OzzyGT's picture
OzzyGT HF staff
added paste back as an option
3a4cca7
raw
history blame
5 kB
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
@spaces.GPU(duration=16)
def fill_image(prompt, image, model_selection, paste_back):
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
print(f"{model_selection=}")
print(f"{paste_back=}")
if paste_back:
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
else:
cnet_image = image
yield source, cnet_image
def clear_result():
return gr.update(value=None)
title = """<h1 align="center">Diffusers Fast Inpaint</h1>
<div align="center">Draw the mask over the subject you want to erase or change and write what you want to inpaint it with.</div>
<div align="center">This is a lighting model with almost no CFG and 12 steps, so don't expect high quality generations.</div>
"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe what to inpaint the mask with",
lines=3,
)
with gr.Column():
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="Model",
)
with gr.Row():
with gr.Column():
run_button = gr.Button("Generate")
with gr.Column():
paste_back = gr.Checkbox(True, label="Paste back original")
with gr.Row():
input_image = gr.ImageMask(
type="pil", label="Input Image", crop_size=(1024, 1024), layers=False
)
result = ImageSlider(
interactive=False,
label="Generated Image",
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
def use_output_as_input(output_image):
return gr.update(value=output_image[1])
use_as_input_button.click(
fn=use_output_as_input, inputs=[result], outputs=[input_image]
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
demo.launch(share=False)