|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
device = 0 if torch.cuda.is_available() else -1 |
|
text_summary = pipeline("summarization", model="Falconsai/text_summarization",device=device,torch_dtype=torch.bfloat16) |
|
|
|
def summary(input): |
|
output = text_summary(input) |
|
return output[0]['summary_text'] |
|
|
|
gr.close_all() |
|
|
|
|
|
demo = gr.Interface( |
|
fn=summary, |
|
inputs=[gr.Textbox(label="INPUT THE PASSAGE TO SUMMARIZE", lines=10)], |
|
outputs=[gr.Textbox(label="SUMMARIZED TEXT", lines=4)], |
|
title="PAVISHINI @ GenAI Project 1: Text Summarizer", |
|
description="This application is used to summarize the text" |
|
) |
|
|
|
demo.launch() |
|
|