onetest / app.py
pchopalli's picture
Public
b1f189e verified
raw
history blame contribute delete
523 Bytes
from datasets import load_dataset
# mind=load_dataset("PolyAI/minds14", name="en-AU", split="train")
from transformers import pipeline
pipe=pipeline("audio-classification",
model="anton-l/xtreme_s_xlsr_300m_minds14"
)
import gradio as gr
def classify_speech(file):
pr=pipe(file)
outputs={}
for p in pr:
outputs[p["label"]]=p["score"]
return outputs
demo = gr.Interface(fn=classify_speech, inputs=gr.Audio(type='filepath'), outputs=gr.Label()
)
demo.launch(share=True)