Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,59 +4,46 @@ import random
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
model_repo_id = "black-forest-labs/FLUX.1-dev"
|
9 |
|
10 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
|
12 |
pipe.load_lora_weights("pepper13/flux-anime")
|
13 |
|
14 |
-
|
15 |
-
MAX_IMAGE_SIZE = 1024
|
16 |
-
|
17 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
18 |
-
if randomize_seed:
|
19 |
-
seed = random.randint(0, MAX_SEED)
|
20 |
-
generator = torch.Generator().manual_seed(seed)
|
21 |
-
|
22 |
image = pipe(
|
23 |
-
prompt=prompt,
|
24 |
-
negative_prompt=negative_prompt,
|
25 |
guidance_scale=guidance_scale,
|
26 |
num_inference_steps=num_inference_steps,
|
27 |
width=width,
|
28 |
-
height=height
|
29 |
-
generator=generator
|
30 |
).images[0]
|
31 |
|
32 |
-
return image
|
33 |
|
34 |
with gr.Blocks() as demo:
|
35 |
with gr.Column(elem_id="col-container"):
|
36 |
with gr.Row():
|
37 |
-
prompt = gr.Text(label="Prompt", show_label=False,
|
38 |
-
run_button = gr.Button("
|
39 |
|
40 |
result = gr.Image(label="Result", show_label=False)
|
41 |
|
42 |
with gr.Accordion("Advanced Settings", open=False):
|
43 |
-
negative_prompt = gr.Text(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False)
|
44 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
45 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
46 |
-
|
47 |
with gr.Row():
|
48 |
-
width = gr.Slider(label="Width", minimum=256, maximum=
|
49 |
-
height = gr.Slider(label="Height", minimum=256, maximum=
|
50 |
|
51 |
with gr.Row():
|
52 |
-
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.
|
53 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=20)
|
54 |
|
55 |
gr.on(
|
56 |
triggers=[run_button.click, prompt.submit],
|
57 |
fn=infer,
|
58 |
-
inputs=[prompt, negative_prompt,
|
59 |
-
outputs=[result
|
60 |
)
|
61 |
|
62 |
demo.launch()
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
+
torch_dtype, device = torch.float16, torch.device("cuda") if torch.cuda.is_available() else torch.float32, torch.device("cpu")
|
8 |
+
|
9 |
model_repo_id = "black-forest-labs/FLUX.1-dev"
|
10 |
|
|
|
11 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
|
12 |
pipe.load_lora_weights("pepper13/flux-anime")
|
13 |
|
14 |
+
def infer(prompt, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
image = pipe(
|
16 |
+
prompt=prompt,
|
|
|
17 |
guidance_scale=guidance_scale,
|
18 |
num_inference_steps=num_inference_steps,
|
19 |
width=width,
|
20 |
+
height=height
|
|
|
21 |
).images[0]
|
22 |
|
23 |
+
return image
|
24 |
|
25 |
with gr.Blocks() as demo:
|
26 |
with gr.Column(elem_id="col-container"):
|
27 |
with gr.Row():
|
28 |
+
prompt = gr.Text(label="Prompt", show_label=False, placeholder="Enter your prompt")
|
29 |
+
run_button = gr.Button("Generate", scale=0)
|
30 |
|
31 |
result = gr.Image(label="Result", show_label=False)
|
32 |
|
33 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
34 |
with gr.Row():
|
35 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=32, value=512)
|
36 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=32, value=512)
|
37 |
|
38 |
with gr.Row():
|
39 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=7.0)
|
40 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=20)
|
41 |
|
42 |
gr.on(
|
43 |
triggers=[run_button.click, prompt.submit],
|
44 |
fn=infer,
|
45 |
+
inputs=[prompt, negative_prompt, width, height, guidance_scale, num_inference_steps],
|
46 |
+
outputs=[result]
|
47 |
)
|
48 |
|
49 |
demo.launch()
|