import streamlit as st from langchain_groq import ChatGroq from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun from langchain.agents import initialize_agent, AgentType from langchain.callbacks import StreamlitCallbackHandler import os from dotenv import load_dotenv # Load environment variables load_dotenv() ## Arxiv and Wikipedia Tools arxiv_wrapper = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200) arxiv = ArxivQueryRun(api_wrapper=arxiv_wrapper) wiki_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=200) wiki = WikipediaQueryRun(api_wrapper=wiki_wrapper) search = DuckDuckGoSearchRun(name="Search") # Streamlit UI st.title("🔎 LangChain - Chat with search") st.markdown(""" In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """) # Sidebar for settings st.sidebar.title("Settings") api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password") # Initialize session state for messages if not already if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"} ] # Display previous chat messages for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) # Capture user input from chat if prompt := st.chat_input(placeholder="What is machine learning?"): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) # Initialize the language model if api_key: # Ensure API key is entered llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True) tools = [search, arxiv, wiki] # Initialize the search agent with tools and the language model search_agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True # Enable error handling for parsing issues ) with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) try: # Try running the agent response = search_agent.run(st.session_state.messages, callbacks=[st_cb]) st.session_state.messages.append({'role': 'assistant', "content": response}) st.write(response) except ValueError as e: # Catch and display output parsing errors st.error(f"An error occurred while parsing the LLM's output: {str(e)}") st.session_state.messages.append({'role': 'assistant', "content": "Sorry, I encountered an error processing your request."}) st.write("Sorry, I encountered an error processing your request.") else: st.error("Please enter your Groq API Key in the settings.")