flux-anime / app.py
pepper13's picture
Update app.py
f51dfbd verified
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
torch_dtype, device = (
(torch.float16, torch.device("cuda")) if torch.cuda.is_available()
else (torch.float32, torch.device("cpu"))
)
model_repo_id = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
pipe.load_lora_weights("pepper13/flux-anime")
def infer(prompt, randomize_seed, width, height, guidance_scale, num_inference_steps):
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height
).images[0]
return image
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, placeholder="Enter your prompt")
run_button = gr.Button("Generate", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=32, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=32, value=512)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=7.0)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=20)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, negative_prompt, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.launch()