6NBwbKMyzEE" #URL to parse
# set model parameters
model.overrides['conf'] = 0.50 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
model.to(device)
def load(URL):
yt = YouTube(URL)
vid_cap = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().last().download(filename="tmp.mp4")
global player
player = cv2.VideoCapture(vid_cap)
frame_num = int(player.get(cv2.CAP_PROP_POS_FRAMES))
frame_count = int(player.get(cv2.CAP_PROP_FRAME_COUNT))
frame_fps = (player.get(cv2.CAP_PROP_FPS))
tog = 0
return vid_cap,frame_num,frame_count,frame_fps,tog
def vid_play(cap,frame_num):
assert player.isOpened() # Make sure that their is a stream.
player.set(cv2.CAP_PROP_POS_FRAMES, int(frame_num))
ret, frame_bgr = player.read(int(frame_num))
frame = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
results = model.predict(frame)
render = render_result(model=model, image=frame, result=results[0])
return render
def fw_fn(cur,last):
next = cur+1
if next > last:
next = last
return next
def bk_fn(cur):
next = cur-1
if next < 0:
next = 0
return next
def tog_on():
return 1,gr.Markdown.update("""<center><h7>Status: Playing 😁</h7></center>""")
def tog_off():
return 0,gr.Markdown.update("""<center><h7>Status: Stopped 💀</h7></center>""")
def pl_fn(cap,cur,last,fps,pl_tog):
player.set(cv2.CAP_PROP_POS_FRAMES, cur)
ret, frame_bgr = player.read(cur)
frame = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
results = model.predict(frame)
render = render_result(model=model, image=frame, result=results[0])
if pl_tog ==1:
cur+=1
else:
cur = cur
return render,cur
with gr.Blocks() as app:
gr.Markdown("""<center><h1>Slow Video Object Detection</h1><h4>Gradio and ultralyticsplus/yolov8s</h4><h4>Probably faster on GPU 🤷‍♂️</h4></center>""")
play_state = gr.Markdown("""<right><h7></h7></right>""")
with gr.Row():
with gr.Column():
youtube_url = gr.Textbox(label="YouTube URL",value=f"{URL}")
load_button = gr.Button("Load Video")
output_win = gr.Video()
with gr.Column():
with gr.Row():
cur_frame = gr.Number(label="Current Frame")
fps_frames = gr.Number(label="Video FPS",interactive=False)
total_frames = gr.Number(label="Total Frames",interactive=False)
#run_button = gr.Button()
with gr.Row():
bk = gr.Button("<")
pl = gr.Button("Play")
st = gr.Button("Stop")
fw = gr.Button(">")
det_win = gr.Image(source="webcam", streaming=True)
with gr.Row():
pl_tog=gr.Number(visible=False)
ins_cnt=gr.Number(visible=False)
pl.click(tog_on,None,[pl_tog,play_state],show_progress=False)
st.click(tog_off,None,[pl_tog,play_state],show_progress=False)
pl_tog.change(pl_fn,[output_win,cur_frame,total_frames,fps_frames,pl_tog],[det_win,cur_frame],show_progress=False)
cur_frame.change(pl_fn,[output_win,cur_frame,total_frames,fps_frames,pl_tog],[det_win,cur_frame],show_progress=False)
bk.click(bk_fn,[cur_frame],cur_frame,show_progress=False)
fw.click(fw_fn,[cur_frame,total_frames],cur_frame,show_progress=False)
load_button.click(load,youtube_url,[output_win,cur_frame,total_frames,fps_frames,pl_tog])
#run_button.click(vid_play, [output_win,cur_frame], det_win)
app.queue(concurrency_count=10).launch()