from datasets import load_dataset | |
# mind=load_dataset("PolyAI/minds14", name="en-AU", split="train") | |
from transformers import pipeline | |
pipe=pipeline("audio-classification", | |
model="anton-l/xtreme_s_xlsr_300m_minds14" | |
) | |
import gradio as gr | |
def classify_speech(file): | |
pr=pipe(file) | |
outputs={} | |
for p in pr: | |
outputs[p["label"]]=p["score"] | |
return outputs | |
demo = gr.Interface(fn=classify_speech, inputs=gr.Audio(type='filepath'), outputs=gr.Label() | |
) | |
demo.launch(share=True) | |