Spaces:
Runtime error
Runtime error
import streamlit as st | |
import streamlit.components.v1 as com | |
#import libraries | |
from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig | |
import numpy as np | |
#convert logits to probabilities | |
from scipy.special import softmax | |
#import the model | |
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') | |
model_path = f"penscola/tweet_sentiments_analysis_bert" | |
config = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
#Set the page configs | |
st.set_page_config(page_title='Sentiments Analysis',page_icon='π',layout='wide') | |
#welcome Animation | |
com.iframe("https://embed.lottiefiles.com/animation/149093") | |
st.markdown('<h1> Tweet Sentiments </h1>',unsafe_allow_html=True) | |
#Create a form to take user inputs | |
with st.form(key='tweet',clear_on_submit=True): | |
text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine') | |
submit=st.form_submit_button('submit') | |
#create columns to show outputs | |
col1,col2,col3=st.columns(3) | |
col1.title('Sentiment Emoji') | |
col2.title('How this user feels about the vaccine') | |
col3.title('Confidence of this prediction') | |
if submit: | |
print('submitted') | |
#pass text to preprocessor | |
def preprocess(text): | |
#initiate an empty list | |
new_text = [] | |
#split text by space | |
for t in text.split(" "): | |
#set username to @user | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
#set tweet source to http | |
t = 'http' if t.startswith('http') else t | |
#store text in the list | |
new_text.append(t) | |
#change text from list back to string | |
return " ".join(new_text) | |
#pass text to model | |
#change label id | |
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'} | |
text = preprocess(text) | |
# PyTorch-based models | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
#Process scores | |
ranking = np.argsort(scores) | |
ranking = ranking[::-1] | |
l = config.id2label[ranking[0]] | |
s = scores[ranking[0]] | |
#output | |
if l=='NEGATIVE': | |
with col1: | |
com.iframe("https://embed.lottiefiles.com/animation/125694") | |
col2.write('Negative') | |
col3.write(f'{s}%') | |
elif l=='POSITIVE': | |
with col1: | |
com.iframe("https://embed.lottiefiles.com/animation/148485") | |
col2.write('Positive') | |
col3.write(f'{s}%') | |
else: | |
with col1: | |
com.iframe("https://embed.lottiefiles.com/animation/136052") | |
col2.write('Neutral') | |
col3.write(f'{s}%') | |